
Vol.:(0123456789)

Automated Software Engineering (2020) 27:119–151
https://doi.org/10.1007/s10515-020-00268-5

1 3

Automated semantics‑preserving parallel decomposition
of finite component and connector architectures

Oliver Kautz1 · Bernhard Rumpe1 · Andreas Wortmann1

Received: 6 February 2019 / Accepted: 20 March 2020 / Published online: 16 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
For the systematic development of logical, message-driven architectures, automat-
ing parallel decomposition of software components is important to achieve effi-
cient modular and parallel system development. During development, monolithic
components that realize multiple independent concerns need to be decomposed to
obtain a higher quality architecture of cohesively encapsulated, better comprehen-
sive components. Previous work did not address automated parallel decomposition
of finite message-driven and logically timed components with respect to the influ-
ence of messages received via input channels on the messages sent via output chan-
nels. This, however, is a necessary prerequisite to enable the analysis of event chains
across logically distributed architectures. To address this, we present a concept of
influence between channels of components that supports automated semantics-pre-
serving parallel decomposition of finite deterministic component implementations
into independent, more comprehensible components that are better accessible for
analysis and development. Therefore, we extend the Focus theory of time-synchro-
nous components with the concept of influence, present a decomposition proce-
dure leveraging this, and prove that the resulting system is semantically equivalent.
This enables automatically decomposing monolithic software components (e.g., for
stepwise refinement or refactoring) into smaller components of better cohesion and
comprehensibility and thus facilitates automated software engineering.

Keywords Automated modeling · Architecture decomposition · Refinement ·
Refactoring

 * Oliver Kautz
 kautz@se-rwth.de

 Bernhard Rumpe
 rumpe@se-rwth.de

 Andreas Wortmann
 wortmann@se-rwth.de

1 Software Engineering, RWTH Aachen University, Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00268-5&domain=pdf

120 Automated Software Engineering (2020) 27:119–151

1 3

1 Introduction

Component-based software engineering (Naur et al. 1968) promises efficient soft-
ware development through reuse of independently developed and validated com-
ponents. Usually, these components are realized in general-purpose programming
languages (GPLs) and are hence subject to the conceptual gap between the prob-
lem domains and the software development, which arises from addressing prob-
lem domain challenges through programming complexities (France and Rumpe
2007).

Model-driven development (MDD) (Völter et al. 2013) reduces this gap by
lifting domain-specific, abstract models to primary development artifacts. These
models are specified in terms of domain-specific vocabulary to be better compre-
hensible, more abstract, and, hence, better suited towards analysis and transfor-
mation than the programs of GPLs.

Architecture description languages (ADLs) (Medvidovic and Taylor 2000) lev-
erage the potential of MDD for the description of software architectures. Research
has produced over 120 ADLs (Malavolta et al. 2013 for different domains, such
as automotive (Debruyne et al. 2005), avionics (Feiler and Gluch 2012), con-
sumer electronics (Van Ommering et al. 2000), or robotics (Schlegel et al. 2011).
In domains, where ADLs are popular, explicating the precise semantics of archi-
tecture models is crucial, e.g., due to safety concerns. Nonetheless, many ADLs
provide translational semantics, i.e., ground the meaning of architectures through
their transformation into better-understood formalisms (e.g., GPL code), only.
And even where the ADL’s semantics are explicitly available, the MDD related
processes rarely exploit these to facilitate modeling.

Where the semantics of an ADL is made explicit, semantically sound sys-
tem analyses and automated refactorings and refinements become possible.
Focus (Broy and Stølen 2001; Broy 2010; Ringert and Rumpe 2011), for instance,
is a framework and semantic foundation that captures logical component and con-
nector software architectures as stream-processing functions. Stream process-
ing functions describe the histories of messages communicated over communi-
cation channels established by connectors between the components’ interfaces.
Architecture modeling formalisms explicating component semantics, such as
Focus, communicating sequential processes (CSPs) (Hoare 1978), or the �-calcu-
lus (Milner 1999) enable systematic stepwise refinement (Broy 2010), a software
engineering methodology for continuous architecture modeling based on con-
trolled evolution and progressive improvement of components: each subsequent
version of a component model must adhere to properties already proven for its
predecessors. Ideally, this process starts with several underspecified components
which are iteratively refined according to their requirements. Focus is one of the
rare frameworks, where refinement and decomposition are compatible, i.e., refin-
ing a single component of an architecture always refines the complete architec-
ture. A component refactoring is a special refinement step where the resulting
component’s semantics is equal to the semantics of the original. With this, from

121

1 3

Automated Software Engineering (2020) 27:119–151

an external observer’s viewpoint, the behaviors of the original and the resulting
components are indistinguishable.

