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Abstract—Several software architectures for digital twins have
been proposed, specifying their structure and key components,
such as the ISO 23247 standard for manufacturing. However,
systematic methodologies for developing digital twins in the
manufacturing domain remain lacking. Existing research does
not adequately address methodological aspects, such as compos-
ing essential digital twin components, defining their interfaces,
and systematically analyzing relevant data. This gap presents
a challenge for the structured development of digital twins. In
this work, we introduce a systematic approach to identify key
requirements for manufacturing digital twins and propose a
model-driven method for their creation. Our approach enables
the generation of executable digital twins based on a formalized
specification. We demonstrate its applicability through multiple
industrial manufacturing demonstrators, highlighting its suitabil-
ity in practice. The proposed method is adaptable regarding the
purpose of the digital twins to be developed and supports a
largely automated process.

Index Terms—Engineering Method, Model-Driven Engineer-
ing, Digital Twin, Software Architecture, Manufacturing

I. INTRODUCTION

While digital twins (DTs) are widely used in various appli-
cation domains, i.e., automotive [1], [2], [3], smart cities [4],
energy systems [5], [6], or avionics [7], [8], they have become
a vital pillar of digitalization in manufacturing [9]. Conse-
quently, a plethora of publications on various kinds of DTs
for manufacturing have been published in the last decade.

According to two very popular characterizations of DTs by
Kritzinger [10] and Tao [11], a DT must be a complex software
system that interacts with its (cyber-)physical counterpart for a
variety of services (such as behavior optimization or predictive
maintenance). And while many software architectures of such
DTs have been proposed [9], systematic methods to engineer
DTs according to these architectures are lacking. Most notably,
the ISO 23247 standard [12] sketches the structure of a
software architecture for DTs based on "functional entities"
but does not disclose how they are meant to be composed,
interface with another, or should be constructed. Furthermore,
in practice, small and medium-sized enterprise (SMEs) often-
times do not know how to begin with DTs or cannot afford the
software engineering expertise necessary to implement DTs.
We propose to close this gap by presenting a logical soft-
ware architecture for DTs that complies with ISO 23247 and

comes with a systematic, purpose-driven method to produce
software artifacts realizing this architecture. To this end, we
leverage integrated modeling languages for data structures, UI
elements, and software components and combine two existing
code generation toolchains to produce the different parts of the
DTs. Hence, this paper contributes (1) a systematic method
to identify the requirements for creating DTs according to
our architecture, and (2) a pervasive model-driven method
using model transformation and code generation to produce
executable DTs based on these requirements.

In the remainder, Sec. II introduces our notion of DTs and
the modeling infrastructures used for generating DT software
components. Sec. III presents related work before Sec. IV
introduces our base architecture for ISO 23247 compliant DTs.
Sec. V outlines our method for identifying the requirements
necessary to instantiate this architecture using the toolchain
presented in Sec. VI. Sec. VII presents the method application
in an industry, followed by a discussion of the approach’s
assumptions, strengths, and limitations. Sec. IX concludes.

II. BACKGROUND

Digital Twins: Research and industry employ DTs
(DTs) [10], [13] to better understand and use cyber-physical,
biological, and social systems [9], [14]. The DTs promise to
reduce development costs and time, improve operations, and
deepen our understanding of the represented Actual Systems
(ASs) [9]. Therefore, the DTs serve different purposes, such
as analysis [15], control [16], or behavior prediction [17].

While research and practice have produced various refer-
ence models of DTs [18], there is still little consensus on what
a DT actually is and what its implementation should comprise.
Popular definitions either define DT based on the data flows
between the DT and the represented AS [10], coarsely describe
abstract modules that they may comprise [13], [12], or focus
on software architectures of DTs for very specific DT applica-
tions. One thing that all DTs according to [10] have in common
is that they obtain data from the AS, process this, and may
use insights gained from this processing to manipulate that
system [10]. However, there are many more expectations on
what a DT should be able to do as outlined by the functional
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Fig. 1: Functions of DTs according to ISO 23247 [12].

entities1 mentioned in ISO 23247 [12] (cf. Fig. 1): Here, DTs
collect data from observable manufacturing elements, process
the data and provide it to added-value functions, e.g., for
digital representation, analytics, reporting, or simulation. Their
results are then sent back to control the AS.

