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Abstract
Low-code platforms have gained popularity for accelerat-
ing complex software engineering tasks through visual in-
terfaces and pre-built components. Software language engi-
neering, specifically language composition, is such a complex
task requiring expertise in composition mechanisms and lan-
guage workbenches including multi-dimensional language
constituents (syntax and semantics). This paper presents an
extensible low-code platform with a graphical web-based in-
terface for language composition. It enables composition by
using language components, facilitating systematic composi-
tion within language families promoting reuse and streamlin-
ing the management, composition, and derivation of domain-
specific languages.

CCSConcepts: • Software and its engineering→Reusabil-
ity; Software notations and tools.

Keywords: Software language engineering, Language com-
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1 Introduction and Motivation
In recent years, the demand for efficient software develop-
ment processes has led to the emergence and widespread
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adoption of low-code development platforms [1]. These plat-
forms provide visual interfaces and pre-built components
that accelerate the development of complex applications [10].
Among the intricate aspects of software development, soft-
ware language engineering and composition play a vital role
in achieving effective and customizable solutions, e.g., in
the domain of digital twins [4]. Software language engineer-
ing involves designing and implementing domain-specific
languages, while language composition combines languages.
Understanding compositionmechanisms and language work-
benches is essential [7]. Although web-based language work-
benches exist [11], limited reuse for multi-dimensional lan-
guages remains a challenge. To address this, we introduce
a low-code platform based on a method for black-box lan-
guage composition using language components that encom-
pass syntax and semantics [3]. We refer to this method for
systematic component-oriented language reuse as SCOLaR
in the following. The platform allows language engineers
to derive language components from existing projects and
systematically compose them within a language family. By
selecting and combining language features within the plat-
form’s language family, language engineers can create tai-
lored languages that cater to specific application domains.
Through this research, we aim to contribute to the advance-
ment of low-code development methodologies and empower
language engineers with a powerful tool to create and reuse
languages in a more intuitive and efficient manner.

2 Systematic Component-Oriented
Language Reuse

The low-code platform is grounded in the concepts of SCO-
LaR that uses language components encompassing the con-
stituents of language definitions in the language workbench
MontiCore [6]. Language components can be reused by their
interface in language families.

2.1 Language Components
Language components [3] provide the three essential lan-
guage definition constituents: (1) syntax, (2) well-formedness
rules, and (3) code generators, realizing the semantic map-
ping between the problem and the solution domain, that are
exposed by extensions in their interface. SCOLaR differen-
tiates between required and provided extensions. Provided
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Figure 1. The systematic language composition process ex-
emplified with a language family for statecharts.

extensions offer DSL functionality to be reused by other com-
ponents. Required extensions make missing functionality
of a DSL component explicit and can be either optional or
mandatory. Provided and required extensions can reference
productions of the grammar or a generator for a specific
grammar production. Well-formedness rules are contained
in sets that can act as both provided and required extensions
at the same time.

2.2 Systematic Composition with Language Families
Language family architects arrange language components
into a feature model representing a family of DSLs (cf. Fig-
ure 1). In this feature model, each feature either is related
to a language component or is an abstract feature [9] for
logical grouping. Through this relation, the language fam-
ily architect decides how the components will be composed
when their related features are selected. Once the language
family architect completes the language family, DSL owners,
who are experts of the application domains derive a suitable
DSL for their application domain, by selecting appropriate
features from the family in a feature configuration. The com-
position of two DSL components is the directed application
of bindings between these components. Currently, SCOLaR
supports the composition operators embedding and aggre-
gation [8]. For the composition the provided extensions of
one component are bound to required extensions of another
component. The composition includes two main activities:

(1) Composing the components’ interfaces; and (2) Com-
position of the comprised language definition constituents
(grammars, well-formedness rules, code generators).

3 The Low-Code Platform for Language
Composition

The SCOLaR low-code platform is designed around the SCO-
LaR process (cf. Figure 1) and provides a graphical web-based
environment to support it. This section outlines the essential
requirements that the platform must meet and then delves
into the workflow of the SCOLaR low-code platform.

3.1 Requirements
To transform the SCOLaR method from a conceptual method
into a user-friendly low-code platform accessible to language
architects, we have created an enhanced version of the SCO-
LaR process, illustrated in Figure 2. The numbers in Figure 2
refer to the requirements we derived for the low-code plat-
form:
Req 1: Language engineers can continue developing languages

in their language workbench together with the asso-
ciated technology-specific artifacts. Hence, existing
language projects can be imported and a language
component representation is derived automatically.

Req 2: Imported language projects and created language fam-
ilies should be persisted, e.g., in a database.

Req 3: The low-code platform enables DSL Family Architects
to create language families.

Req 4: DSL owners can configure existing language families
and derive new languages by composition.

Req 5: The composed languages should be exportable for de-
ployment.

