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Abstract: In the vision of smart manufacturing and Industry 4.0, it is vital to automate produc-
tion processes. There is a significant gap in current practices, where the derivation of production
processes from product data still heavily relies on human expertise, leading to inefficiencies and a
shortage of skilled labor. This paper proposes a universal framework for skill-based cyber–physical
production systems (CPPS) that formalizes production knowledge into machine-processable formats.
Key contributions include a novel conceptual model for skill-based production processes and an
automated method to derive production plans from high-level CPPS skills for production planning
and execution. This framework aims to enhance smart manufacturing by enabling more efficient,
transparent, and automated production planning, thereby addressing the critical gap in current
manufacturing practices. The framework’s benefits include making production processes explain-
able, optimizing multi-criteria systems, and eliminating human biases in process selection. A case
study illustrates the framework’s application, demonstrating its current capabilities and potential for
modern manufacturing.

Keywords: automated production planning; model-driven development; cyber–physical production
systems; software-defined manufacturing; skill-based manufacturing; industrial engineering

1. Motivation

The concept of smart manufacturing and the implementation of Industry 4.0 should
provide fundamental solutions to many of today’s most urgent issues in production. Central
to both concepts is the intensive utilization of cyber–physical systems, IoT, big data analytics,
and automation, often combined with advanced manufacturing technologies and robotics.
The implementation of these two concepts has led to remarkable progress in many areas of
industrial value creation, especially in the last decade.

Particular areas of tremendous progress related to manufacturing include demand
forecasting [1,2], capacity planning and scheduling [3–5], and general production process
optimization [6–9]. When analyzing recent advances and current research activities [10–13],
a gap in the complete vision of smart manufacturing can be identified, namely the problem
of automatically deriving production processes and sequences from product data.

When it comes to the question of how components should be manufactured, i.e.,
production planning and process engineering, the answer is still mainly human-based.
Production planning and process engineering require a very high level of manufacturing
expertise, as well as a comprehensive understanding of the technological, economic, logisti-
cal, and company-specific inter-relationships and constraints. As a result, these complex
and time-consuming tasks are typically performed by a scarce resource, i.e., highly skilled
professionals, often with decades of relevant experience. These experts extract relevant
information, such as functional surfaces or tolerances, from drawings or Computer-Aided
Design (CAD) models and identify and define capable processes and machines. They then
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use this information to define production sequences and allocate all the resources needed
to produce the component. Typically, these activities require the application of implicit,
unformalized knowledge. This situation leads directly to several problems for today’s
manufacturing. Probably the biggest and most actively growing problem is the availability
of such competencies in the context of the shortage of skilled labor [14,15]. This particularly
affects small and medium enterprises (SMEs), such as contract manufacturers, which tend
to have a more volatile manufacturing portfolio and, therefore, a higher proportion of
such activities. Directly related to this problem is the circumstance that although planning
activities are absolutely essential to subsequent value creation and are often a bottleneck
themselves [16], they are often not seen as directly value-adding or worth being paid for
by the customer. At the same time, these planning activities tie up the best production
workers, who are, thus, unable to carry out other potentially value-creating activities [17].

But even when skilled professionals are available, finding an optimal solution is chal-
lenging. First, production planning is a complex, multidimensional optimization problem
with competing objectives, such as time, quality, and cost, often with changing and unclear
weighting [18,19]. What constitutes an optimal solution is, therefore, a moving target or,
often enough, remains unclear. Very often, not all the necessary information is available
at at time of planning and decision making, so assumptions have to be made; a number
of production sequences may be approximately equivalent at the time of the decision
but not shortly afterwards; decisions made by people depend strongly on their educa-
tional background and their own preferences, experiences, or competencies. Technologies
evolve, and their capabilities change. Moreover, an optimal individual solution for one
product does not necessarily lead to an optimal solution for the whole production system,
and each individual decision affects the availability of resources for other and future prod-
ucts. Several current trends, such as personalization, on-demand manufacturing, and new
manufacturing technologies, amplify these effects.

Target and Contribution

The target of this study is to fully automate production and process planning, i.e., an-
swer the question of how components should be manufactured. To achieve this, all related
activities performed by humans today need to be automated. This requires the representa-
tion of these activities and the required production knowledge in machine-processable form.
Therefore, we propose a universal framework for skill-based cyber–physical production
systems (CPPSs). In this framework, formal production skill models capture activities and
the required knowledge to automatically answer the above question. The core contributions
of this work include the following:

• A novel conceptual model for skill-based production processes and planning;
• A method for automatically deriving platform-specific production plans from platform-

independent skills; and
• A reference software architecture that links skills with planning and plan execution.

This novel approach to skill-based production planning contributes to the vision of
smart manufacturing for Industry 4.0 [20] as follows:

• By automating process and production planning;
• By making processes and their inherent decisions explainable;
• By simultaneously applying multi-criteria optimization to the whole production system
• By making implicit production knowledge explicit, easily available, and reusable;
• By providing a base for the integrated assessment of producibility in the design

processes;
• By providing a base for the derivation of completely new machine designs and process

combinations; and
• By eliminating human bias in the selection of processes, activities, and machines.

Section 2 introduces the foundations for our approach. Section 3 then outlines related
approaches and the gap that the proposed framework fills. Then, Section 4 introduces our
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conceptual framework, and Section 5 describes its methodical application, while Section 6
illustrates its application in a case study involving the production of a coffee cup. Finally,
Section 7 discusses the benefits and limitations of our proposed framework and concludes
this paper.

2. Foundations

Over the past few decades, the amount and importance of software in production
systems have increased significantly, along with the complexity of these systems [21,22].
Today’s state-of-the-art cyber–physical production systems (CPPSs) are heterogeneous,
partially distributed, and often connected to a network or the Internet. Engineering software
for these increasingly complex CPPSs requires concepts, methods, and tools that scale
with complexity.

