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Abstract. Smart manufacturing demands to process data in domain-
specific real-time. Engineering models created for constructing, commis-
sioning, planning, or simulating manufacturing systems can facilitate
aggregating and abstracting the wealth of manufacturing data to faster
processable data structures for more timely decision making. Current
research lacks conceptual foundations for how data and engineering mod-
els can be exploited in an integrated way to achieve this. Such research
demands expertise from different smart manufacturing domains to har-
monize the notion space. We propose a conceptual model to describe
digital shadows, data structures tailored to exploit models and data in
smart manufacturing, through a metamodel and its notion space. This
conceptual model was established through interdisciplinary research in
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the German excellence cluster “Internet of Production” and evaluated
in various real-world manufacturing scenarios. This foundation for an
understanding helps to manage complexity, automated analyses, and syn-
theses, and, ultimately, facilitates cross-domain collaboration.

Keywords: Digital shadow - Conceptual model - Smart
manufacturing - Internet of production

1 Introduction

Digital transformation shapes our world: from communication, to transporta-
tion, to medicine, to manufacturing, documents and processes become digital
to enable smarter data analyses, better integration of stakeholders, and more
efficient automated information processing. In manufacturing, long-living cyber-
physical production systems produce tremendous data that can be exploited
to reduce downtime, consumption of resources, and increase manufacturing
agility towards lot-size one [29]. Analyzing and processing this data fast enough
demands its appropriate abstraction and meaningful aggregation. Current man-
ufacturing environments leverages different and redundant IT-system silos com-
prising domain-specific data and models [23]. Therefore, access, and analysis of
production data is difficult [21]. Often, models of the involved systems and pro-
cesses (e.g., structure, behavior, knowledge) can be exploited to give meaning
to that data and provide a foundation for adaptive Digital Twins (DTs), the
digital representations of a cyber-physical system.

Research has produced a vast number of publications on DTs in manufactur-
ing [9,25,30]. These DTs are conceived ad-hoc, for specific real-world applica-
tions and related data structures, e.g., for CNC machining [15], injection mold-
ing [12], monitoring [6], or fatigue testing [7]. There is no conceptual foundation
for describing, abstracting, aggregating, and relating the data shared between
DTs. To mitigate this, we have conceived a conceptual model [16] of Digital
Shadows (DSs), describing data structures capturing the quintessential concepts
of manufacturing processes: data-traces including data-points and metadata, dif-
ferent kinds of engineering models, data-sources, and related assets as well as
purposes for creating DSs. This model has been defined and refined through a
series of interdisciplinary workshops in the Internet of Production (IoP)! cluster
of excellence and evaluated in various manufacturing scenarios, e.g., injection
molding [3], pressure die casting, factory planning, ultra-short pulse ablation.

Overall, the contributions of this paper are (1) a novel conceptual model
of DSs in manufacturing including its metamodel and notion space and (2) its
practical application on a manufacturing scenario and its impact.

Outline. Section 2 introduces preliminaries before Sect. 3 presents our concep-
tual model. Afterwards, Sect. 4 shows its practical application on a real-world
manufacturing scenario. Sect. 5 discusses related research. Sect. 6 concludes.
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2 Background

One major difficulty when speaking of models, DS and DT is that these terms are
often not clearly distinguished and even used interchangeably. We differentiate
these terms based on the information flow between the digital and the physical
object [10]. While a model and the physical object it represents are synchronized
only through manual updates, a DS follows the physical object based on an
automatic data flow. Accordingly, a DS is defined as a set of contextual data-
traces and their aggregation and abstraction collected concerning a system for
a specific purpose with respect to the original system [3]. A DT extends the
definition of the DS by automatically influencing the physical object as well.

DSs do not fully represent, but provide a purposeful view of the observed
object or process, which is referred to as its asset. Accordingly, they are created
with a specific focus and by selection and aggregation of data that may originate
from heterogeneous sources. The context for the respective data-traces is given by
the metadata. The combination of the metadata with referenced models enables
data structuring required for subsequent semantic processing. DSs must therefore
contain domain-specific knowledge in suitable form. This allows for task-specific
analysis and enrichment of underlying models with relevant data, which thereby
enables knowledge- and real-time-based decision making in production.

The DS concept is investigated by means of a conceptual model for DSs. The
conceptual model consolidates a set of concepts, which are presented as elements
in linguistic format. The notion space [16] clarifies the meaning of all elements
of DSs and their relationship on its basis.