3.2 Workflow of the Low-Code Platform
The workflow of the SCOLaR low-code platform can be di-
vided into three steps (cf. Figure 2). Firstly, languages are
constructed within a language workbench and subsequently
imported into the platform. However, the only language
workbench that is supported to this date is MontiCore [6].
Once imported, these languages can be reused within a lan-
guage family. The configuration of the language family leads
to the creation of a new language component, which includes
a composed language project that can be downloaded.

3.2.1 Automatic Derivation of DSL Components. Cre-
ating a language component model is tedious and error-
prone. However, in pursuit of our low-code platform’s objec-
tive to empower users to compose languages with minimal
manual coding, we have developed a derivation function that
automatically generates language components from existing
MontiCore language projects. After the automatic derivation
of a language component, the low-code platform enables the
customization of this component to restrict the provided ex-
tensions for generator and grammar productions. After the
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Figure 2. The systematic language composition process including the development of a language in a language workbench,
the import into the SCOLaR tool, the selection of language features, and the derivation of the configured language variant.

import and customization step, the components are ready to
be reused in language families. The following describes how
the automatic derivation of different language component
constituents is realized.

Grammar. The grammar reference is derived directly
from the grammar name and its package specified in the
project’s grammar directory. Within this grammar, we iden-
tify that each production rule with a right-hand side serves
as a provided grammar extension. Each production rule with
the keyword interface, indicating that implementation is
open for extension, becomes a required extension in the
language component.

Well-formedness Rule Sets. The well-formedness rule
sets are linked to particular grammar production rules. Mon-
tiCore provides infrastructure for validating model well-
formedness, including checkers that allow developers to
register specific well-formedness rules. In the language com-
ponent, a set is defined for each checker, which precisely
matches the rules registeredwithin the corresponding checker.

Generator. In order to derive generator extensions, it is
expected that generators are constructed in accordance with
the concept described in [2]. This entails that generators
should have explicit product and producer interfaces.

3.2.2 Creating a Language Family. The low-code plat-
form offers a dedicated language family workbench for com-
posing language components. Within this workbench, users
have the option to start with a blank canvas or modify an
existing language family. Using a side menu, the user can
add or remove features of the language family. Each feature
is characterized by a name and a type, i.e., abstract or nor-
mal feature. Abstract features are used for grouping. Normal

features make references to language components available
in the platform’s language component library. Connections
between features are established and defined with types such
as or, xor, and, optional, or mandatory. These connections
establish bindings between the extensions of the referenced
language components, linking child features to parent fea-
tures. The resulting composition tree can be saved to the
language family library and utilized for deriving composed
languages through feature configuration in subsequent steps.

3.2.3 Configuring andExportingComposed Languages.
To derive new languages, the initial step involves selecting a
language family from the language family library. Each lan-
guage family within the library comes with a comprehensive
description and is visually represented as a tree structure.
The user can interact with this tree by clicking on specific
language features to select them. Once the desired language
family configuration is established, the user can click on
the "Derive DSL" button. This action triggers a validation
process where the language family configuration is checked
against the constraints of the feature tree. If the configura-
tion is deemed valid, the SCOLaR framework in the backend
proceeds to compose the referenced language components.
Once the composition process is completed, the user is noti-
fied through a pop-up message and provided with the option
to download the composed language project source files. To
utilize the language, the project can be built using Maven
and subsequently used with the tooling provided by the
MontiCore language workbench.

4 Software Architecture
The SCOLaR low-code platform is realized as a classic three-
tier architecture consisting of a persistency layer, a backend
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and a frontend. The software architecture is depicted in Fig-
ure 3. Our low-code platform is designed with deployability
in mind, and every component of the software architecture
is packaged as a Docker image. This Dockerization enables
seamless and scalable deployment of our platform, allowing
for efficient utilization of resources and easy management
of the platform’s infrastructure.
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Figure 3. The 3-tier architecture of the low-code platform.

4.1 Frontend
The frontend of the SCOLaR low-code platform is developed
using Vue.js and provides different components for user
interaction. The Welcome Page enables to log into the plat-
form and choose from the Language Component Viewer,
the Language Family Viewer, and the Language Family
Workbench, afterward. Utilizing the Language Family Workbench
users can assemble new language families or reuse and ex-
tend existing ones following the process described in Sec-
tion 3.2. With the Language Component Viewer language
projects can be managed and imported into the platform.
The Language Family Viewer shows available language
families for configuration.