A major driver of the complexity of modern software systems is in the wide conceptual
gap between the problem domain and the solution domain [21] of software engineering, i.e.,
production experts need to describe what a CPPS should do (problem domain) but need to
formulate that process using programming tools focusing on solution technologies (solution
domain). This gap creates so-called accidental complexities [21] that need to be addressed
to create added value in software. This includes issues such as programming language
peculiarities, network communication issues, data persistence, software deployment, and
memory management, all of which may be conceptually irrelevant in the problem domain.
These accidental complexities increase software development risks and must be reduced.
To efficiently deliver reliable, reusable, and secure CPPS software, domain experts would
have to become software engineering experts as well—which is not feasible. Model-driven
development (MDD) [23] can increase abstraction in the problem domain to reduce the
conceptual gap in the engineering of CPPS software [21,24].

2.1. Model-Driven Development

Model-driven development (MDD) is a software engineering methodology in which
developers leverage domain-specific models to reduce the conceptual gap and, conse-
quently, the accidental complexities. To achieve this, MDD employs models as primary
development artifacts in various stages of software development, ranging from require-
ment modeling to implementation, deployment, and operations. The description of models
requires corresponding notations in the form of (domain-specific) modeling languages [25]
that enable the use of domain terminology, concepts, and knowledge. As modeling aims to
increase abstraction, there have been many successful applications of MDD [26,27] in the
context of software engineering for CPPSs [28]. Popular modeling languages for the engi-
neering of CPPS software include the Asset Administration Shell [29], AutomationML [30],
Matlab Simulink [31], OPC UA [32], and SysML [33] languages.

Model-driven development yields many benefits, ranging from the avoidance of
accidental complexities, to providing a comprehensible means for communication and
documentation and a formal foundation that allows for the translation of models into
executable systems [26,34,35]. This requires tools that translate such models into general-
purpose programming language (GPL) artifacts and (executable) software automatically
while employing incorporated software engineering expertise. This frees domain experts
from the need to become software engineering experts.

2.2. Model-Driven Architecture

Model-driven architecture (MDA) [36,37] is a specialization of MDD driven by stan-
dardization efforts proposed by the Object Management Group. The main rationale of MDA
is that domain concepts outlive their technical realizations. For example, moving a robot
from one location to another demands certain domain-specific activities, such as collision
avoidance, navigation, and path planning, independent of the software components with
which these activities are realized. Hence, MDA aspires to separate platform-independent
and domain-specific models from their subsequent application to specific target platforms
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and their software environments. Therefore, model-driven architecture divides an applica-
tion into four different layers (cf. Figure 1) representing the following:

• The computation-independent model (CIM) of the application;
• Its platform-independent model (PIM);
• Its platform-specific model (PSM); and
• Its platform-specific implementation (PSI), i.e., program code.

In these terms, we propose a pervasive approach leveraging MDA for the MDD of CPPSs
that separates PSMs of skills from PSMs of services that map capabilities to functions of
CPPSs and from PSIs (such as G-code or IEC 61449 [38] programs) that realize these CPPS
functions for automated process and production planning.

CIM PIM PSM PSI

Computational 

Independent Model
Platform 

Independent Model

Platform Specific 

Model

Platform Specific 

Implementation

manual design of 

software architecture

automated model 

transformation

code 

generation

• Mission requirements

• Business rules

• User stories

• Workflow models

• Use case models

• System requirements

• Constraints

• Data model

• Communication models

• Timing models

• Component models

• Deployment models

• Package models 

• Code

• Documentation

Figure 1. The four layers of MDA and related elements.

Therefore, we assume the following terminology in the remainder of this paper:

• Capability: The general ability of a CPPS in any form. This includes text, such as
prose in documentation, tables, graphics, and more.

• Skill: A machine-processable representation of a (part of a) capability of a CPPS in the
specific formalism presented below.

• Service: A (set of) accessible methods(s) provided by a platform-specific model.
• Function: A software artifact that realizes a service of a CPPS. It might employ other

software artifacts (such as a CAM system, an MES, or an LLM) to achieve that.

2.3. Automated Planning

Automated planning [39] is a paradigm of Artificial Intelligence (AI) in which plan-
ning software supports the finding of solutions to specified problems through search and
optimization in a multidimensional problem space. To this end, planners employ a model
of the domain and are provided with models of the initial state of that domain, as well as a
goal to be solved. Using a variety of planning and optimization techniques, the planning
software then explores the search space defined by the domain model to produce a solution
that achieves the goal from the initial state or fails [40].

A popular modeling language to describe planning domains, initial states, and goals
is the Planning Domain Definition Language (PDDL) [41]. Using PDDL, a planning domain
can be described as predicates (relationships between domain elements) that hold in this
domain and actions available to agents operating on this domain. Each action comprises
pre-conditions that must hold before they can be executed and effects that hold after the
action has been executed. Once an action is executed, its effects are applied to the overall
planning domain state.

For instance, the logistics planning domain illustrated in Figure 2 (top) comprises seven
predicates (ll. 3–5); six unary predicates, e.g., about whether some object of the domain is a
location or whether the robot is in a specific location; and the binary predicate carry to
denote which of the robot’s grippers is carrying which object. The domain also defines the
action pick (ll. 7ff), which features three parameters (l. 8), a pre-condition (ll. 9–12), and an
effect (ll. 13–17). Both pre-condition and effect are Boolean expressions over predicates of
the domain. The pre-condition states that to execute pick, it must hold that the object to
be picked up is a crate, the place where it shall be picked up is a location, the gripper to
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pick it up is a gripper, the obj is at a location in which the robot is present, and the gripper
is free.

(define (domain logistics)

(:predicates

(location ?l) (crate ?c) (gripper ?g)   (in ?r)

(at ?c ?l)    (free ?g)  (carry ?o ?g)

)

(:action pick

:parameters (?obj ?loc ?gripper)

:precondition (and

(crate ?obj) (location ?loc) (gripper ?gripper)

(at ?obj ?loc) (in ?loc) (free ?gripper)

)

:effect (and

(carry ?obj ?gripper) 

(not (at ?obj ?loc))

(not (free ?gripper)

)

)

; further actions to move and drop items

)

01
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08

09

10

11

12

13

14

15

16

17

18

19

20

domain name predicates (variables)

action of name “pick” with 

3 parameters, precondition, 

and effect

comment

PDDL Domain

Figure 2. Excerpt of a PDDL planning domain describing the capability of a robot to pick something
up via a PDDL action.