Manual refinement and refactoring without tool support, however, is tedious and
error-prone. To facilitate this, we present a method for automated refactoring via
parallel component decomposition based on the notion of influence between chan-
nels of components. This method uses time-synchronous port automata to represent
the essence (i.e., reduced abstract syntax) of common ADLs, such as AADL (Feiler
and Gluch 2012), AutoFocus (Hölzl and Feilkas 2010), EAST-ADL (Debruyne et al.
2005), MontiArc (Butting et al. 2017a), SysML’s blocks (Friedenthal et al. 2011),
and similar languages. Given a component implementation, we propose to automati-
cally decompose it into subcomponents according to their influence relation. To this
effect, we assume the availability of a model that describes the external interface of
the component (e.g., an ADL model) and a description of the implementation of the
component. It is irrelevant whether the description of the component implementa-
tion is available in source code that can be transformed to a time-synchronous port
automaton or whether the implementation is directly described by a time-synchro-
nous port automaton. To this end, our contributions are:

• A notion of influence between channels of a logical software architecture that is
grounded in the Focus theory.

• A method to automatically refactor components with finite state spaces via par-
allel decompositions according to the influence relation.

The resulting architecture can be evolved more efficiently by different stakeholders,
yet is guaranteed to be semantically equivalent to the previous architecture. Hence,
all original properties still hold, despite being less complicated and better to evolve
and maintain.

In the following, Sect. 2 sketches the idea of automated decomposition based on
the influence relations between channels. Section 3 presents the system model that
underlies the approach and has been introduced in previous work. Section 4 pre-
sents the notion of influence formalized in the Focus terminology and the process of
decomposition based on it. Section 4.3 shows that the influence relation is decidable
in the context of finite-state components. Afterwards, Sect. 5 presents its application
on the example of the elevator control system presented and evaluated in Butting
et al. (2017b). Section 6 discusses observations. Section 7 highlights related work,
before Sect. 8 concludes.

2 Example

Modern software systems comprise hundreds or thousands of components. Start-
ing development with the correct and final software architecture structure is phan-
tasmal. Consequently, agile methods call for methods to iteratively evolve and
complete software architectures. Stepwise refinement is such a method for agile
software architecture modeling. With stepwise refinement, properties proven for

122 Automated Software Engineering (2020) 27:119–151

1 3

a specific version of a component hold for all its refined successors. Hence, even
early versions of architectures can be used to prove properties relevant to the cus-
tomers without the burden of proving these for each new version again as long as
refinement is respected.

Consider, for example, developing the software architecture for a cyber-phys-
ical system in terms of its components through stepwise refinement, such as the
elevator control system (ECS) presented in Strobl et al. (1999). At some point,
the team developed an initial ECS architecture that consists of a single, mono-
lithic component managing elevator requests, lights on the floors, cabin move-
ment, as well as opening and closing the elevator cabin’s door based on messages
received from its environment. This component yields a single state-based behav-
ior implementation realizing parts of the customers’ requirements, i.e., is poten-
tially shippable. Figure 1 illustrates the ECS component, which receives environ-
mental messages through its input channels and outputs messages via its output
channels. Engineering the (initial) software of such a system monolithically is
valid with respect to stepwise refinement, but raises two challenges:

1. Analysis challenge: Proving architectural properties, for example, that the eleva-
tor control system eventually serves each floor for which the request button was
pressed, already for initial architectures enables fixating properties relevant to
customers early. However, model checking the complete ECS architecture might
be challenging to impossible due to its complex implementation intertwining
the different concerns unrelated to the property under consideration (here, e.g.,
management of floor lights).

2. Implementation challenge: Evolving functionalities implemented by such a mono-
lith usually is overly complicated: in the worst case, parts of the implementation
are scattered over different places and are hardly documented. This makes evolu-
tion error-prone and costly.