3 Digital Shadow Metamodel and Notion Space

To achieve the benefits of a standardized information architecture of relevant
data in production such as knowledge-based decision making across domains,
a metamodel for DSs is proposed. The corresponding metamodel and its ele-
ments are presented in Fig. 1. The concepts of the DS are further detailed in the
following descriptions, which define the notion space for the metamodel.

F*— fulfills
v Digital
originates 4
ZF from . A
l | | - | |
‘Human‘ ’Measurement‘ ’Processing‘ DataTrace ‘ ’Structure‘ ’Behavior‘
1.* 1.*
1
’ DataPoint ‘ ‘ MetaData WSystemConfiguration‘

Fig. 1. The metamodel of the DS in UML class diagram (CD) notation.
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Asset. According to DIN SPEC 91345 [2] and DIN ISO 55000, “an asset is an
item, thing or entity that has potential or actual value to an organization” [1]. An
Asset can be physical as well as virtual and always fulfills a specific role within a
system. Becoming an asset is always concomitant with development, engineering,
measurement, construction, or a manufacturing process, regarding the asset’s
type and role [26]. Physical assets are, e.g., machines, components, and tools.
Virtual assets are, e.g., plans, mechanical drawings, standards, or metamodels. A
combination of several assets results in a new asset, e.g., by connecting multiple
machines to a production cell and vice versa [20]. By characterizing the asset with
suitable attributes that reflect its properties, the organization and stakeholders
establish the asset in the virtual world so it is applicable as a source [2]. Each
DS is associated with exactly one asset which represents the described system.
This asset (system) can comprise subsystems of the type Asset.

Sources. As the DS is always considered within a context, all data that is
regarded as part of it must be connected with its primary source. Therefore,
each DataTrace must be associated with one distinct Source. A Source is com-
posed of any number of defined properties, that specify at least the name, the
data type, and the unit of the source’s data. Sources can be of manifold kinds,
which peculiarities shall not be limited in the context of the metamodel. In our
metamodel, the Asset is a Source. While being the considered system within the
DS, an asset can serve as a source (e.g., for process limits due to machine spec-
ifications) for its own and also other DSs. Other source types could be human
inputs via human-machine interfaces, sensors delivering measurement data, or
any type of algorithms and simulations delivering specific information. A simple
example is the error-acknowledgment by a machine operator. The source is a
human and the property a Boolean. A more complex one is an injection molding
machine as a source of type asset with diverse properties. Those could vary being
specifications like a screw diameter as a float with the metric unit ‘mm”, actual
values like the current clamping force as a float with the unit “kN”, or simply
the machine name as a string. Those are just a few examples to demonstrate the
variety of possible sources and thus the cross-domain applicability of this model.

DataTrace. The core element of the DS is data that describes the matter of
concern about the given asset. The DS consists of contextualized DataTraces
as a subset of accessible data consisting of one or more DataPoints and their
respective MetaData. These data-sets can be numerical values, lists, or complex
data objects and are in production, e.g., motion and state-dependent data.

In injection molding, for example, the data-trace may refer to data about
the pressure signals or melt temperature measurements of a cavity sensor closely
linked to the specific volume of a plastic material under processing conditions.
Another possibility may be data about screw movements. The injection molding
machine, therefore, measures and controls the screw position at each increment in
time. The respective data-trace subsequently corresponds to the screw position
as motion data. Whereas the first data-trace indicates the actual material behav-
ior at processing conditions, the second data-trace refers to the actual machine
behavior while processing. Both are relevant subsets of the accessible data and
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can be analyzed independently in direct comparison to underlying models of an
ideal system. However, they can also be correlated with each other and thereby
generate information about the correlation of temperature and pressure rising
at specific screw movements.

DataPoint. As elaborated above, the DS may consist of multiple DataTraces
and subsequently, a multitude of DataPoints that originate from several
Sources. The data-points refer to the data a DS needs to describe the sys-
tem’s behavior following the targeted Purpose. It may be accessible by value in
case of only small amounts of data or by reference to a database.

MetaData. To enable contextualizing and interpreting the actual data of con-
cern that describe a system’s behavior, the DS itself as well as the DataTraces
hold MetaData. The metadata of the DS, therefore, lists on the one-hand side
the complete system configuration (system setup) with all relevant master data
about system components and subcomponents. Some of those subcomponents
may serve as sources for individual data-traces and some might just act as sup-
porting assets to the process of concern. Whereas the SystemConfiguration
itself is integrated as a Model. Further structural, physical, or otherwise relevant
models are also integrated to achieve the targeted Purpose of the DS.