A planning domain specifies what is possible in general but neither initial situations
nor goal situations. For better reuse, planning domains are decoupled from both. Instead,
both situations are defined as a PDDL planning problem. A PDDL problem is defined relative
to a planning domain and includes the set of existing objects, as well as initial values for
selected predicates of that domain and a goal situation.

The PDDL problem illustrated in Figure 3 (bottom) is defined relative to the logistics
domain (l. 2). It defines five objects (l. 3), such as entrance and crate1, and uses the objects
to initialize the predicates of the domain (ll. 4–12). Here, among other things, entrance is
defined as a location, and crate2 is defined as a crate. Finally, a goal (Boolean expression
over predicates of the domain) is defined that states that the planner shall derive a plan
that leads to the crate2 object being located at the entrance.

(define (problem warehouse-logistics)

(:domain logistics)

(:objects entrance storage crate1 crate2 main)

(:init (location entrance)

(location storage)

(crate crate1)

(crate crate2)

(gripper main)

(in storage)

(free main)

(at crate1 storage)

(at crate2 storage))

(:goal (at crate2 entrance)))

01

02

03

04

05

06

07

08

09

10

11

12

13

problem name

objects relevant to 

this problem

initial declarations, e.g., 

“storage” is a “location.

goal situation

PDDL Problem

Figure 3. Excerpt of a PDDL planning problem for the domain of Figure 2.

In the following, we employ automated planning using the OPTIC planner [42,43]
over a PDDL 3.0 production domain model comprising platform-independent skill types to
find optimal solutions for production goals. These solutions are sequences of parameterized
skills that are then realized through platform-specific processes.

3. Related Work

Skill-based manufacturing has been a popular research subject for decades [44], ac-
cording to which skills can be understood as “manufacturer-independent standardized



J. Manuf. Mater. Process. 2024, 8, 221 6 of 23

automation functions” [45] that aim to decouple logical production planning from technical
implementations in specific machines. Through the application of skills, researchers also
seek to address manufacturing flexibility, planning efficiency, and product variability [46].

To improve production flexibility through the application of skills, research has pro-
duced various approaches that make the modeling of skills, products, processes, and re-
sources (PPR) explicit. Many of these approaches employ concepts similar to Model-Driven
Architecture (MDA) to decouple logical skills from technical implementations.

Purely logical skills. However, many approaches consider skills to be purely logical
only, i.e., omit their effect on the geometry of the workpiece in processing [47–49]. While it
might be possible to describe all effects of a process purely logically, it (a) is rather inefficient
compared with employing CAD templating and (b) leads to inefficient planning over multi-
ple infinite numerical domains. When skills are represented with the Resource Description
Framework (RDF), e.g., [50], efficient numerical planning is impossible without any further
transformations. While skills lend themselves to artificial intelligence action planning,
as they abstract and discretize manufacturing activities [51], their representation matters.
For instance, the representation of skills in PDDL has been investigated following various
approaches [52–55]. All of these approaches to decouple abstract skills from technical
implementations for the automatic derivation of production plans also consider a purely
logical level. Hence, they fall short for the same reasons as the skill-based manufacturing
approaches over PPRs explained above.

Other approaches employ purely logical skills at different levels of abstraction and
leave it to domain experts using the skills to combine them into production plans, e.g.,
by orchestrating skills as UML state charts [56], UML activity diagrams [57], in Business
Process Model and Notation (BPMN) format [58], or using domain-specific orchestration
languages [59]. While this avoids the challenges of planning over infinite numerical
domains, it (a) demands that domain experts understand the modeling languages used for
orchestration and (b) reduces flexibility by fixing the available production plans a priori.

Some approaches also employ ontologies, often in the form of Web Ontology Language
(OWL) or RDF knowledge bases, to model the skills of CPPSs such that existing planning
systems for these formalisms can be employed for planning [50,60]. These generally focus
solely on logical planning and ignore the challenges of geometric planning [60] or require
that skills be modeled as deterministic processes [50] without leveraging the potential of
AI action planning over skills. The submodel templates of the Asset Administration Shell
(AAS), which represent various types and their relations exposed by the AAS of a CPPS,
could also be exploited as a foundation for a PDDL domain model in the future.

Platform-specific skills. Skills can be realized through different implementation tech-
nologies. For instance, there are means to derive high-level skill representations from
source-code implementations [61]. With OPC UA [62] becoming a de facto standard for the
communication of cyber–physical production systems, it is natural to leverage OPC UA
machine interfaces to provide skill implementations to their environment [59,63]. Research
has even produced a mapping from CAD primitives to OPC UA services that might be ap-
plied in the context of our framework [64]. Other researchers have employed, for instance,
IEC 61499 [38], to realize skills on specific machines [47]. Although this avoids the need to
translate OPC UA interfaces to IEC 61499 programs, such approaches still demand means
to invoke skills remotely (e.g., through the planner). However, we consider IEC 61499 an
excellent choice for the realization of OPC UA service skills. Other alternatives to skill
realization are MTConnect [65] or any other interfaces provided by or on top of machine
controllers. All of these yield skills being tightly coupled to a specific machine hampers the
reuse of skills with other machines.

Purely conceptual skill models. Existing conceptual approaches, such as those pro-
posed in [66,67], employ a similar combination of logical skill modeling augmented by
geometric state information but fail to explain how their models are integrated and how to
apply AI planning to them.
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Existing approaches to fully automated skill-based production planning either focus
solely on logical or graphical representations, lack abstraction between the high-level
representation of machine capabilities and their technical realization, or are not (yet)
accessible to automated planning at all.