Addressing both challenges can be facilitated by properly decomposing the
monolithic software architecture prior to analyzing or evolving it. For instance,
decomposing the ECS architecture into subcomponents focusing on the influence
between channels related to the property under consideration (such as btn1 and
at1) can facilitate model checking and implementation evolution. However, this

Fig. 1 Initial software architecture of the elevator control system

123

1 3

Automated Software Engineering (2020) 27:119–151

raises challenges in properly decomposing the architecture at hand, such that the
resulting decomposition into interconnected subcomponents is actually a refac-
toring of the original.

An automated procedure for decomposing component and connector architec-
tures that supports both challenges must ensure that resulting subcomponent config-
urations are a valid refactoring of the input architecture, and support selecting input
channels and output channels that should be considered as bundles to capture the
developers’ knowledge about channel semantics and, hence, ultimately lead to use-
ful subcomponents. The following sections present a procedure that supports both.

3 Preliminaries

This section presents a system model for time-synchronous systems. The system
model has been introduced in previous work (Butting et al. 2017b). Architectures
are networks of autonomous components that interact with each other via messages
on typed channels. A time-synchronous (Broy and Stølen 2001; Broy 2010; Ring-
ert and Rumpe 2011; Butting et al. 2017b; Grosu and Rumpe 1995) architecture is
interpretable as a system where execution is divided into time-units. Time units are
an abstract modeling concept. In implementations, components may be unaware of
time, have local times, or even synchronize mimicking a global clock. In each time
unit, each component receives finitely many input messages, performs finitely many
internal computations, and then eventually outputs finitely many messages to its
environment.

Notation We denote by [X → Y] the set of all functions from a set X to a set Y.
For a function f ∈ [X → Y] and a set Z ⊆ X , we denote by f |Z ∈ [Z → Y] the func-
tion that satisfies f |Z(x) = f (x) for all x ∈ Z , called the restriction of f to Z.

3.1 Streams

The history of messages received or emitted by a component is formally described
by a stream (sequence/word) of messages. Let M be an arbitrary non-empty set.
Similar to (Broy and Stølen 2001; Butting et al. 2017b), M∗ denotes the set of
all finite streams over M. M∞ denotes the set of all infinite streams over M and
M� = M∗ ∪M∞ denotes the set of all finite and infinite streams over M. We denote
the empty stream by � ∈ M∗ . The concatenation of two streams s, t ∈ M� is denoted
by s ⋅ t . If s ∈ M∞ , then s ⋅ t = s for all t ∈ M� . The prefix relation ⊑ over streams
is defined as usual: s ⊑ t ⇔ ∃u ∈ M𝜔 ∶ s ⋅ u = t . For t ∈ ℕ , the (t + 1)-th element
of a stream s is denoted by s.t. Similarly, s ↓t denotes the prefix of s of length t. For
example,

• p = 3, 1, 4 ∈ ℕ
∗ is a finite stream over the natural numbers where p.0 = 3 ,

p.1 = 1 and p.2 = 4.
• The stream s = 7, 8, 9,⋯ ∈ ℕ

∞ where s.0 = 7 and s.(t + 1) = 1 + s.t for all t ∈ ℕ
is an example for an infinite stream of natural numbers.

124 Automated Software Engineering (2020) 27:119–151

1 3

• It holds that 7, 8 ⊑ s , i.e., the stream 7, 8 is a prefix of the stream s.
• The concatenation p ⋅ s yields the infinite stream p ⋅ s = 3, 1, 4, 7, 8, 9,⋯ ∈ ℕ

∞.
• The prefix of length two of s is the stream s ↓ 2 = 7, 8.

3.2 Messages, types

In the remainder, let M denote an arbitrary but fixed set of data elements (messages)
that contains a designated element � ∈ M modeling the mathematical concept of an
empty pseudo-message. In a time-synchronous setting, where in each time unit at
most one message is communicated via each channel, the empty message � can be
used to model the progress of time, i.e., the message � is not explicitly communi-
cated. It is important to emphasize that this communication model permits logical
time while abstracting from real time. We model data types by sets of messages.
Each message type contains the empty message. With this, it is possible to explicitly
model the absence of a message on a communication channel in a time unit. Let
Type denote a set of types where each type t ∈ Type satisfies t ⊆ M and � ∈ t . Types
are used to restrict the set of messages that are allowed to be sent via a communi-
cation channel. As a concrete example, the type Nat ∈ Type containing all natural
numbers and the empty message � can be defined by Nat = {�} ∪ ℕ.