Digital Shadows: Digital Shadows (DSs) are an impor-
tant concept for data use and sharing [19]: They are “a set of
contextual data traces and their aggregation and abstraction
collected for a specific purpose with respect to an original
system” [20] supporting the reduction to what is of importance
for a particular data usage purpose, i.e., in DTs. The DSs are
tailored to specific tasks and contexts by using data aggrega-
tion methods [21]. Becker et al. [20] and Michael et al. [22]
describe relevant DSs concepts, including the purpose, data
trace and data points, their metadata, the related system the
data is coming from, and models providing essential contex-
tualization to the data. One can consider different relationship
variants between datatraces and models, dependent on the
kinds of models [23], i.e., simulation, SysML, 3D models, the
lifecycle phase [24], and the application domain. [22] provides
additional model usages, e.g., data calculation models using
data traces as input or creating them as output, or simulation
models related to the data traces they are consuming and
producing. In addition, one can use workflow models to
describe how more complex processing steps consuming and
producing data traces are chained [25]. Within [22], we also
describe a method for creating DSs. This method is applied
in [26] to create DSs at different levels of the automation
pyramid for injection molding.

MontiArc: MontiArc [27] is an extensible component &
connector architecture description language (ADL). It features
core elements of component & connector ADLs, i.e., hierar-
chically decomposable components with interfaces, types, con-
nectors, and architectural configurations. MontiArc’s seman-
tics is based on the Focus theory of stream-processing func-
tions [28]. Using the MontiCore [29] language workbench,
the logical software architectures described with MontiArc

1The standard does not require all of them to be present in at DT.

are verified and translated into executable architecture imple-
mentations in Java, Mona, Python, and more [27]. MontiArc’s
components either comprise a topology of subcomponents, a
single behavior model describing their input-output behavior,
or neither. In the latter case, they expect a handcrafted behav-
ior implementation to be provided following certain naming
conventions, such that the generated component interface can
link to it. Ultimately, each component model becomes a set
of classes representing the component’s interface, inputs and
outputs, and its behavior implementation. We model the logical
architecture of the DT with MontiArc and translate this into
an executable Kotlin implementation using code generators.

MontiGem: MontiGem [30] is a generator for creat-
ing web-based applications. It builds on the functionality
of MontiCore to take Class Diagrams (CDs) describing the
data structure, Object Constraint Language (OCL) models to
define data constraints, and Graphical User Interface (GUI)
DSL models [31] to describe graphical user interfaces and
are transformed into a client-server application. We refer to
the DT user interfaces as DT cockpits [32]. The generated
application can be extended with hand-written code. The re-
sulting generated application consists of a database, a backend
that interacts with the database, and a frontend that interacts
with the backend. The frontend is an Angular web application
that supports various customizable GUI widgets, such as
adaptable tables and several chart components. MontiGem
has been successfully applied in domains such as financial
management [33], IoT systems [34], or DTs [32], [35].

III. RELATED WORK

A. Systematic Engineering of Digital Twins

Various methods for the systematic engineering of DTs
have been explored in the literature. The engineering of DTs
can be guided by reference architectures and ontologies. One
approach proposes an architecture for DT systems based on
ISO 23247 [36]. An approach introducing a CI/CD pipeline for
DTs in the cloud decouples DTs into micro-service. However,
the steps required to instantiate these architectures for different
use cases are not provided. Another approach proposes a
service-oriented engineering workflow, guiding users through
service selection and recommending relevant models derived
from ontologies, followed by automated execution and deploy-
ment [37]. In contrast to our study, however, they do not define
the dependencies between the different services and models.
One study focuses on how the DT can be leveraged in different
lifecycle phases of IoT [38]. However, it does not outline the
engineering of the underlying DT, that enables the integration
of IoT devices.

B. Requirements Engineering for Digital Twins

Recent work has begun to address requirements engineering
for DTs, emphasising linking requirements to structured mod-
els and behaviors. Zhao et al. [39] proposes an approach for
engineering IT/OT requirements within Asset Administration
Shells to enable their traceability across development stages.
However, a consideration for the derivation of DTs and a



mapping of the requirements to software or modeling artifacts
is missing. In the realm of human-centric requirements, studies
focusing on non-functional requirements such as transparency,
user competence, and safety [40], [41] are conducted. How-
ever, these works primarily frame these qualities as abstract
system goals, without offering engineering guidelines, i.e.,
without mapping requirements with available information of
the physical system. Gar et al. [42] translates system require-
ments into behavior models, which are used to derive PLC
control logic for virtual commissioning but lack the structural
information or requirements for other services of the DT.
Additional work addresses adaptability and lifecycle consid-
erations. De Almeida et al. [43] focus on data integration as a
foundational capability for DT requirements, while Kamburjan
et al. [44] propose mechanisms for dynamic adaptation based
on evolving requirements. Together, these studies emphasize
the need for formalized models of both functional and non-
functional requirements.