4. Conceptual Framework

A major challenge associated with flexible manufacturing today is the tight coupling of
hardware and software. This coupling hinders the reconfiguration of production sequences,
as well as the substitution of production assets, and introduces another layer of abstraction
between the descriptions of what should be produced and how it should be produced.
However, this coupling can be removed in various domains, including personal and mobile
computing, robotics, and automotive domains. Generally, abstraction of technical details
from operating systems or middleware has enabled flexibly changing of (parts of) the soft-
ware operating on a PC, cellphone, robot, or vehicle to adjust their capabilities according to
changing requirements. To enable similar flexibility for CPPSs, we propose the decoupling
of platform-independent production skills (such as drilling or welding) from platform-specific
services that describe how a specific production machine can realize one or more of these
skills and platform-specific implementations (program code) that ultimately realizes the ser-
vices on a specific machine. This decoupling enables automated production planning over
platform-independent skills liberated from specific technological implementations while
introducing flexibility regarding the actual CPPSs implementing a specific skill.

To achieve this, we devised the conceptual framework presented in Figure 4, which com-
bines the following:

• Platform-independent skill-type models (left), which describe the parameters, as well
as logical and geometric pre-conditions and effects of a skill;

• Platform-specific OPC UA [62] interface models providing realizations of skill types; and
• Platform-specific implementations of these skill types on specific CPPSs.

The skill-type models are defined in a novel domain-specific language that allows
for the integration of logical action planning and the specification of geometric effects
relative to a Unified Modeling Language (UML) class diagram (CD) [68] domain model.
Both the action parts of skill types and the CD domain model are translated into PDDL.
Initial situations and goal situations are specified logically as UML object diagrams [68]
and geometrically as CAD models.

Given an initial situation (state of the domain) and a goal situation to be established,
the planner then uses skill types with specific parameters to create logical action plans
(sequences of skill instances) that transform the initial situation into the goal situation,
e.g., applying a combination of milling skills and drilling skills to a block of aluminum to
create a valve body. While iteratively building the plan as a sequence of skill instances,
the planners leverage various optimizations to reduce the search effort required to find
a proper plan. Moreover, some planners can optimize against heuristics, e.g., to find the
shortest sequence of skill instances or (if specified by the skills), the cheapest sequence, the
sequence consuming least energy, etc. After applying every skill’s action, the initial CAD
model is updated according to the skill’s CAD template. Once a logical action plan that
fulfills the geometric and logical requirements of the goal has been derived, it its translated
into a technical action plan, comprising a sequence of OPC UA method invocations and,
where necessary, manual actions. This plan is then executed to create the products specified
in the goal situation.
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Figure 4. Conceptual framework combining platform-independent models describing skills (left)
with platform-specific models describing services (middle) and their platform-specific functions
(right) for AI action planning (bottom).

4.1. Platform-Independent Model

The central elements of the platform-independent model are skill types with param-
eters, costs, and logical and geometric pre-conditions and effects. The effects of a skill
are defined in terms of PDDL actions and by related templates. Each skill type defines
properties that hold for all instances of that particular type, i.e., a drilling skill type
describes the parameters, cost function, etc., for all instances of drilling. There can be
multiple skill types for different variants of drilling, each with the most appropriate and
specific properties.

Parameters enable the configuration of skills. For instance, a drilling skill might yield
parameters such as position, drilling depth, drill feed, and spindle speed. Cost functions
over parameters enable the description of the multidimensional costs of executing the
skill. Their realization depends on the costs relevant to the skill-type modeler and might
include energy, time, and material, as well as different weights applied to the individual
kinds of costs. The logical pre-conditions and effects are Boolean PDDL expressions and
describe the required values of domain predicates and skill-type parameters for a skill to be
executable. Logical effects describe how the domain changes after applying the skill. The
geometric pre-conditions and effects are the geometric conditions that need to hold before
and after applying the skill instance, respectively. For the formalization and description
of the geometric transformation applied by the skill, knowledge-based design templates
may be used, as they are already applied in CAD [69–71]. These may include a complete
description of changes to the workpiece while simultaneously defining manufacturing
processes to apply those changes. Geometric pre-conditions describe required properties of
the workpieces and environments for a skill to be executable. Geometric effects describe
how the workpieces and environment are changed by executing a skill.

The AI action planner then uses the domain model predicates and skill types to
translate a production target into a logical action plan. A logical action plan is a sequence of
skill instances with arguments for their parameters as identified by the planner. Therefore,
it uses PDDL planning tools compatible with PDDL 2.5, such as OPTIC [42,43] or Metric-
FF [72].

Figure 5 illustrates the definition of a skill type for drilling using textual syntax.
Moreover, each skill type must be defined in the context of one or more UML class diagram
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domain model specifying available data types, predicates, and methods. These domain
models must be imported (l. 3) to make their elements (right part of Figure 5) known
to the skill-type definition. Each domain model must feature at least the two classes of
CostFunctions and Predicates, which may contain static methods representing costs of
the Float data type and methods representing n-ary Boolean predicates, respectively. The
Workpiece and Pose classes serve as data types to be used by the drill skill type.

CD
CuttingDomain

Workpiece

String id

String mat

Float width

Float height 

Float cost

package cutting;

import CuttingDomain;

domain machining.Cutting;

skill type drill(Workpiece w, Pos p, Float d) {

preconditions {

logical in(w,p) && d <= w.height && … ; 

geometric before_drilling.nx;

}

effects {

logical holeAt(w,p);

geometric after_drilling.nx:(w, p, d);

}

cost drillCost(w,d);

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

skill type definition

package name

parameters

logical and geometric preconditions

logical and geometric effects

cost function

planning domain

CostFunctions

Float drillCost(Workpiece, Depth)

Predicates

Boolean in(Workpiece, Pose)

Boolean holeAt (Workpiece, Pose)

Pos

Float x 

Float y

Float z

Skill Type
drillkeywords are highlighted bold

import statement 
referencing CD

Platform-independent model parts

Figure 5. The class diagram domain model and skill-type model for a drilling skill.

The skill-type definition itself (ll. 7–17) begins with the skill type’s name and a (possibly
empty) list of parameters (l 7). It contains the logical and geometric pre-conditions (ll. 8–10)
and effects (ll. 11–13) of the skill type. The logical conditions are specified as Boolean
expressions over the methods defined in the Predicates class, and the geometric conditions
refer to parametrizable CAD templates. The cost of the skill type refers to an arithmetic
expression over the methods specified in the CostFunctions class. In alignment with UML
conventions, method names begin with lower-case letters and use the camel-case notation.