3.3 Channels, histories

A channel is a communication link between components. Each channel has a
unique name. In the remainder, let C denote a set of channels names. The function
type ∈ [C → Type] maps each channel c ∈ C to its type type(c) ∈ Type . A channel
assignment is a function that maps channels to messages of the channels’ types: A
channel assignment for a set of channels B ⊆ C is a function a ∈ [B → M] that satis-
fies ∀b ∈ B ∶ a(b) ∈ type(b) . We denote by B→ the set of all channel assignments
over B. A communication history for a set of channels B ⊆ C is an infinite stream
h ∈ (B→)∞ . The set of all communication histories for a set of channels B ⊆ C is
denoted by BΩ . Thus, a communication history is a function that maps time units to
channel assignments over their types. With this, each communication history models
a full observation of the messages sent and received by a component. It should be
noted that the set of communication histories BΩ = (B→)∞ is isomorphic to the set
[B → M∞] that satisfies ∀b ∈ B ∶ h(b) ∈ type(b)∞ , i.e., the set of all functions that
map the channels in B to infinite streams of messages of their types. For a communi-
cation history b ∈ BΩ and a time unit t ∈ ℕ , the prefix b ↓t thus models the commu-
nication history observed up to time t. We lift the ↓ operator to sets of communica-
tion histories in a point-wise manner: For H ⊆ BΩ , we define H ↓t=

⋃
h∈H h ↓t . The

restriction of a communication history h ∈ BΩ to the channels in R ⊆ B is defined as
the communication history h|R that satisfies (h|R).t = (h.t)|R for all t ∈ ℕ , i.e., each
channel assignment in h is restricted to the channels in R.

As concrete examples,

125

1 3

Automated Software Engineering (2020) 27:119–151

• If a, b ∈ C are channels typed with the natural numbers, then
type(a) = type(b) = Nat.

• A channel assignment for the set of channels {a, b} is given by
� = {a ↦ 7, b ↦ 8} ∈ {a, b}→ . This assignment maps the channel a to the mes-
sage 7 and the channel b to the message 8.

• The infinite stream h = �∞ ∈ {a, b}Ω is a communication history for the set of
channels {a, b} . In each time unit, this communication history maps the channel
a to the message 7 and the channel b to the message 8.

• The prefix h ↓ 2 = �, � models the part of the communication history h observed
in the first two time units.

• The restriction of the communication history h to the set of channels {a} is given
by h|{a} = �|{a}, �|{a},… = {a ↦ 7}, {a ↦ 7},⋯ ∈ {a}Ω.

3.4 Finite time‑synchronous port automata

A finite time-synchronous port automaton (TSPA) specifies (an excerpt of) an
interactive system architecture (Butting et al. 2017b; Grosu and Rumpe 1995). We
assume a white-box view on components where each component implementation is
represented by a finite TSPA. Complex system architectures are modeled via com-
ponent composition, i.e., via the composition of the TSPAs representing the indi-
vidual components’ implementations.

A finite TSPA is a tuple A = (I,O, S, �, �) where

• I,O ⊆ C with I ∩ O = � are finite and disjoint sets of the TSPA’s input and out-
put channels,

• the type type(c) of each channel c ∈ I ∪ O is finite,
• S is a finite set of states,
• � ∈ S is the initial state, and
• 𝛿 ⊆ S × (I ∪ O)→ × S is the transition relation.

In the following, we simply refer to a finite TSPA by TSPA. We sometimes refer-
ence the syntactic elements of A as follows: IA = I , OA = O , CA = C(A) = IA ∪ OA ,
SA = S , �A = � , and �A = � . A TSPA may fire a transition (s, �, t) ∈ � if it receives �|I
while residing in state s. When firing the transition, the automaton changes its inter-
nal state to t and outputs �|O.