The metadata of the individual sub data-traces on the other hand only need a
reference to the overall system configuration as well as a reference to the process
model and the respective asset that serves as the source for the data-points.
Furthermore, it lists the settings of the data-source and the parameters that
can be found in the data-points. The point identifier finally indicates the one
parameter inside the point header that serves for unique identification.

Figure 2 presents an exemplary shadow object about actual process data of
an injection unit during injection. The overall system is referenced by an ‘uid’
as well as the general process model and the injection unit as the Source of this
DataTrace. To keep the trace and thereby also the DS lean, the data specifica-
tion is separated from the final values accessible as DataPoints. To access the
respective data, a point identifier from the list of actual values is determined,
which might be the actual machine cycle or a timestamp. The MetaData finally
enables the recombination of several DataTraces that, e.g., originate from other
processes and DS, to generate new DigitalShadows with new Purposes.

Models. Models are a central constituent of DigitalShadows. According to
Stachowiak [24], models (1) consist of a mapping to an original object, that
the model represents, (2) are reduced to the relevant aspects and abstract from
details of the original, and (3) have a pragmatism that lets them replace the
original in certain scenarios. Models may map to the DS’s Asset (the physical
thing that it represents). In this scenario, the Model adds information about
the Asset to the DigitalShadow and helps evaluate/understand the data that
this asset provides. For instance, a SysML Block Definition Diagram (BDD) [27]
can represent the asset’s structure, a BPMN model [28] describes an established
process, or a simulation model [8,17] provides information about the expected
system behavior at a specific time. Models may also represent the context in
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Fig. 2. Structure of an instantiated DS object in injection molding

which the DS is created or in which its asset operates. Models about the context
help to understand why DataPoints change and relate these changes to events
that happen in the operating context. Models also specify the Digital Shadow
itself. They define which elements should be part of it, i.e., it is beneficial for
the intended purpose. A model’s purpose also varies. Models describe the DS
itself, thus, serve as the construction plan. They specify its asset and hint how
the data-traces are interrelated. Further, when describing the context, models
qualify specific values or value changes in the DS, e.g., models can help to decide
whether a sensed value can be considered as good or bad.

Purpose. Purpose in a general understanding is “what the DS is supposed to
do”. DSs must be tailored to a specific Purpose, because they neither act on their
own nor do they interact directly with the regarded system (see Sect. 2). The
purpose definition is a basis for correct cross-domain interoperability as well as a
precise understanding of the DS in future use. A DS is designed for its exact pur-
pose. Regarding complex purposes, it is possible to associate several thematically
connected DS more comprehensively. To achieve said Purpose the functionali-
ties are defined within the Models or can be realized through DataTraces from
sophisticated simulation or processing sources. These functionalities can vary
from simply monitoring a heartbeat of a referred system to very complex data
analyses, e.g., Al-based predictions. The format of the Purpose has no further
specifications but the requirement to define it clearly and understandable.



A Conceptual Model for Digital Shadows in Industry and Its Application 277

4 Application Example

In the following section, we demonstrate the usability of the introduced meta-
model with one real-world application example by adding application-specific
instances to the generic classes. We will illustrate a production planning process
in injection molding domain to outline the metamodel’s usability.

Figure 3 shows the metamodel enhanced with instances for the production
planning process of an injection molding production. In this application example,
the objective for a production controller is to set an optimal schedule. Finding
the injection molding machine (IMM) where the expected rejection rate for part
X is minimal is the purpose the controller aims for. Because production planning
processes are often highly complex, we assume that the shopfloor comprises only
two injection molding machines (A and B) that only differ in the rejection rate
for part X. Further, no other constraints are given. To support the controller
in the decision, the DS must provide the machine ID (IMM-ID) of the injection
molding machine, where the expected rejection rate for part X is the lowest. This
necessary information comes from multiple assets, namely the Manufacturing
Execution System (MES) containing multiple data sources, and the machines.

MES
Part-ID, IMM-ID Production Scheduling System Release on Injectio e Rejectio
Human H Injection Molding Machine olfellnge) Wi © B ate 1o

JobRejectionRate MES links to L Purpose

*

Measurement
QualityClassification
Processing
JobRejectionRate

P fulfills
hado o mosel |
stands for Shadow uses -
i
f *
lPropeny H Source |<1—{ DataTrace | ‘Structure‘ ‘Behavior|
[P originates from

‘ I ‘ 1 1.* CalcMinRejectionRate()

‘Human‘ |Measurement‘ |Processing| DataPoint ‘ l MetaData W;{SystemConfiguratioﬂ

OK/ NOK M Rejection Rate
per part of Single Job

Rejection Rate Record of Job History

of Single Job # | Part-ID | IMM-ID | RejectionRate
" 1 X IMM-A 19 %
Record of single Job 2 X IMM-B 2%
X IMM-... %
10] X IMM-A 17 %

Fig. 3. Metamodel enhanced with specific instances for the planning process.