Figure 6 illustrates an excerpt of a UML object diagram defining an instance of data
types available to the planner. For each class of the domain model, multiple objects can
be specified, such as w1 and w2 of the Workpiece class. Other objects may be created
during planning.

OD
CuttingDomain

w1:Workpiece

id = “oak scantling”

mat = “oak”

width = 300

height = 80

depth = 80

p1:Pos

x = 100

y = 40

z = 40

w2:Workpiece

id = “elm scantling”

mat = “elm”

width = 225

height = 50

depth = 50

object with unique ID w1 of UML class diagram data type Workpiece

Figure 6. Instances of the drilling skill-type domain of Figure 5.

4.2. Platform-Specific Model

All predicates that are observable in the CPPS or in its environment must be grounded
in reality. To this end, domain predicates related to observations, such as the position
of the workpiece, need to be implemented by services. These functions do not need to
be provided by a single CPPS but can be implemented by different systems (e.g., for the
workpiece position, this could be a camera installed in the work cell). Similarly, the skill
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types must be implemented by CPPSs such that they can change the workpiece and its
environment accordingly. For platform-specific models, we assume that the services of
(virtual) sensors and the CPPSs are defined in terms of OPC UA models, which expose
the systems’ interfaces through a URI and include a validity frame [73] that describes the
extent to which, i.e., under which constraints, a specific CPPS can provide a service.

For instance, to realize the drill skill type, the OPC UA information model illustrated
in Figure 7 might serve describes the MillingMachine type, which is a MachineToolType
and specifies two variables (Identifier, Name), as well as two objects (Location, RULDef).
The object MyMiller is an instance of a MillingMachine and has properties implementing
the properties of the MillingMachine type. Moreover, it also yields the drill method,
which requires a Workpiece and a Depth to operate. The PlanRealizer then takes the
logical action plan provided by the planner as input and identifies available CPPSs to
realize this. The result of this investigation is either an action plan, i.e., a sequence of
services (together with their arguments) to be called, or a finding that the plan cannot be
realized. The latter case also produces a hint about which capabilities are missing (e.g., a
more powerful drill might be required).

Instances

TypesNode Classes

Method

Object

Type
Object

Variable

Type
Variable

Data

Type

References

HasComponent

HasProperty

HasTypeDefinition

HasSubType

Reference

Type

Identifier Name

WM18B

loc

Location RULDef

rul

Machine

ToolType

drill workpiece

depthpose

Milling

Machine

OPC UA

Figure 7. OPC UA information model to realize the drill skill type.

4.3. Platform-Specific Implementation

Each service (OPA UA endpoint) is realized through functions provided by a single
CPPS. By invoking the services according to the technical action plan, the plan executor
performs a sequence of system functions of participating CPPSs to achieve the production
goal for which the planner produced a strategy. As plan and reality often diverge (e.g.,
the workpiece not being exactly in place), execution of the technical plan is iterative and
checks the pre-condition of each step (skill instance) before taking the next step [74]. While
this ensures that the PlanExecutor adheres to the plan, this also means that whenever a
pre-condition of skill instance is violated, plan execution stops, and replanning from this
particular situation is required.

5. Methodical Application
5.1. Instantiation

The instantiation of the conceptual framework outlined above requires a systematic
method for providing platform-independent skill types, platform-specific OPC UA models
that ground these skills, and platform-specific implementations of these skills on the
realizing CPPSs. This section describes the roles and activities required to apply our
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framework. For this, we assume the following roles, some of which might be enacted by
the same person or entity:

• The machine provider is responsible for developing and commissioning the CPPS and
its system functions. The latter are made accessible through an OPC UA client.

• The integrator is responsible for providing OPC UA interface models to expose selected
system functions of the CPPS in a platform-independent way.

• The skill modeler describes the skill types with the logical and geometrical pre- and
post-conditions and how they are implemented by the OPC UA services.

• The ActionPlanner, PlanRealizer, and PlanExecutor components are generic (i.e.,
compatible with all possible instances of the conceptual framework) and are provided
by the framework developer.

Their respective activities in instantiating our framework are illustrated in Figure 8.
The skill modeler collects constant and fluent domain properties and models these as a
PDDL domain. Afterwards, it collects requirements regarding necessary skill types, e.g.,
which skills are required and how they need to be parameterized. Based on this, it models
the logical pre- and post-conditions of skill types with respect to the properties in the
domain. In parallel, it models the geometric pre- and post-conditions and links these
from the skill types. Independent of these activities, the machine provider creates and
commissions the required CPPSs and ensures that their functions are exposed through OPC
UA. After both have completed their activities, the integrator creates OPC UA interface
models and maps the CPPS system functions, as well as the skill types, to OPC UA services.
It also configures the PlanRealizer and PlanExecutor with the resulting mappings.

Skill Modeler Machine Provider Integrator

Create 
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model

Create 
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models
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Figure 8. Activities required to instantiate our conceptual model for skill-based manufacturing.

5.2. Object and Skill Transformation

Before the planner can start deriving logical action plans, the skill-type models, the CD
domain models, and the UML object diagrams describing the initial and goal situations
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must be translated into a PDDL planning domain and a corresponding PDDL planning
problem [75]. Given the example presented in Figure 5, as an initial step, the CD domain
model and the skill types need to be translated into a PDDL planning domain by translating
UML classes into relations and skill types into actions as illustrated in Figure 9.

For each attribute of a UML class in Figure 5, the transformation creates a new binary
predicate in the planning domain that takes the object under consideration as a first
parameter and its possible value for the respective property (ll. 4–6) as a second parameter.
For instance, the width property of the Workpiece class is translated into a binary predicate
(workpiece_material ?inst ?mat), which relates workpiece objects to their materials (cf.
Figure 9).