A TSPA A is called reactive iff
∀s ∈ SA ∶ ∀i ∈ I→

A
∶ ∃(u, a, v) ∈ �A ∶ u = s ∧ a|I = i . Reactive TSPAs are adequate

models for interactive components as they define a possible reaction to every pos-
sible input and every possible state. If a TSPA is not reactive, then it may be in
a state in which it receives an input for which no reaction in terms of a transition
is defined. This behavior is erroneous as components are required to be able to
react to every possible input in every time unit. A TSPA A is called determin-
istic iff ∀s ∈ SA ∶ ∀i ∈ I→

A
∶ |{t ∈ SA | ∃� ∈ C→

A
∶ (s, �, t) ∈ �A ∧ �|IA = i}| = 1 ,

i.e., it defines exactly one transition for each possible input it may receive for
each of its states. A nondeterministic TSPA resembles underspecification in

126 Automated Software Engineering (2020) 27:119–151

1 3

a component that can be resolved by subsequent refinement steps and/or left
open to a nondeterministic implementation. An execution � of A is an infinite,
alternating sequence of states and channel assignments starting with the ini-
tial state � : � = s0, �0, s1, �1,… such that s0 = � and ∀i ∈ ℕ ∶ (si, �i, si+1) ∈ � . We
denote by execs(A) the set of all executions of A. The behavior of an execution
� = s0, �0, s1, �1,… of A is defined as the infinite sequence beh(�) = �0, �1,…
containing only the channel assignments in � . An execution comprises a TSPA’s
internal behavior, which is invisible to its environment, whereas a behavior rep-
resents an execution from a black-box viewpoint. We denote by behs(A) the set of
all behaviors of A.

As concrete examples, Fig. 2 depicts two TSPAs. As usual, circles represent
states and edges between states represent transitions. Initial states are marked
with an arrow that originates from a back dot. The transitions are labeled with
their channel valuations. The TSPA A has a single input channel i and a single
output channel o. The TSPA A is not deterministic and thus highly underspeci-
fied. In fact, it models all possible behaviors over the channels i, o ∈ C where
type(i) = type(o) = {�, 1} . The other TSPA Switch can be interpreted to model a
simple light control switch.

Initially, the TSPA is in state off, which models that the light is turned off.
In case, the switch is not pressed, the TSPA does not receive a message via its
input channel i, represented by the empty message � . If the switch is pressed,
the TSPA receives the message 1 via its input channel i. If the TSPA is in state
off and the switch is not pressed, the TSPA outputs the empty pseudo-mes-
sage � via its output channel o and remains in state off. This represents that
the light remains turned off. In case the TSPA is in state off and the switch is
pressed, the TSPA outputs the message 1 via its output channel o and switches
its state to on. This represents that the light is turned on. Vice versa, the TSPA
remains in state on and the light remains turned on as long as the switch is
not pressed. As soon as the switch is pressed while the TSPA is in state on,
the TSPA switches to state off and the light is turned off. A possible execu-
tion of the TSPA Switch is the infinite alternating sequence of states and transi-
tions e = (off , {i ↦ 1, o ↦ 1}, on, {i ↦ 1, o ↦ �})∞ . In the execution e, the light
is frequently turned on and off. The behavior beh(e) of the execution e is given

Fig. 2 An underspecified TSPA A and a deterministic TSPA Switch

127

1 3

Automated Software Engineering (2020) 27:119–151

by beh(e) = ({i ↦ 1, o ↦ 1}, {i ↦ 1, o ↦ �})∞ , which is the sequence of channel
assignments that represents the externally visible behavior of the execution.

3.5 TSPA composition

The composition of two TSPAs is a TSPA that captures the behavior of the archi-
tecture resulting from synchronously executing the TSPAs simultaneously where
communication is carried out via the TSPAs’ channels (Butting et al. 2017b; Grosu
and Rumpe 1995). Multiple TSPAs may receive messages via the same channels,
whereas at most one TSPA is permitted to send messages via a channel: Two TSPAs
A, B are called compatible iff OA ∩ OB = �.

The composition of two compatible TSPAs A and B is defined as
A⊗ B = (I,O, SA × SB, (𝜄A, 𝜄B), 𝛿) where

• O = OA ∪ OB,
• I = (IA ∪ IB)⧵O , and
• � = {((s1, s2), �, (t1, t2)) |(s1, �|C(A), t1) ∈ �A ∧ (s2, �|C(B), t2) ∈ �B}.