C. Model-Driven Development of Digital Twins

Some studies focus on engineering DTs based on data mod-
els. From these models, they can generate code or explore the
modeling of sensors and data flows [45]. Another data-centric
study leverages medical data to recommend treatments [46].
Parbat et al. [47] focus on formalizing the behavior of DTs
with mathematical models while Nguyem et al. [48] focus
on modeling data structures, integrating network protocols,
and mapping Asset Administration Shell (AAS) submodels
to physical and simulated assets. Another area of research
applies AI and optimization techniques within model-based
contexts [49]. A case study [50] applies DTs to agriculture,
where model-based what-if analyses are used to simulate
the effects of environmental and operational variables. Other
works [51] integrate semantic models and a knowledge graph
to represent the knowledge about a milling machine in the
manufacturing domain. Despite defining model-driven meth-
ods for deriving DTs, the existing studies lack a systematic
method of which models need to be created at which point in
time, together with the model dependencies and the genera-
tion or transformation steps required to derive a functioning
application-specific DT. A systematic mapping study [52]
investigating MDE techniques in the context of DTs identifies
data models as the most common models. These models are
usually leveraged to generate data processing, data storage, and
graphical user interfaces. This also aligns with our rather data-
centric perspective on DTs, where we leverage data models to
generate the different components of our DT architecture.

IV. DIGITAL TWIN ARCHITECTURE

The base architecture of our DT is an extension of the
architectures presented in [53], [20] that incorporates elements
of the MontiGem [34] toolchain to include DT cockpit gen-
eration and omits a fixed MAPE-K loop [53] in favor of
extensibility with services. As such, the core functionality of
this architecture is to synchronize the information relevant to

the DT purpose with the AS. Hence, the most vital components
of our DTs are:
Gateway: Acts as the connection between the DT and its

AS. As the ports of the Gateway describe the information
requirements of the DT, the main duty of the Gateway is
fulfilling these requirements by providing this information,
either directly from the AS, by performing computations on
data from the AS, or by taking into account other data sources
in addition.
Shadow Caster: Takes input data from the Gateway

and produces the digital shadows required by the services (incl.
the cockpit). Hence, whenever data belonging to one or more
digital shadows changes, the Shadow Caster takes care of
constructing these shadows by fetching their other data as well
and provides the shadows to the other components of the DT.
Synchronizer: Synchronizes the data between the DT

and the AS. It receives every DS that is sent to the DT and
receives DSs from other components to ensure that every DS
is synchronized between Gateway and Database.
Executer: Acts as the inverse of the Shadow Caster

by taking as input DSs meant to be send to the Gateway,
i.e., to change the behavior of the AS, and translates these to
messages to the Gateway’s incoming ports.
Controller: Comprises a BPMN interpreter and models

that describe the normal process of handling services and that
listen to events [32], such as a new DS being available, that are
relevant to other components. As of now, the BPMN models
are handcrafted.
Service Manager: acts as the wrapper of the services of

the DT and ensures that the concrete services are independent
of the Engine and its interface. Hence, it forwards each
incoming DS to each service and uses the Service Merger
to collect the outputs of all services prior to forwarding them
to the Engine. The interface of the Service Merger
consequently is synthesized based on the services of the DT.
Database Manager: is responsible for abstracting SQL

queries (depending on the used technology) to the database
away and automatically disassembling DSs into their individ-
ual properties. Its interface is according to the maximal data
structure (see Sec. VI).
Database: the maximal data structure specifies the

database, which is capable of storing each defined property.
Here, we decided on a relational SQL database, but it may be
any other database technology if it seems suitable.
DT Cockpit: is the GUI provided by MontiGem and be-

haves like a service by requiring and providing DSs from/to the
DT. User interactions with other services are communicated
via DSs.

As the ports of Gateway and Shadow Caster depend
on the data required by the DT’s services, both components
need to be provided specifically for a concrete DT. While the
Shadow Caster is synthesized based on the required data,
for the Gateway, only the interface can be synthesized, but its
behavior must be implemented manually as of now. Likewise,
the Shadow Merger depends on the inputs from the services
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Fig. 2: Base architecture for our model-driven DTs

of the DT and is synthesized. The other components of the DT
are generic.

Fig. 2 illustrates the base architecture’s components and
their relations but includes three services for better comprehen-
sibility of how service interfaces govern ports of the gateway.
Out of these services, only the DT cockpit is part of the
base architecture. Also note that we consider the Java classes
generated from the architecture and from the data types (e.g.,
the digital shadow base type realizations) as part of the run-
time environment (RTE) of the DT.

A. Implementation of ISO 23247

Our base architecture implements the essential functional
entities of ISO 23247 with its core components as illustrated
in Table I. The ISO standard does not prescribe which of the
functional entities are mandatory. However, certain minimal
functionalities follow from the definitions of DTs discussed
above, while others (such as proper visualization) follow
from pragmatic requirements. So, we opted to mandate the
existence of components representing the functional entities
for presentation, synchronization, digital representation, and
device communication. The use of other functional entities
depends on the purpose of the DT, and we decided these to
be optionally realizable as services in our architecture.