(define (domain mydomain)

(:requirements :typing :adl :durative-actions)

; non-numeric properties

(:predicates

(workpiece_id ?inst ?id - workpiece)

(workpiece_material ?inst ?mat - workpiece)

(predicates_in ?workpiece ?pos - workpiece)

(predicates_holeAt ?workpiece ?pos - workpiece)

)

; numeric properties

(:functions

(workpiece_width ?inst ?width - workpiece)

(pose_x ?inst ?x - pose)

(costsFunctions_drillCost ?workpiece ?depth - workpiece)

; further numeric properties

)

(:action cutting_drill ; prefix „cutting“ from package name

:parameters (?w - workpiece ?p - pose ?d - depth)

:precondition (and

(predicates_in ?w ?p) (workpiece_height ?w ?h)

(> ?h ?d) ; further preconditions

)

:effect (and

(predicates_holeAt(?w ?p) 

; further preconditions

)

)

)

01
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04
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08
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

PDDL Domain

Figure 9. Excerpt of the result of translating the example in Figure 5 to a PDDL planning domain.

For each method using the Predicates class, the transformation produces a predicate
of the same name. Here, the first parameter is, again, the instance of the object being
considered, and the remaining parameters represent the method parameters as specified in
the input-class diagram (ll. 7–9). For instance, the holeAt() method of the Predicates class
becomes a predicate (predicates_holeat ?workpiece ?pos). Each method from the class
diagram returning numerical values (including the methods of the CostFunctions class),
the transformation produces a function following the same pattern (ll. 12–14). Afterward,
for each skill type, a new action using the parameters, pre-conditions, and effects of the
respective skill types is created (ll. 18–28). Using fully qualified class names as prefixes for
names of predicates, functions, and skills avoids ambiguity.

A planning problem using the drilling skill type can be defined as illustrated in Figure 10.
The planning problem enumerates the constants (ll. 3–8), as well as the objects (ll. 9–14),
together with their PDDL types, and initializes the properties of the objects—in this case, of
the workpieces (ll. 15–23). Afterwards, the planning domain specifies the planning goal
(ll. 24–29), which entails two holes in the workpieces at certain positions and specifies
which metric to minimize (which uses the cost functions, cf. Figure 5).
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(define (problem myproblem)

(:domain mydomain)

(:constants

oak_scantling – workpiece_id_name

oak – workpiece_mat_nanme

elm_scantling – workpiece_id_name

elm – workpiece_mat_nanme

)

(:objects

w1 – workpiece

w2 – workpiece

p1 - pos

; further objects

)

(:init

(workpiece_id w1 oak_scantling)

(workpiece_mat w1 oak)

(= (workpiece_width w1) 300)

(= (workpiece_height w1) 80)    

(= (workpiece_depth w1) 80)

(workpiece_id w2 elm_scantling)

; further predicate initialization

)

(:goal

(and

(predicates_holeAt w1 40)

(predicates_holeAt w2 30)

)

)

(:metric minimize ; minimize costs as sum over all cost functions

(+

(costsFunction_drillCost w1 40)

(costsFunction_drillCost w2 30)

)

)

)
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PDDL Problem

Figure 10. PDDL planning problem obtained by translating the skill types, their class diagram
domain model, and the instances specified in the corresponding object diagram to PDDL.

With this planning problem defined, the planner can try to find a sequence of skill
instances that fulfills the goal while optimizing the cost of skill execution. To execute the
plans in reality, additional preparation is required.

5.3. Preparation

Executing sequences of skill instances in reality demands their mapping onto relevant
OPC UA information models (see the right side of Figure 4). Therefore, the skill modeler
configures the plan realizer with a map from skill types and their parameters to OPC UA
method calls and their parameters. If a skill type needs adaptation to be mapped to one or
more OPC UA method call node, this can be achieved using Java and the generation gap
pattern [76]. If a skill type cannot be mapped to an OPC UA information model at all, this
suggests that the capabilities modeled by the skill are not available to the manufacturer. In
this case, either the skill type needs to be removed, its cost must be updated to inflict a severe
penalty of choice by the planner, or an OPC UA device with the required capability needs
to be acquired. For skill types that need to be executed manually, their implementation
(e.g., to send a message to a responsible person) can be realized either in the plan realizer
using the generation gap pattern or on the OPC UA server.

To enable all this, the PlanRealizer (cf., Figure 11) must know all available skill
types in the abstract SkillType class that yield the basic signature and infrastructure of
all kinds of skills. The abstract SkillType class is extended by abstract classes generated
from each specific skill type, e.g., DrillSkillTypeBase (cf., Figure 5), which contribute
implementations of the methods defined in SkillType that are generated from the skill-
type definition. This includes, e.g., checking pre-conditions and post-conditions before
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skill execution. In handcrafted subclasses of the generated skill-type base classes, the skill
modeler translates skill execution to OPC UA calls.

OPC UA Information Model on Server

WM18B

loc rul

drill workpiece

depthpose

Skill
Type
„drill“

≪abstract, generated≫

DrillSkillBase

+ void setup()

# Boolean precondition() {
return Predicates.in(w,p) && d <= w.height && …  

}

# Boolean postcondition() {
return Predicates.holeAt(w,p)

}

+ void drill(Workpiece wp, Pose p, Depth d) {
if (!this.postcondition())

throw(new PreconditionFailedError(this))

doDrill(Workpiece wp, Pose p, Depth d)

if (!this.postcondition())

throw(new PostconditionFailedError(this))

}

# abstract void doDrill(Workpiece wp, Pose p, Depth d);

≪abstract, rte≫

SkillType

+ String getName()

+ List<String> getParameters()

+ void setup()

# Boolean precondition()

# Boolean postcondition()

≪handcrafted≫

DrillSkill

+ void setup() { /* initializes skill */ }

+ void doDrill(Workpiece wp, Pose p, Depth d) {
// call OPC UA server

}

≪rte≫

PlanRealizer

re
a
li
z
e
s

abstract methods to be implemented 

by code generation and handcrafting

PIM

PSI

RTE

PSM
code 

generation

fr
o
m

 P
IM

Figure 11. Outline of the software architecture of the PlanRealizer.

Additionally, the object diagrams describing the initial situation and final situation
must be provided. As of now, both need to be created manually, but the information
required for both models can—in principle—be derived from existing information. For
instance, the initial situation, e.g., constants and objects with their properties, could be
derived from an ERP system. The final situation (which becomes the goal expression) needs
to be derived from the product specification, which is the subject to ongoing research. Once
both object diagrams have been created, they can be translated to PDDL automatically [75].

