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Abstract— This paper introduces the new robot programming
language LightRocks(Light Weight Robot Coding for Skills), a
domain specific language (DSL) for robot programming. The
language offers three different level of abstraction for robot
programming. On lowest level skills are coded by domain
experts. On a more abstract level these skills are supposed
to be combined by shop floor workers or technicians to define
tasks. The language is designed to allow as much flexibility
as necessary on the lowest level of abstraction and is kept as
simple as possible with the more abstract layers. A Statechart
like model is used to describe the different levels of detail.
For this we apply the UML/P and the language workbench
MontiCore. To this end we are able to generate code while
hiding controller specific implementation details. In addition the
development in LightRocks is supported by a generic graphical
editor implemented as an Eclipse plugin.

I. INTRODUCTION

The importance of flexible automatized manufacturing
grows continuously as products become increasingly indi-
vidualized. Flexible assembly processes with robots are still
hard to be coded which is due to many uncertainties caused
among others by object tolerances, position uncertainties and
tolerances from external and internal sensors. Possibilities to
react on uncertainties demand for the application of sensors.
As it is well known, the Light Weight Robot Arm (LWR)
enables compliant motions and therewith helps to deal with
uncertainties. Nevertheless programming the LWR is more
complicate than programming known industrial robots, be-
cause not only positions but also stiffness and damping value
need to be adjusted for each motion command. In addition,
the complexity grows when more sensors are involved. Thus,
only domain experts are able to program such compliant
robot arms. At the moment the reusability of these pro-
grams depends on each individual expert. Tools allowing
reusability and the composition of models at different level
of detail are completely missing. Therefrom it exists a
strong demand to develop such tools and to enable skill
based robot programming for not well educated shop floor
workers. To meet the requirements driven by easy to use
software frameworks on the one hand and by employing
many different sensors to achieve robustness on the other
hand, we have developed a three layered architecture for
robot programming based on Statecharts. Each skill, like
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grasping an object, mating two objects, screwing or else, can
be coded by experts in a new skill based robot programming
language. These skills can be selected and combined by non
experts. In addition, an assembly planning system can be
used to generate assembly sequences automatically. Each
sequence is instantiated by a task recognizer. Each task can
be modelled again by a Statechart, where skills are combined
to robot tasks based on patterns. In particular for impedance
controlled robots good programming tools are missing at the
moment. With our new DSL LightRocks we achieve flexible
and efficient programming of these robots, which is shown
in two test cases. The robot programming language is based
on UML/P Statecharts [1], [2]. The UML/P modelling lan-
guage family is an implementation oriented variant of UML
allowing code generation from several UML/P languages,
e.g., Statecharts, class diagrams, OCL/P and others. Models
of this language are generated into Java programs which are
executable against a given robot programming interface using
the language workbench MontiCore [3] and the UML/P code
generation infrastructure [4]. The DSL itself is separated
from the definition of the used robot interface. Therefore
changes of the underlying robot interface only afflict the
models not our DSL. To further improve its usability, the
development of models in LightRocks is supported by a
generic graphical editor framework in form of an Eclipse
plugin. This paper is structured as follows: Section II intro-
duces related work. Section III obtains the definitions of what
we consider a task, skill and elemental action. In addition
our DSL LightRocks is introduced. Section IV describes
how MontiCore is used to generate code from LightRocks
models. Afterwards Section V describes the case studies and
Section VI concludes this paper.

II. RELATED WORK

Since Mason specified robot compliant motions, it has be-
come the goal of many researches to define compliant robot
actions in an intuitive way [5]. The task frame formalism
introduced by De Schutter and Bruyninckx [6] is an approach
which became very popular. Meanwhile Hasegawa suggests
skill primitives for each tiny motion [7]. Skill primitives
have been constantly modified and improved so that complex
robot task can be coded as nets of skill primitives [8]. The
full task frame formalism has been applied and implemented
for Cartesian force-feedback controlled parallel and serial
robots [6], [9], [10]. Manipulation primitives net support-

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on April 04,2022 at 11:06:44 UTC from IEEE Xplore. Restrictions apply.



Programming on Process Level

Nets of Tasks

TakeAndPlug T. g TakeAndPlug
Start Object P object Object Success \
d ] } >
>

Failed

!