B. Architecture Extension

Our base architecture requires certain extensions to become
operational. To this end, it leverages the component-based
approach on MontiArc, which supports the introduction of

TABLE I: Implementation of ISO 23247 (cf. Fig. 1) by our
DT architecture (cf. Fig. 2).

ISO 23247 Concept DT Component
Device Communication Gateway
Digital Representation Database Manager
Synchronization Synchronizer
Presentation Cockpit
Maintenance, Simulation, Analytics, etc. Services

hierarchically decomposed subcomponents without needing
to change the interface of the containing component. Using
this approach, new (potentially automatically synthesized) sub-
components are integrated into the DT architecture model prior
to generating the component implementations with it. These
new subcomponents may be hierarchically decomposed, fea-
ture behavior models, or behavior implementations themselves
and, hence, might be of any complexity. We leverage this for
integrating new services, provided as MontiArc components,
into the architecture model and check their well-formedness,
before producing the architecture’s code. Of course, this
method also can be applied to add other new components into
the architecture directly (e.g.,, additional logging or reporting
functionality) without relying on services.

V. IDENTIFYING REQUIREMENTS FOR DIGITAL TWINS

Building DTs is a complex, time-intensive task, as the
domain expert needs to deliver a plethora of information that
is relevant, such that the software engineer can realize the DT
in software artifacts. Based on our experience with building
various DTs in practice (cf. Sec. VII), we have developed a
method to enable domain experts to describe DTs from their
perspective, yet independent from the actual implementation,
to the software engineer. The following eight-step method can
be applied by domain experts, e.g., product designers, factory
planners, or production planners and controllers (cf. Fig. 3).

1) Identify the problem. In the first step, the problem
at hand is identified. This problem is described using
the scope of consideration, the possible solution scope,
and the goal of achieving the solution to the problem,
which is described by the purpose. The typical results
of this step are functional requirements and information
requirements, as well as user stories that describe the
scope and purpose of the problem. These requirements
serve as a basis for the identification of required data
from the AS or from other systems (e.g., a manufacturing
execution system or a product lifecycle management
system) that the services of the DT will need as well
as provide to the DT.

2) Analyze asset interfaces. For solving the problems from
the previous phase, each solution requires one or more
assets to deliver the necessary data. Therefore, the user
stories and requirements from the previous step are
used to identify relevant properties of the asset that can
be used to directly provide or synthesize the required
data. Furthermore, potential dependencies between the
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information requirements imposed by the DT and the
data that can be provisioned by the asset data sources
are identified. For instance, one information requirement
might be fulfilled by multiple asset data sources. Besides,
how the data sources can be utilized, i.e.,, the technology
and description of the asset interfaces, are relevant for
realizing the DT. Otherwise, the DT will be unable to
connect to the asset to gather data. Ultimately, the result
of this step is a description of the asset interface and how
it can be used to provide the required data to the DT.

3) Analyze asset models. The services of the DT might
require information about the AS its interface does not
provide, but by models of the AS, such as SysML, Func-
tion Blocks, AutomationML, or CAD models. Hence,
in this step, they are analyzed to identify the relevant
information for the behavior and constraints of the DT.
Furthermore, structural information is relevant for the DT,
e.g., to reason about which parts of the asset are impacted
by predictive maintenance tasks, to give context to data
in general, or for visualization. Together with the results
of Step 2, the results are a behavior specification and a
description of the data structures and data.

4) Derive service specification. To fulfill the functional
requirements formulated in Step 1, these need to be
translated and implemented into software components.
In this step, we define such components based on their

inputs, outputs, and functionality. For the inputs and
outputs, we define the structure, quality, and frequency
in which the data should be received or sent by the
respective component. Results from this step are (1)
the service specifications with their inputs, outputs, and
behavior and (2) the DS [22] types that are defined
based on the collected inputs and outputs of all service
components.

5) Map needs with available information. After specifying
the services, there may be potential mismatches between
the information the services require (cf. Step 1) and
the information the asset interface and its environment
can provide (cf. Step 2). This may be, e.g., due to
different data types or a computation step that is required
to combine multiple information provided by the asset.
Mismatches can be resolved by adapting or converting
the information, or by connecting another data source that
provides the required data. In this step, the DT gateway
is defined that is able to acquire the necessary data and
provide it to the DT services in the right format, i.e.,
conform to the data structure, data quality, and frequency
requirements imposed by the service interface.

6) Refine DSs. We define the DS types[22] based on the
service specification (cf. Step 4). Afterward, we map the
asset interface information to the information required by
the services; we might need to adapt these DS types based



on the mappings from Step 5. This includes DS metadata
and calculations. Consequently, the result of this step is
an updated DS type definition.