5.4. Logical Action Planning

During planning time, the action planner takes the domain model as input, which
includes the logical initial situation, a logical goal, a CAD model presenting the initial
geometric situation, a second CAD models presenting the goal situation (i.e., the product),
and a set of skill types (cf. Figure 12). The planner then sets the current intermediate logical
goal (ILG) to the overall logical goal and the intermediate geometric goal (IGG) to the
overall geometric goal (model). Leveraging classical backward planning, the planner first
tries to find a skill type that can be used to produce the current ILG. If multiple of such skill
types are found, the planner marks this planning phase as being an option for backtracking
(i.e., a step to go back to and select a different skill type if subsequent planning fails),
selects one of the matching skill types, and uses it. Then, the planner checks whether the
instance can be applied to the current IGG. If it can, the skill is prepended to the (initially
empty) plan. If it cannot be applied or the plan would contain a logical loop after adding
this identified skill, the planner backtracks and tries to find alternative skills. If no such
skills can be found, planning fails. Otherwise, the planner applies the skill’s geometric
post-condition to the IGG and its logical post-condition to the ILG, yielding an updated
IGG and ILG, which are ’closer’ to the initial situation. This process is iterated until either a
sequence of skill instances (actions) is produced that can transform the initial situations to
the goal situations by sequentially applying the skill instances or planning fails.
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Figure 12. Overview of the skill-based generation of manufacturing plans.

5.5. Operation

At runtime, the sequence of skill instances constituting the plan is processed by the
PlanRealizer, which translates each skill instance into the evocation of an OPC UA service
endpoint, thereby producing the technical action plan, i.e., a sequence of parameterized
OPC UA calls. The PlanExecutor then iteratively invokes the technical action plan’s OPC
UA endpoints to start manufacturing. Before invoking each individual OPC UA endpoint,
the PlanExecutor checks whether the corresponding skill instance’s pre-conditions still
hold. To this end, it the PlanExecutor uses the implementations of the domain model. In
cases in which reality interferes with planning, the planning process needs to be restarted
from the current state of the environment, e.g., if the skills executed in the real world
change the workpiece, then the planner needs to restart with the changed workpiece as
new initial situation.

6. Case Study

The following case study illustrates the approach, method, and capabilities of the
proposed framework. To this end, the case study examines and evaluates various options
for producing a coffee mug. The overall goal is to produce the red stainless-steel coffee
mug as shown in the upper-right corner of Figure 13, which requires the following:

1. Access to the required resources, i.e., in this case, a stainless-steel sheet of sufficient
size, and to the OPC UA devices required for the process;

2. A model of the relevant skill types, together with the domain model (including the
initial situation, i.e., availability and properties of relevant resources);

3. A mapping of the skill types to the OPC UA devices; and
4. A problem statement of the final situation that logically represents the product to be

produced.
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Figure 13. Conceptual (top) and logical (bottom) representations of the case of producing a coffee mug.
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For the example in question, this entails having modeled sufficient skill types to ensure
that the coffee mug can be produced. Depending on the available machines, this might
entail deep drawing, welding, cutting, or any other combination of skills enabling the
transformation of the input metal sheet into a cup. Each skill type comes with logical and
geometric pre-conditions and effects that describe the expected input and output, as well
as a cost function. For the cutting skill, this might be as illustrated in Figure 5. The cost
function can map to any numerical value; for example, it might represent material cost,
energy cost, time cost, or a combination thereof. This needs to be realized in the respective
domain model classes providing the cost function (cf. Figure 5, top right). Note that not all
skills need to be executed fully automatically, e.g., the transport skill (Figure 13, top left),
and others might be realized by issuing production tasks to human workers as well.

The desired coffee mug can be obtained through a variety of production sequences,
each of which depends on the specific details of the corresponding skill types. In this
case study, the Transport, Draw, Bend, Laserweld skill types, as well as a few more, are
available. Within the conceptual representation of the sequences in Figure 13, they are
represented by blue and gray rectangles also containing some sample parameters and
functions. Each skill type refers to a class diagram domain model and geometric conditions.
The bottom of Figure 5 depicts the corresponding PDDL representation, which includes
excerpts of the initial and final situations and PDDL actions derived from the skill types.

Given the provided skill types, domain model, problem statement, and mapping
to OPC UA, the planner evaluates the final situation. It then searches for skill types
that could yield effects that would produce elements of the situation that are not already
present in the initial situation (It should be noted that if the initial situation included the
provision of a coffee mug with the requisite properties, no further action would be required).
The planner’s activities may entail the identification of skill types that color something,
skill types that merge a cup and a handle, or any other skill types that contribute to the
logical problem statement that constitutes the final situation. Given the cost function,
the planner selects a suitable skill type while minimizing the overall cost and updates the
final situation as if the selected skill instance had been applied. As a result, the logical
problem statement is modified. For example, the planner may now assume that the
workpiece has the correct color if the plan, which currently consists of a single skill instance,
were to be applied. However, numerous additional pre-conditions would not be met
in practice by the execution of the one-skill plan. Consequently, in the event that any
other pre-conditions remain unfulfilled following the application of this plan fragment,
the planner continues to identify skill types that could contribute to the updated problem
statement. This process is repeated until one or more plans are identified that lead from
the final situation back to the initial situation. Additionally, given the descriptive nature of
skills and the domain model, in the event that the planner is unable to identify a solution,
it can be queried about any missing steps.

Should the planner determine that the final step of mug finalization necessitates the
attachment of a handle to the cup, a search for corresponding skills ensues. Given that
this can be achieved by either gluing or screwing, at least two alternative paths emerge.
The production of both the handle and the mug requires the use of different sequences of
skill instances, ultimately leading back to the initial situation.