Programming on Task Level

Grasp Plug Push
Object Object Object
[ [ [

Nets of Skills

I

|
Industrial
P Failed Worker

4

Robotics
Expert

Start

i

Programming on Skill Level

Open MoveTo Close Move
Gripper Grasp Gripper Back

Nets of Elemental Actions

Move

Success

i

|

Fig. 1. The abstraction layers in our robot programming system.

ing an extended task frame formalism are implemented by
Kroeger et al. [10]. In particular manipulation primitives
are designed for force-feedback controlled robots. For the
LWR these definitions need to be modified. Here, Statecharts
are applied which are close to current modelling languages
and suit better for code generation. Statecharts for robot
programming have also been used by Branicky and Chhatpar
[11]. They coded a typical peg-in-hole task by drawing
Statechart diagrams and evaluated different search strategies
which are again coded by Statecharts. Another intuitively
to use interface for robot programming in object spaces is
the iTASC-formalism suggested by Smits at al.[12]. The
robot motions are specified in object space, where sensors
are integrated in a uniform way. Statecharts are used on
the controller level to allow reaction on different sensor
values. In the meanwhile this approach has been improved
by supporting inequality constraints and non-instantaneous
task specifications [13] and its suitability is demonstrated
on the PR2 by solving a co-manipulation task [14]. In
another programming approach Kresse and Beetz [15] uses a
symbolic description focusing on objects in the environment
for robot programming and demonstrates its usefulness with
a pan-cake making robot.

ITI. DESCRIPTION OF THE LightRocks DSL

Fig. 1 illustrates our hierarchy for robot programming with
different levels of abstraction. On the lowest level, instanti-
ated actions are used, which contain primitive commands.
These actions are combined to skill nets, similar to the
description of skill primitive nets or manipulation primitive
nets. For more details on this topic, we refer to [8], [10].
Based on these definitions and according to the requirements
given by the LWR, we define the elements of LightRocks.

A. The Interface to the LWR

The interface to the LWR consists of a set of controller
parameters for each motion command to be send via TCP/IP
to the control unit. The controller offers motions in joint
space and in Cartesian space. The applied impedance con-
troller is described in [16]. For motions in contact, we usually
apply Cartesian motions. Our programming interface store
object information about the entire robot workspace in form
of a scene graph. A Cartesian motion command consists of
following elements:

o the task frame TF := {T, Ref, Link} with T € R**4
and Ref can be every object in the scene graph of the
robotics environmental model.

o a goal frame GF := {T, Ref}, where the reference
need not to be the same as for the task frame.

o a set of stiffness values ST € RS and damping values
DA € RS, according to the impedance controller
described in [16].

o a stop condition: A\ — {true, false} which maps
sensor values to a boolean value. It is a conjunction
or disjunction about measurable values.

In cases where the motion command is specified in joint
space the task and goal pose are described by a set of seven
joint variables and the sets for stiffness and damping values
are needed for each joint respectively.

B. Elements of LightRocks

As basic element of LightRocks we specify Elemental
Actions (EA) . These are our tiniest actions and they map
from the semantic point of view to a motion interface almost
directly. Although an elemental action can be more than this,
because further devices like tools or perception services can
be addressed. An EA is defined as follows:

Definition 3.1 (Elemental Action (EA)): An EA is a tuple

(Device, DeviceComands, A, ). It assigns a device to a
certain command. The action should stop when the condition
A triggers. The return values p update our environmental
model EM. The Device is an element of any available
physical control unit. The DeviceCommand is adapted to
the selected device.
In our current implementation the Dewvice is of
{Tool, Robot, PerceptionUnit}. In the case the device
is a robot, the command has following elements
(flag, TF, GF', JV,ST, DA). We use the flag to distinguish
between motions in joint space and in Cartesian space.
All the other elements are defined similar to the interface
definition. Therewith, we are able to code EAs to be executed
by an activated device which is either a robot, a tool or
a sensor service. For example, we offer sensor services
able to localize known objects. We call the recognition
process and return the estimated pose of an object into our
environmental model. In order to grasp the object, we need
a second EA. It moves the robot into the approach pose.
A third EA is necessary to grasp the object by applying
Cartesian impedance control. With the Cartesian impedance
controlled motion we are able to deal with uncertainties,
which may arise from the pose estimation process. Hence
complex skills, like recognizing and grasping objects can
be coded as a net of EAs. We call such nets, which offer a
service by our robotic system, skills. In the following we
give a definition for a skill:

Definition 3.2 (Skill): A skill is a capability of our
robotic system. It is specified as a net of EAs: Skill :=
(Nodes™, Transitions™, StartNodes™, StopNodes™) with
Nodes being a set of EAs and transitions are the connectors
between them. At least one Node is within the StartNode set
and the same yields for the StopNode set.
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Transitions have a pre-condition and a post-condition. Be-
tween this conditions the environmental model is updated by
the return values of each Node. With theses Skills complex
robot tasks can be coded. Usually a robotic task follows the
order of grasping an object, transferring it to a certain pose
and manipulating the object there. Then the robot should take
the next object and so on. For each element of such sequence
a skill can be used. In order to allow exception handling, we
define a task also as a combinations of Skills:

Definition 3.3 (Task): A Task can be de-
scribed as a net of Skills: Task =  (Skills™,
Transitions™, StartSkills™, StopSkills™). Each Task has at
least one StartSkill and one StopSkill. The transitions are
equal to those of Skills, with exactly the same behaviour.