7) Derive UI/UX specification. We define a DT as a
software system that can receive data from an asset, as
well as actively interact with the asset, i.e., control it.
Consequently, the DT should present asset information
to the domain expert and enable user input. Therefore,
based on the user stories from Step 1, we define the
visualization of the DSs and potentially relevant models.
We also define the user input, i.e., the interaction concept
of the domain expert with the DT. The result of this step
is a specification of the UI and UX requirements.

8) Derive deployment specification. This last step is con-
cerned with the deployment of the DT. For this, it
is relevant to know which components of the DT are
computationally complex and need to be deployed, e.g., to
the cloud to scale computation resources dynamically, or
that are time critical and need to be executed at a server at
the shop floor, or on edge computing resources. Security
may also impose requirements for the networking of
the DT. All these requirements should be collected in
a deployment specification.

VI. GENERATING DIGITAL TWINS

Our method to generate DTs relies on (1) the requirements
and information gathered as outlined by the eight steps above,
(2) encoding this information into models used as input for our
DT code generation toolchain, and (3) combining the resulting
artifacts such that the components of the DT are produced. In
general, the generation consists of two steps: In the first step,
all information specified by the domain expert is formalized
into class diagrams, UI models, and MontiArc models. In the
second step, these models are combined and enriched before
they are translated into an executable DT architecture. Fig. 4
depicts the overview of all involved modeling languages, mod-
els, and software components of our method for generating
DTs. Overall, the method consists of four sequences of main
activities:

1) Define data models and UI models in the form of
UML/P class diagrams and GuiDSL models that are
based on service requirements (cf. Step 3-4), results in the
DSs to be used in the DT (cf. Step 6), and visualization
requirements (cf. Step 7). These data models are lever-
aged by the MontiGem toolchain to produce the database
infrastructure to persist the data obtained from and about
the DT as well as to produce the cockpit visualizing
the DT and the data transport objects, etc. required for
this. To this end, MontiGem leverages various model
transformations and code generators [30], [34].

2) Derive the components of the DT that are specific to
the services in the form of MontiArc component models
and provide implementations for them. This includes
components for services (cf. Step 4) as well as for the
gateway (cf. Steps 2, Step 5) to the AS.

3) Integrate the derived components into the DT base
architecture using the mechanisms of MontiArc [27] to
create an application-specific variant of this architecture.

4) Generate the architecture implementation using the
MontiArc code generation toolchain.

The remainder of this section elaborates on each of these ac-
tivities in detail and links them to the requirements elicitation
method presented above.

A. Data Modeling for Services, UI, and Asset Representation

In our purpose-driven approach to engineering DTs, the first
artifacts to be produced are data models that capture the data
structures (a) required and provided by the services that realize
the functional requirements identified in Step 1, (b) the static
asset information required about the asset and its parts, and (c)
the data structures required for visualization of the services
and of related DT data. Using the Service shadow transformer,
the data models required and provided by the services are aug-
mented to become the required service shadows and provided
service shadows, respectively. The essential transformations
conducted include that each data structure required or provided
by a service becomes a subtype of the base DS data type
provided by the DT run-time environment and that each
attribute is augmented with metadata regarding the time of last
change, owner, source, etc. as outlined in our conceptual model
of DSs [20]. Using the service shadows computed this way,
the data models for the UI and the static asset information, the
class diagram merger produces a single class diagram holding
the maximal data structure required to be captured by the DT
to fulfill its purposes as described by the UI and services. With
this in place, the MontiGem generator takes this maximal data
structure and dedicated UI models (cf. [31]) as input from
which it produces a dashboard, a database backend, and data
transport objects for the communication between cockpit and
backend for the DT [54], [30]. This yields a web-based UI able
to represent all data required and provided by the services of
the DT, the static asset information and UI specific elements.

B. Deriving Application-Specific Components

From the Service shadows derived above and component
behavior implementations for the services, the DT component
model synthesizer produces novel MontiArc components for
each service. Additionally, it synthesizes the gateway compo-
nent, such that it features one outgoing port for each attribute
of a required service shadow and one incoming port for each
attribute of a provided service shadow, i.e., it decomposes
the DSs into attributes for which the values can be provided
individually by the implementation of the gateway. Based on
the set of attributes derived from the DSs, the synthesizer
then produces a novel, application-specific gateway component
model, in which each attribute of a required shadow becomes
an outgoing port and each attribute of a provided shadow
becomes an incoming port. For this component model, an im-
plementation that adapts between the incoming and outgoing
ports of the gateway and the communication interface of the
AS needs to be created manually according to MontiArc’s
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Fig. 4: The models and generators involved in our model-driven engineering method of generating DT architectures.

patterns for integrating handcrafted code. As such, a gateway
implementation must adapt between the ports of its interface
and an arbitrary communication interface of the AS, fully gen-
erating the gateway is not feasible yet However, by restricting
the gateway to communicate with a fixed kind of technology
(such as OPC UA), this mapping could be partly automated.