Figure 3 illustrates the composition of two TSPAs. If the two TSPAs A and B repre-
sent the implementations of two components, then the composed TSPA A⊗ B rep-
resents the implementation of the system obtained from running the components in
parallel.

The composition of two compatible, reactive TSPAs does not always yield a
reactive TSPA (Butting et al. 2017b; Grosu and Rumpe 1995). Thus, compos-
ing two components is not always meaningful as the composition of two compo-
nents represented by two TSPAs may not be well-defined. This is because of cau-
sality problems (Broy and Stølen 2001; Broy 2010; Butting et al. 2017b; Grosu
and Rumpe 1995) that can only exist if each of the TSPAs has an output channel
that is an input channel of the respective other TSPA. The causality problem is
guaranteed to be avoided if one of the TSPAs is strongly-causal (Butting et al.
2017b; Grosu and Rumpe 1995) with respect to its connected channels. However,
if two reactive TSPAs are composed in parallel (without feedback), i.e., neither of

Fig. 3 General TSPA composition with feedback

128 Automated Software Engineering (2020) 27:119–151

1 3

the TSPAs has an output channel that is an input channel of the respective other
TSPA, then the composition always yields a well-defined reactive TSPA (Butt-
ing et al. 2017b; Grosu and Rumpe 1995). As this paper is solely concerned with
parallel decomposition and thus, vice versa, only with parallel composition, we
refer to related work (Broy and Stølen 2001; Broy 2010; Butting et al. 2017b) for
a discussion about causality complications.

3.6 TSPA restriction

Hiding is an important concept to achieve modularity (Broy and Stølen 2001;
Broy 2010; Grosu and Rumpe 1995). Hiding an output channel facilitates con-
cealing unimportant information to an environment. Similarly, it is possible to
hide an input channel. Hiding an input channel does not affect the set of output
histories. It relaxes the transition relation in the sense that messages on the hid-
den channel do not constrain the TSPA’s behavior anymore. Thus, hiding an input
channel effectively leads to more underspecification. Any transition is enabled
independent of the messages received via the hidden channel, assumed that the
messages received via the other input channels are part of the transition’s channel
valuation.

Let A be a TSPA and let B ⊆ CA be a set of channels. The restriction of A to the
channels in B is defined as A ↾ B = (IA ∩ B,OA ∩ B, SA, �A, �) where

As concrete examples, Fig. 4 depicts the TSPAs resulting from restricting the TSPA
Switch (cf. Fig. 2) to the set of channels {i} and from restricting the TSPA Switch
to the set of channels {o} . Restricting the TSPA Switch to its input channel yields a
TSPA that is still deterministic. However, restricting the TSPA Switch to its output
channel yields an underspecified TSPA that is not deterministic.

� = {(s, �, t) | ∃� ∈ C→

A
∶ � = �|B ∧ (s, �, t) ∈ �A}.

Fig. 4 The restriction of the TSPA Switch to the set of channels {o} and the restriction of the TSPA
Switch to the set of channels {i}

129

1 3

Automated Software Engineering (2020) 27:119–151

4 Semantics preserving parallel decomposition respecting
influences between channels

This paper contributes to the parallel decomposition of deterministic TSPAs. Fig-
ure 5 overviews the key idea of the approach: The decomposition method takes a
deterministic TSPA representing a component as input. Based on the influence rela-
tion between the TSPA’s input and output channels, the method decomposes the
component into multiple subcomponents (further TSPAs). The parallel composi-
tion of the resulting TSPAs yields a TSPA that has the same behaviors as the input
TSPA. For example, Fig. 5 indicates that the output channel p is influenced by the
input channels i and j. In contrast, the output channel o is solely influenced by the
input channel i. The method can be fully automated. Therefore, we obtain an auto-
matic method for refactoring monolithic components into multiple subcomponents
such that the behaviors of the composition of the subcomponents are equal to the
behaviors of the monolithic component.

The method may produce TSPAs that are not deterministic but unambiguously
specified as intermediate decomposition results. Intuitively, a TSPA is unambigu-
ously specified if it defines exactly one (infinite) output for every (infinite) input.
Every unambiguously specified TSPA can be transformed to a deterministic TSPA
having the same behaviors (cf. Sect. 4.1). Thus, the transformation enables the defi-
nition of a decomposition procedure for deterministic TSPAs that again yields an
architecture of deterministic TSPAs.