The Skills are supposed to be coded by robot experts as
net of the EAs where the Tasks can be implemented by
combining theses Skills. For that, no detailed knowledge
about the controller and the robot devices are necessary. The
coding of skills suits well for graphical programming with
easy to use tools. On a more abstract level the reordering
of tasks can easily be done, if necessary. Thus, a shop floor
worker might be able to program the system by stitching
Skills or Tasks together.

C. Describing the Elements of LightRocks with the UML/P

A declarative semantic might be used to describe the
elements of LightRocks, here we have applied the UML/P, a
formal semantics, for the specification of the DSL, refer to
[17]. The UML/P modeling language family consists of six
languages derived from standard UML [18]: class diagrams,
Statecharts, sequence diagrams, object diagrams, Java code
and the object constraint language (OCL), where Java is
integrated into the UML/P to achieve a programmability.
Statecharts [19] are finite automata used to model the be-
havior of a system. The similarity between nets of EAs and
Statecharts allows to model Skills with Statecharts while
reusing the existing UML/P code generation infrastructure
[4]. UML/P Statecharts consists of states and transitions.
States describe object or method states in object-oriented
programming. Each state features a name, an invariant, an
entry action, an exit action and an activity. States may
further be composed from other states, allowing arbitrary
state hierarchies. Transitions describe state changes from
a source state to a target state. Each transition features a
stimulus, an optional action, an optional precondition and
an optional postcondition. The stimulus describes when this
transition may activate and the action may be performed
during transition from source state to target state. Fig. 2
illustrates the similarities to Skills or Tasks: both describe
a system state and transitions with conditions restricting
how the system may behave. Projecting Skills and Tasks
on UML/P Statechart syntax allows to reuse much of the
existing UML/P tooling [4]. Thus, the textual representation
of LightRocks resembles Statechart syntax closely: Tasks,
Skills and Elemental Actions are projected onto states, the
directed arcs are mapped onto transitions and start and stop
conditions are mapped onto the preconditions of entry actions
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Fig. 2. A hierarchical Statechart illustrating the UML/P Statechart language
elements.

and exit actions respectively. In order to apply the UML/P
for each level of abstraction in our language, we need one
single generic component, which is a superposition of the
elements of LightRocks.

D. Generic Component

For the programmers point of view we have separated the
elements in different levels of abstraction. For code gener-
ation it is more convenient to have one super component
called Generic Action Component:

Definition 3.4 (Generic Action Component): A  Generic
Action Component is a tuple (I, A, B, P, N,e) , where:

e [ is a level identifier.

e P is a set of parameters, which are defined by type,

name identifier and an optional default value.

o A is a set of start conditions, where the corresponding
Action Component can be started if one a € A holds
and this condition is connected.

e B is a set of end conditions, where the corresponding
Action Component is finished if one b € B holds and
this condition is connected.

o N ={C,T} consists of a set of child Action Compo-
nents C' and a corresponding set of transitions 7'. Each
transition is defined between end and start conditions
of the children or the parent Action Component. In
addition on each transition values can be assigned to
the parameters of the target Action Component.

e e € Methods is a execution command, which describes
the execution of this action with a concrete method call.
Undefined if C' is not empty.

A generic action component can be considered as a kind of
method declaration with additional conditions, describing in
which situations the declared method can be called and in
which situations this method is interrupted or finished. The
declaration is combined with the methods definition directly,
which is either expressed by other methods defined as child
action components or a concrete method call defined in the
related domain interface. In Fig. 3 an action component is
exemplary visualized to illustrate the defined structure.

IV. CODE GENERATION

Each Action Component is mapped to one Statechart,
while the defined child components and conditions are ex-
pressed by states. For each UML/P Statechart an additional
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Graphical representation of the generic Action Component