C. Deriving the Application-Specific Digital Twin Architecture

Using as input the DT base architecture and the novel
gateway component model, the Digital twin architecture up-
dater replaces the base gateway with the specific gateway
and adjusts the interface of the Shadowcaster component to
receive all outgoing ports of the synthesized gateway. The
Shadowcaster triggers the production of the corresponding
DSs whenever an attribute being part of a shadow changes,
i.e., its implementation is generated accordingly based on the
DSs as well. Due to the service shadows being subclasses
of the DS base class, they can be communicated via the
connectors typed with DS (cf. Fig. 2) and the other components
of the architecture can process these accordingly. This, for
instance, entails sending the produced DSs to the Synchronizer
component to store them in the database as outlined above.

D. Generating the Digital Twin Implementation

Given the application-specific DT architecture, the code
generator provided by MontiArc translates it and all of its
subcomponents into Java implementations of the components

as outlined in Sec. II. To this end, the generator takes into
account the provided component implementations of the ser-
vices and of the gateway. A resulting DT architecture for three
services is presented in Sec. IV.

VII. INDUSTRIAL APPLICATION

For the evaluation, we employed two advanced PhD students
with mechatronics backgrounds from the ISW, who regularly
conduct Industry 4.0 projects, and, hence, know the field
partly. As such, they are as much domain experts as entry-
level employees in manufacturing small and medium-sized
enterprises (SMEs). We evaluated our method in an industrial
case study for predictive maintenance on a FiveX drilling
machine at the ISW2. The FiveX Milling Machine possesses
five degrees of freedom and a tool changer with multiple
milling tools for different materials. The machine’s design
comprises two physical systems that interact with each other,
enabling flexible adaptation to diverse requirements. The DT
of the FiveX monitors the tool exchange based on a wear
index. For evaluation, we used the physical FiveX together
with co-simulation. The tool exchange itself was simulated
only and not performed on the physical machine. In the
following we describe the steps of our method for model-
driven engineering of DTs in manufacturing (see Fig. 3)
instantiated in our FiveX case study.

2https://www.isw.uni-stuttgart.de/forschung/projekte/
Stuttgarter-Maschinenfabrik/, Fig. 2

https://www.isw.uni-stuttgart.de/forschung/projekte/Stuttgarter-Maschinenfabrik/
https://www.isw.uni-stuttgart.de/forschung/projekte/Stuttgarter-Maschinenfabrik/


Problem Identification: In this case study, we identify
three problems, denoted as physical machine requirements.
The first is the ability to control multiple axes individually
through a dedicated interface (see Fig. 5). For this, the FiveX
machine provides machine interfaces, position, and rotation
to an OPC UA [55] server [51]. The OPC UA server also
stores information such as the name, description, manufacturer,
together with the current machine status, containing the current
vibration, spinning speed, and the applied current of the
equipped tool. The tool wear is a value to be calculated
by the DT, as the FiveX machine does not have predictive
functionality itself. The second problem is the command
execution from the OPC UA server. The OPC UA server
directly calls the methods provided by the FiveX machine
interface to change the tool, to power the equipped tool, or to
move an axis by a certain distance. However, there are various
methods as well as technical differences in the interfaces of
each tool. This is also the case for the axes, as they are
from different manufacturers, but also as two axes describe
a rotation and three axes describe a translation. The third
problem is self-adaptive tool change, where the machine is
provided with spare tools when a tool is nearing the end
of its life. The tool change must be triggered by OPC UA
commands sent from a prediction service provided by the DT.
Each tool has a unique name and is stored in the tool changer
(see Fig. 5), which provides these tools concerning their
rotation. The tool changer also contains a list of the available
tools. Since the tool changer is an independent system, it has
a unique name for its addressing. It is possible to equip tools
for different purposes. In this case study, we show milling
tools, but functionality such as 3D printing or pick-and-place
operations are also possible. The tool changer contains a rotary
axis for tool selection and a mechanism for retrieving and
providing tools. For the execution of process models, a series
of milling operations on wood are conducted and recorded
by the sensors. Consequently, this results in a time series of
position, spindle speed, current, and vibrations. The material
properties of wood, including its density, contribute to the
estimation of the tool’s health status.