4.2 Backend
The backend of the platform is built on Java Spring Boot. The
backend comprises a Controller for the overall workflow
control of the platform, and to provide the RESTAPI for inter-
action with the frontend. Additionally, the backend includes
a User Management. Today, the SCOLaR platform supports
the roles 1) engineer, that has rights to create, remove and
modify language families and components, 2) and user, that
can only view components, and families and configure and
derive language products by selecting features of a language
family already available in the language family library. For
persisting imported language projects together with their
associated language components, as well as created language
families, the Data Access component persists them into a
MySQL database. In addition, the existing tooling of SCOLaR

is reused in the backend, to perform the processing of lan-
guage componentmodels, language families, language family
configurations, and the composition of the language com-
ponents and their comprised artifacts. Furthermore, there
exists a language infrastructure generator that generates the
composed language project and exports it as a zip file.

4.3 Database
The persistency layer of the platform is implemented using
MySQL. The database of the platform is used to persist all
artifacts related to the SCOLaR process (cf. Figure 1), i.e.,
language components, their related language projects, the
language familymodel, and users, together with roles and the
associated permissions. This enables the platform to provide
a library of language components and families for reuse that
were imported and assembled before.

4.4 Extensibility
Since SCOLaR is subject to ongoing research, the software
architecture should be refined accordingly. We see the fol-
lowing concepts being subject to changes that have to be
taken into account in all three layers of our architecture.
1. The extension of constituents of language components
and their composition according to bindings. When extend-
ing the constituents of language components, in the backend,
the DSL Comp Processor (cf. Figure 3) has to be extended.
In the frontend, the Language Component Viewer has to
be updated. Furthermore, in the database the schema for
language components has to be adapted to the changes to
the language component constituents and to represent the
project structures of new technological spaces. 2.When intro-
ducing new composition operators between language com-
ponents, in the backend, the Artifact Composer for the
specific artifacts of technological spaces and the Language
Infrastructure Generator has to be implemented. Fur-
thermore, the Language Family Manager has to be extended
with the bindings specific to this new language composition
operator. In the frontend, these changes have to be adopted
by the DSL Family Viewer and DSL Family Workbench.
Finally, the database schema for language families has to be
updated. For all of these changes, the software architectures
provides dedicated extension points or interfaces that can
be extended and implemented, respectively.

5 Demonstration
This section performs a walk through the presented platform
by an example of a language family for statecharts. First, the
language component library together with the import mech-
anism is shown. Afterwards, the language family workbench
where imported languages can be reused as components and
arranged in a language family is presented. And at last, the
language family language family for statecharts is configured
to derive a specific language variant.
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Figure 4. Importing languages into the SCOLaR platform
and configuring the derived language component.

Figure 5. The workbench for creating language families.

5.1 Importing a Language Project
The first step towards reuse of existing language projects
in SCOLaR is the import as language components. As men-
tioned in Section 3 our platform provides an automatic lan-
guage component derivation mechanism. Importing lan-
guage projects into the platform is possible via the language
component library. By clicking the button import, a dialog
for importing language projects opens. The selected project
is uploaded to the platform, persisted, and a fitting language
component is derived automatically. This language compo-
nent can then be customized according to its provided and
required extensions (cf. Figure 4). After the configuration,
the component is persisted and available in the language
component library, and the language family workbench for
reuse.

5.2 Creating a Language Family
Figure 5 shows the language family workbench in the SCO-
LaR platform exemplified with a language family for state-
charts. In the workbench, features can be removed and added,
and features can be associated with language components
from the library. In the view, abstract features are filled white
and features backed with language components are filled
grey. Editing the family is possible via the sidebar. The layout
of the family is adjusted automatically whenever a feature is
added or removed.

Figure 6. The systematic language composition process ex-
emplified with a language family for automatons. Selected
features are highlighted blue.

5.3 Configure and Export
To derive language variants from language families, the lan-
guage family library enables choosing from a set of existing
language families built in the workbench. To configure a
language family, the user can simply select a family in the
library and choose the variant of his choice by clicking on
the features in the feature tree (cf. Figure 6). By clicking the
button Derive DSL the configuration is applied, the selected
language features are composed, and the language variant is
downloaded as a zip archive. After that, the user can build the
language project and utilize the language to define models
in his language variant.

6 Conclusion
The SCOLaR low-code platform provides graphical means for
language engineers to 1) import existing languages, 2) auto-
matically derive a language component interface, that 3) en-
able reuse along a language family, 4) create and config-
ure language families for various language variants, 5) and
manage language components and families for reuse. The
platform is still in its early development and since SCOLaR
framework is built using MontiCore this is the only language
workbench supported currently. However, in the future, we
plan to extend our platform by supporting other language
workbenches, e.g., XText1 and to add other language compo-
sition operators besides embedding and aggregation [5] and
even composition between different compatible technologi-
cal spaces. Early user reports indicated that extending the
platform with more detailed error reporting, and language
component and family versioning would be helpful. For the
exported language variants, we plan to add LSP2 genera-
tion, providing languages with common editor features, e.g.,
syntax highlighting, folding, auto-completion etc..

1https://www.eclipse.org/Xtext/
2https://microsoft.github.io/language-server-protocol/
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