Relevant attributes are Part-ID, IMM-ID, and the current rejection rate of
machine A and machine B for part X. The MES as Source provides the Part-
ID and IMM-ID. The gathering of the rejection rates was made, on the one
hand, manually by a human operator via plant data acquisition for a single,
finished job on machine A. The relating attribute in the Property class for the
human Source calls JobRejectionRate. On the other hand, sensors at machine
B inspect every single part and automatically classifies the approved part as
OK, while rejected parts are classified as NOK (not OK). After the job on
machine B is terminated, it directly proceeds the JobRejectionRate and forwards
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the information to the MES. The MES enhances the corresponding job record
with the received rejection rate. Hence, a record of a single job represents one
single DataPoint. After combining all single data points to a DataTrace, a
mathematical model (CalcMinRejectionRate) first computes the mean rejection
rate for machines A and B. Subsequently, the model selects the machine ID
concerning the minimum rejection rate and provides the result to the controller.
The controller finally sets the optimal schedule that presumably minimizes the
number of rejects of part X. One benefit is a possible faster termination of the
job when producing on IMM-B instead of IMM-A. That leads to a reduction of
the waiting time for the following jobs. Besides, in comparison to IMM-A, less
input of resin on IMM-B is necessary to manufacture the desired quantity of
part X. Consequently, material costs are saveable.

5 Related Work

By now, there exists no conceptual model for DSs from the computer science
perspective and following the conceptual model definition from Mayr and Thal-
heim [16]. However, Digital Shadows play an important role in smart manufac-
turing and some of the concepts are already defined in other contexts.

Quix, Hai and Vatov [19] present a conceptual view on a metadata-model
related to metadata extraction and management in data lakes. Liebenberg and
Jarke present the AI modeling and data management aspects of DSs in the IoP as
a generalization of database view conceptualizations [13]. Our conceptual model
for DSs goes beyond that and considers further context information such as the
source of data, the relation to assets and the connection to engineering models.

Loucopoulos et al. [14] present a conceptual meta model for Cyber-Physical
Production Systems which emphasizes information sharing and analysis aspects
at a broad requirements engineering level, without going into the level of stan-
dardization and detail presented in this paper.

Bravo et al. [4] present a meta model for manufacturing which focuses on the
resources, execution, planning, the product, and the client. Their approach does
not consider the assets of the physical object, the purpose for data collection,
and aggregation or metadata.

Ladj et al. [11] propose a framework for a knowledge-based DS including a
physical and a virtual system. Their DS is a data and knowledge management
system. Data analytics are applied to the database to generate the knowledge
base of the DS. The analysis of the physical system by the DS supports the
decision process. The proposed DS is self-learning and therefore improves con-
tinuously. Their approach describes elements of DSs for the specific purpose of
a machine as physical object but it lacks a generic description of DS elements.

Schuh et al. [22] develop a data structure for DSs. The database consists of the
organization’s knowledge that can be utilized to solve its tasks. The data struc-
ture model is based on a generic order fulfillment process. An entity-relationship
model describes the relationships between the data, resources, and elements of
the order fulfillment. To complete the data structure, information requirements
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are modeled and linked with the data. Within [22], no conceptual model is given
and concepts such as purpose or engineering models are not considered.

Parri et al. [18] create an architecture for a DT-based knowledge base. They
present a metamodel as UML CD describing the knowledge base including the
concepts DTs and Meta-DTs. Their metamodel has a focus on digital systems
of a company, further elements of DSs like data or models are not considered.

6 Conclusion and Outlook

In this paper, we proposed a conceptual model for DSs and successfully evalu-
ated it in real-world scenarios. Researchers in the smart manufacturing domain
process and analyze data from various sources with heterogeneous formats and
interfaces. They create models during all lifecycle stages of products, machines,
and other entities. One major issue is the insufficient integration between data
and models. Our conceptual model tackles that issue.

The impact of the proposed conceptual model of the DS in the production
domain is multifaceted. Besides general model-driven benefits such as complexity
management and code generation [5], it facilitates cross-domain collaboration by
providing a base to define instances, as our real-life application in Sect. 4 showed.
Its adequate and compact core enables interoperability on multiple levels, while
it allows flexible extensions as well as domain-specific additions based on future
requirements. Our application example in the manufacturing domain proof that
this DS conceptual model can be a foundation to enable benefits in real-world
applications in the short and long term.
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