Asset models: In this step, we look at available asset
models that are created during requirement analysis. One asset
model is a class diagram of the FiveX milling machine. It
describes that this machine (see Fig. 8 in a simulation) contains
interfaces for connecting industrial computers, an OPC UA
server, and for integration into a production line scenario.
Besides, the machine comprises two simulation models de-
ployed on a simulation computer (see the left half of Fig. 8):
one for the five-axis machine and one for the machine tool
changer. Each of these models comprises a 3D representation
of the machine along with a state chart. These models show
the possible states the machine can reach. For the sake of
simplicity, we focus on the following states: The initial state,
which signifies that the machine is prepared for operation.
The second state is "error," which occurs when the tool is
unknown, the movement of an axis collides with other parts
of the machine, or the current on the inputs contains an illegal
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Fig. 5: Asset model of simulated FiveX milling machine.

state. These states can be further delineated as follows: Errors
can be generated by signals on the inputs that result in an
illegal state, such as a command to move both forward and
backward at the same time. Finally, the operation state is
where the machine is moving or milling without any problems.
The machine has a nameplate containing a serial number, its
location, a unique identifier, and a bill of materials, which
includes detailed information on each machine part of each
manufacturer. Additionally, the sensors utilized by the machine
are documented. These sensors are capable of acquiring data
regarding the machine’s current status, such as its rotational
speed and the pressure to which the spindle is subjected during
operation. Additionally, sensors are employed to ensure the
precise positioning of each axis. Lastly, we employ an NC
model, which prescribes the movements and spindle speed
during a milling process operation.

Asset interfaces: In this step we analyze the interfaces of
the machine to identify the data sources and technologies. The
asset provides its tool status and axis positions and commands
via OPC UA. As we are using a simulation at the hardware
level, the requirements and asset models for the simulation and
the physical machine are the same. The interfaces need to be
addressed with an OPC UA client implementation (see Fig. 6).
This serves as the DT gateway. As the OPC UA server only
displays the most recent values, the asset must be connected
to a database. In our case, we use a time series database
(see Fig. 6) to store historical data. For the details of the
connection to the OPC UA server, the values are stored in
a tree representation that contains objects with variable nodes
in which the concrete value is stored. The object node also
contains a method node to manipulate the position, rotation,
or current of a tool or axis.

Additional Services: The additional analysis and planning
services identified during the derivation of service specifica-
tions fulfill the third requirement that is a self-adaptive tool
wear prediction service. The service should analyze the state
of the input from the motor (see Fig. 6). This analysis receives
the DS and analyzes the tool vibration, the applied current, and
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the tool position as well as the integrity of the material to infer
the tool wear. The knowledge is retrieved from the database
and transformed into a DS. The DS then is sent to the shadow
merge and the planning service. The planning service uses
the historical knowledge, which is a set of data points from
the DS of the machine and the analyzed current state in this
case, to send a plan to the shadow merger. The command is
forwarded to the executor and the OPC UA client for a tool
change, while the plan and the analyzed data are stored as a

new data point in the database.
Mapping of information: With the identified DS types,

the next step is the mapping of needs with the available
information. The position, tool vibration, current, and spindle
speed can be obtained from the values monitored by the
sensors. However, it should be noted that the tool wear value
is not subject to monitoring. This value is calculated with
regard to spindle speed, vibration, and current. For the sake
of simplicity, we refer to the tool’s health as new, worn, or
broken. In the OPC UA client implementation, a command
is translated in a way that triggers a subsequent step in the
milling process or a tool change, which comprises multiple
steps. These steps include a movement to the tool changer,
a rotation to the desired tool or position, an unloading of an
equipped tool, and a loading of a new one, culminating in a
final movement to an initial position, ready for the continuation
of the milling process.

Digital Shadows: As preparation for the derivation of the
final steps, we first update our digital shadow types. The initial
DS from the shadow caster is derived from the interface of the
asset in Fig. 7. This DS encompasses the position, the tool
vibration, the spinning speed, and the current applied to the
machine tool. Subsequently, the analyze service incorporates
a tool wear index into the DS, with this index being derived
from the aforementioned values. The plan service further takes
a data trace of historical data with the tool wear and action
taken to the already existing DS. This process culminates in
the generation of a DS with an action as the output. The action
is categorized as either process continuation, process stoppage,
or tool change command.

Derivation of UI/UX: The UI is derived from the struc-
tured DS from the previous step. In Fig. 8 we depict the
resulting UI that is generated with MontiGem. The class
diagrams in Fig. 7 of the data are now used to derive the GUI
models. With these, the generation of the cockpit is performed.
In addition, we can customize the generated UI by adding new
custom GUI models or altering the derived GUI models.

Derivation of Deployment: Finally, the deployment spec-
ification is taken from the requirements. In this case study, the
computationally complex task is the simulation of the physical
device. The optimization of the tool change comprises reduced
complexity by using case-based reasoning on historical data
and decisions. This setup allows the DT to be deployed on the
simulation device for time-critical decision making. Alterna-
tively, for non-time critical applications, such as monitoring,
the DT may be deployed in a cloud environment.