In this example, the planner determines that the optimal sequence of operations is
to first transport the metal sheet to the deep drawing machine, then form a cup, which
constitutes the base geometry. Subsequently, the cup is colored, and the handle is attached.
The result of this planning activity is a sequence of skill instances with parameters that can
now be sent to the PlanRealizer, which then uses the mapping to OPC UA devices or the
hand-crafted action implementations to execute the plan in the real world.
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7. Discussion and Summary

In its current state, the presented framework is already capable of automatically deriv-
ing production sequences from product data and, consequently, defining a manufacturing
strategy. At this time, the final and initial states for the product must be known, and a
set of suitable skills must be available. Without limiting the capacities of the executing
framework itself, we expect the required skills to be created manually at this stage. This
typical one-time effort may be performed by the machine vendor’s domain experts, by the
machine user, or by specialized third-party experts providing such services. These skills
are the foundation for making implicit production knowledge explicit and reusable.

As underlined and demonstrated by the case study, with such skills available, the frame-
work is capable of comparing different production processes and sequences automatically,
simultaneously, and in close to real time. This is the basis for many fundamental targets
of smart manufacturing, enabling simultaneous multicriteria optimization of the entire
production system for its permanently moving targets, i.e., strategic and agile planning in
volatile or uncertain situations such as spontaneous supply chain disruptions or availability
issues. In this context, it should be emphasized that various aspects of the circular economy
are very likely to significantly increase the need for such automated planning capacities
or may not be feasible without such capacities at all. An example of this is the reuse of
material with varying conditions as input for production. At this point, it is not (yet) our
claim that our method is better than any possible domain expert on detailed questions;
however,it can provide the ability to act immediately, transparently, more efficiently, and in-
dependently of this scarce resource. With the framework, planning processes become
inherently explainable, since the framework itself has to optimize for a defined metric, i.e.,
soft or explicit targets. This eliminates unintended human bias for all production-related
decisions ranging from design to manufacturing. Taken together, the framework fulfills the
fundamental goal of addressing the ever-increasing shortage of skilled workers.

7.1. Realization Challenges

Our framework assumes that platform-independent skills can be ultimately mapped to
a software interface to invoke a process on a machine (or interface with a human operator).
Where is this is not supported, the resulting plans cannot be executed fully automatically.

We opted to use OPTIC [42,43] as the planner of choice in this framework, which
allows time-dependent plans to be found under constraints. The PDDL constraints are soft
goals in the sense that they do not have to be met, but they do have costs that must be
minimized. This requires domain experts to make this trade-off between speed, quality,
and cost explicit, which can be an organizational challenge.

In addition, the proposed conceptual framework assumes that both the initial state (in
the domain model) and the intended goal state (in the problem statement) are also made
explicit in the PDDL. The creation of these can be tedious and error-prone without specially
trained experts. Instead, it may be desirable to derive them from CAD models of the initial
state and intended goal state, as well as from models of the CPPSs. This synthesis requires
significant future work [77].

Moreover, it may be that the planner cannot find suitable skill types or that all skills fail
during execution. In cases where this is due to negligible differences between the planning
models (domain and problem) and reality, automatically updating either to reflect these
changes in reality to continue production would be beneficial. Realizing such knowledge
updates is the subject to future work.

Although this work already represents a significant step towards software-defined
and skill-based manufacturing, the idea of automatic generation and optimization without
any further human intervention immediately comes to mind. However, the full vision of
this would automatically lead to the need to extract logical and symbolic information (i.e.,
the skill types) from observed data. So far, there is no general method for this, but a first
step towards this can be made by using various ontologies [78,79] as a basis for planning
domains in which the skills act and translations from these to PDDL [80,81].
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Our conceptual model uses UML class diagrams to describe the domain model. Of
course, the domain model could be fully specified in terms of the underlying design tech-
nology, such as PDDL. This would raise at least two issues. (1) The platform-independent
models would be tied to the chosen planning technology, and switching to a more promising
technology that cannot handle PDDL would require not only changing of the transfor-
mation from UML to that particular technology space but also changing of the modeling
language for the capabilities. (2) UML class diagrams are usually accessible to engineers
from other technical domains [82], while their logical representation may be less accessible.
The latter is also, to some extent, a challenge in creating skills, as it requires some limited
understanding of Boolean logic.

Another challenge arises from the need to update plans in real-time. As none of the
PDDL planners guarantees any real-time behavior, updating plans during a time-critical
process requires further research regarding AI planning.

7.2. Strategic Opportunities

The framework offers further opportunities for industrial value creation. Given an
early integration into the design process, it may provide a continuous virtual assessment of
the producibility of the current design or even suggestions for better designs. In the long
term, products and their geometries may be derived by a further enhanced production
framework solely based on their functions and the target metrics. Another opportunity
lies in the global comparison of production processes between industries, companies, and
machines that perform similar manufacturing tasks. On the one hand, the best practices of
processes and their combinations and sequences can be easily identified and continuously
fed back into the framework. On the other hand, automatic and efficient allocation, seg-
mentation, or recombination of production tasks by the framework can lead to considerable
insights for machine design, process combinations, and integration.

However, the framework not only provides new approaches for the trend towards pro-
cess integration and more versatile machinery in manufacturing, both of which especially
target complexity [83–85]. The takeover of resource-consuming planning activities and the
subsequent integration of processes and machines through connectivity by the framework
also revives a familiar idea, namely the opportunity for renewed specialization and modu-
larization of manufacturing (sub)systems, i.e., stations and machines. This could even lead
to a consistent continuation of the paradigm of modularized reconfigurable manufacturing
systems as proposed by Koren et al. [86].

In the future, new machines can be designed to easily integrate with the framework,
allowing them to adapt to various production sequences and strategies. This can increase
the versatility and longevity of the machines. The data and insights generated by the
framework can be used to continuously improve machine design. This iterative process
ensures that new machines are better suited to meet evolving production needs. By utilizing
the framework’s ability to optimize production processes in real time, machine designers
can focus on creating machines that excel in a wider range of criteria, including efficiency,
sustainability, and cost-effectiveness.

The initial creation of skills, which is a one-time effort, can be outsourced to specialized
third-party experts. This enables companies to focus on their core operations while still ben-
efiting from advanced production strategies. By automating the derivation of production
sequences and manufacturing strategies, the framework reduces dependence on highly
skilled workers for these tasks. This allows companies to operate efficiently with fewer
specialized experts.
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