code segment can be defined, which is used to list the
parameter declarations of the Action Component. To reuse or
extend Action Components in different contexts this feature
has to be established for UML/P Statecharts, too. Therefore
additional stereotypes for states are introduced. These stereo-
types indicate a reference to different Statecharts, instead of a
concrete state definition inside the current model. Transitions
are expressed by transitions and stereotypes identify the
different layers. Based on this mapping Action Components
are projected to UML/P Statecharts. To execute Action Com-
ponents, code is generated from the corresponding UML/P
Statechart. The generated code interacts with two differ-
ent runtime environments: One implementing the interfaces
described in the corresponding domain interface and one
supporting the generated code to realize state hierarchies,
transition functionality and import or extension of states. The
first runtime environment is an adapter between the domain
interface and the API of the robot, which shall be accessed
by the Action Components, as illustrated in Fig. 4. For
each domain interface different adapters can be implemented
to support several robot APIs. The corresponding adapter
called by the generated code can be switched easily, resulting
in high re-usability of defined models. The approach to
realize the second runtime environment is similar to the state
pattern [20] It is illustrated in Fig. 5. Every state has a
current state and a parent state. Transitions are defined as an
own class, storing source and target state. For each model
the corresponding states and transitions are generated, each
inheriting from the defined base class in the state runtime
environment. A generated state overwrites functions to define
its child states, corresponding transitions, the entry action and
entry condition, if given. Each imported state is an instance
of a concrete state class generated from a model and each
extended state is an instance of a concrete state class, which
is not directly inherited from the base abstract state class, but
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Fig. 5. Generated code and its state runtime environment.

Fig. 6. The figure shows two different steps during the screwing Skill.

from another concrete state class. The classes of the runtime
environment are defined close to the state of the UML/P
Statechart language that most parts can be translated one by
one and the resulting templates are clearly arranged.

V. CASE STUDIES

For evaluating the programming environment two test
cases are chosen. The first test case is about screwing a
wooden screw into a cube, see Fig.6. These objects are
from wooden toys, but suit very well to demonstrate the
capabilities of our new programming environment. The im-
plementation on Task level and on Skill level are illustrated
in Fig.7, Fig.8 respectively.

The screw is gripped after localizing, therefore the output
of the perception service is updated into our environmental
model. Then the robot moves the screw into the approach
pose above the cube. The first part of the screwing skill starts
by moving the object down the screw-axis until a torque
about 0.32 Nm has been exceeded. The gripper opens and
the robot turns its hand back about —180°. Then it starts to
screw again. This is repeated until a certain position in z-
axis has been reached or the stop-condition triggers. If errors
occur like the object is not gripped, the Statechart can react
and the execution proceeds with another skill or finishes.
The second case study is an assembly, where electrical parts
have to be plugged on a top hat rail. A perception service
is applied for the localization of objects. The perception
units reads RGBD-data and matches geometric models in
the acquired point cloud. Therefrom, we obtain the pose
of the object and use the impedance controller to reduce
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Fig. 8. This Statechart diagram shows the implementation of the skill for screwing
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The sequence for assembly is shown which containing three tasks. The task implementation is illustrated in the Fig.10. The images show the

Fig. 9.
execution process for the first two parts.
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Fig. 10. A task for grasping and plugging an electrical object on the top hat rail is shown, which is embedded in the entire sequence.

uncertainties. Fig.9 shows the necessary task for achieving
the assembly goal and Fig.10 depicts the Statechart of a
single task which is a combination of Skills. Hence new
tasks can be designed by reusing predefined skills. In this
case programming such a task has been done by less than an
hour. In addition, tasks can be reordered easily and moreover,
models of skills can be reused for new skills by changing
only as few elements as necessary. For instance, if the job
floor worker will change the sequence of execution, only the
tasks need to be reordered.

VI. CONCLUSIONS

The two test case scenario are solved with the LWR
successfully by our new robot programming environment.
The necessary elements of Tasks, Skills and Elemental
Actions can be implemented efficiently using our new lan-
guage LightRocks. It is demonstrated, that defining assembly
processes and assembly tasks is quite intuitive, even for
someone who is not very familiar with robotics. LightRocks
allows reusability and intuitive programming at all supported
levels of abstraction. The implementation of LightRocks as
a MontiCore language further allows to reuse the models
with generators for different target platforms. Our design
of the generic action component and the usage of UML/P
offers high flexibility for supporting other robots than the
LWR. In cases where a Cartesian force-feedback controlled
robot should be programmed, the necessary changes are
small due to the generic action component and the UML/P.
Instead of defining and implementing a complete new system
the framework of MontiCore is employed intensely, with
all its advantages and used for generating code for the
given DSL. The designed DSL LightRocks and its supporting
tools improve the development of applications for the LWR.
In addition, it can be reused in many different contexts
and for different robots. The DSL LightRocks can flexibly
be extended to support additional sensors or robot motion
specifications. In the future we plan to evaluate our system
in real assembly lines, where non experts shall become able
to program robots. In addition, we will improve the language
of LightRocks for allowing more concurrency on Statechart
level and compare our approach to others like sequential
function charts defined in the IEC-61131.
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