Lessons Learned: We have shown a systematic approach
for the development of the DT, from the initial requirements
to the final product. During this process, several refinement
steps were implemented, including information mapping and
concept structuring. These refinement steps ensure the suitabil-
ity of the concepts for their intended purpose and for aligning
them with the established requirements. The deployment of the
system is not elaborated in detail upon in this scope. The incor-
poration of IP protection, virtualization, and computation time
requirements has the potential to refine the deployment of both



Fig. 8: Derived UI from the combined DS. Here, the tool wear
derived from the analyze service is plotted.

the system and its associated services and methods. According
to the evaluating PhD students, the software performed as
expected. However, it’s neither optimized for manual extension
(unless outlined in Fig. 4), nor for real-time.

VIII. DISCUSSION

The method presented above relies on a specific under-
standing of the term "digital twin" that follows from the
definitions of Kritzinger [10] and Tao [13] and is in line with
the ISO standard on DTs for manufacturing. Consequently,
the resulting architecture focuses on representing the AS at
its runtime and, thus, assumes that (a) the AS exists already
and that the DT can connect to it digitally and that (b) certain
components for such an architecture are necessary to manage
the DT elements proposed by Tao [13] (e.g., models, data,
and services). Moreover, we do not assume that the DT has
any essential core functionality aside from synchronizing the
required data (and possibly models) between the AS and
the DT. We also did not consider aspects that might be
relevant to DT development, including service-level testing
(especially the need for simulated physical twins to realize
this), fault simulation, handling non-functional requirements,
and integration with legacy systems. Every other often-cited
functionality [9] of DTs, such as predictive maintenance, what-
if analysis, or behavior optimization are specific to a concrete
DT and may not be required by others. Hence, we assume
that these functionalities are made available to the DT via
dedicated services.

Based on these assumptions, we have conceived a
method for the systematic model-driven engineering of ISO
232471 [12] compliant DTs that can support many industrial
use cases, ranging from the computation of KPIs, to predictive
maintenance to simulation-based AS behavior validation at
runtime using corresponding services. This method is not only
flexible regarding the purpose of the DTs to be developed,
but also largely automated regarding the implementation of
the architecture as only the data models, implementation of
services, and of the gateway must be provided. Yet, using
our base architecture as a blueprint and MontiArc’s extension
mechanisms, tailoring this architecture to specific use cases is
straightforward as well.

Our method heavily relies on the integration of MontiGem
and MontiArc, both of which can be used very flexibly on their

own already. This enables supporting many extensions to the
method outlined above but is far from a low-code solution for
engineering DTs. By making additional restrictions, e.g., to
a specific gateway technology or a fixed library of services
to be reused, our method can become applicable more easily.
However, we opted for the flexibility, as we do not expect
individual DTs to be changed by non-experts very often.

Deploying our method to the creation of DTs for manu-
facturing has also led to some insights about the challenges
that we take as lessons learned for improving the systematic
engineering of DTs.

Insight 1. Digital shadows require powerful data model-
ing techniques.

Digital shadows are meant to carry various metadata about
their values, such as desired frequency, quality, or source
of the data. As adding this information to class diagrams
directly is not supported without stressing stereotypes too
much, currently, this is encoded by translating the class
diagram attributes defining the values into more complex data
types that carry the data values but also the metadata. This
is cumbersome, and we are investigating whether SysML v2
block definition diagrams are better suited for this.

Insight 2. Asset models become obsolescent over time.

Cyber-physical production systems can change over time due
to wear and tear, cyber-physical augmentations (e.g., as a sen-
sor being replaced by a newer model), changes to the software,
or other environmental influences. This entails that the models
and static asset information the DT and its services might
rely upon for decision-making (e.g., to determine whether
maintenance should take place soon) is out of sync with reality,
and decisions made based on that information might be wrong.
Hence, DTs need means to automatically calibrate and update
their models of the AS automatically.

Insight 3. Services need to be aware of the real-time
requirements of the AS.

In production, most systems rely on some form of hard
real-time computation and/or communication. Whenever DT
services need to manipulate the AS, this means that the
services need to be aware of the real-time requirements of the
AS. Otherwise, reactions by the DT’s services might be too
late. This entails that services contributing real-time relevant
functionalities must be constructed and deployed such that the
requirements of the AS can be fulfilled.

IX. CONCLUSION

Our comprehensive methodology has illustrated how to
tame the complexity of creating DTs for manufacturing by
drilling it down to dedicated steps from understanding the
purpose of why one wants to create a DT, to the required
interfaces, specifying models, data, services and visualizations,
further down to creating an executable DT in a model-driven
approach. Our industrial case studies show that applying the



method is suitable in practice. With our methododolgy, we
want to enable SMEs to produce a DT for a machine in a day
using a novel combination of model-driven methods. In future
work we will integrate popular technologies of Industry 4.0,
such as the Asset Administration Shell [56], with our DTs.
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