Fig. 5 Schematic representation of a monolithic component that is maximally decomposed along the
influences between channels

130 Automated Software Engineering (2020) 27:119–151

1 3

Section 4.1 formally defines the notion unambiguously specified for TSPAs and
presents properties of unambiguously specified TSPAs that are relevant to show the
decomposition method’s correctness. Afterwards, Sect. 4.2 defines the influence
relation between channels of a TSPA. Then, Sect. 4.3 presents a decision procedure
for determining whether an input channel of a TSPA influences an output channel of
the same TSPA. Subsequently, Sect. 4.4 presents the fully automatic decomposition
method based on the channel influence relation.

4.1 Unambiguously specified TSPAs

Hiding an input channel in a deterministic TSPA might result in a TSPA that is by
definition not deterministic, but behaves as if it was deterministic from a black-box
viewpoint. For example, this is because the TSPA’s reachable part is deterministic
and there exists a non-reachable part that is not deterministic. Figure 6 depicts a
concrete example: The TSPA D is deterministic, whereas restricting it to its out-
put channel yields a TSPA that exhibits the single behavior {o ↦ �}∞ , thus behaves
deterministically from a black-box viewpoint. However, the restricted TSPA is inter-
nally non-deterministic, because of the non-reachable state b containing underspeci-
fication regarding the message sent via the output channel.

A TSPA might also be not deterministic and have multiple executions for the
same inputs that produce the same outputs. In such a case, the TSPA is also not
deterministic but behaves as if it was deterministic from a black-box viewpoint.
Figure 7 depicts a concrete example: The TSPA U is not deterministic and exhibits
the single behavior {i ↦ �, o ↦ �}∞ . Therefore, it behaves deterministically from a
black-box viewpoint. TSPAs that behave deterministically from a black-box view-
point are unambiguously specified:

Definition 1 A TSPA A is unambiguously specified iff

∀i ∈ IΩ
A
∶ |{� ∈ behs(A) | �|I = i}| = 1.

Fig. 6 Deterministic TSPA D and underspecified and unambiguously specified TSPA D ↾ {o} resulting
from hiding the input channel i in D

131

1 3

Automated Software Engineering (2020) 27:119–151

The notion unambiguously specified for TSPAs and infinite behaviors is related
to the notion single-valued for finite transductions of transducers (Weber and
Klemm 1995; Weber 1998; Béal and Carton 2002). According to Weber and
Klemm (1995), Weber (1998), and Béal and Carton (2002), a transducer is sin-
gle-valued if it maps each input sequence to at most one output sequence. In con-
trast, we require that each input is mapped to exactly one output. Further, in each
computation step, a transducer may map a single input symbol to a sequence of
output symbols, whereas a TSPA maps one input channel valuation to exactly one
output channel valuation.

Our approach aims at decomposing deterministic TSPAs. It is easy to see that
every deterministic TSPA is also unambiguously specified but that the opposite
does not necessarily hold. However, for every unambiguously specified TSPA, it
is possible to construct an equivalent deterministic TSPA, i.e., the unambiguously
specified and the deterministic TSPAs have the same behaviors.

Theorem 1 For every unambiguously specified TSPA A, there exists a deterministic
TSPA D with behs(A) = behs(D).

Proof (Sketch) A TSPA is interpretable as a special transducer over infinite words
where all states are final. Sufficient and necessary conditions enabling the determini-
zation of transducers over infinite words where all states are final are studied in Béal
and Carton (2000, 2002).

Specifically, a TSPA is interpretable as a transducer over infinite words where

• Each transition transduces exactly one input symbol to exactly one output
symbol,

• There is exactly one initial state,
• All states are final, and
• The transducer has no cyclic path with an empty output.

Fig. 7 Underspecified TSPA that behaves deterministically from a black-box viewpoint

132 Automated Software Engineering (2020) 27:119–151

1 3

It has been shown that a transducer over infinite words where all states are final,
the transducer has no constant states, and the transducer has no cyclic path with
an empty output can be determinized, if the transducer obtained after removing
all constant states (Béal and Carton 2000, 2002) satisfies the twinning prop-
erty (Béal and Carton 2000, 2002). When transferring these notions to TSPAs,
the TSPA A obtained from removing the constant states from an unambiguously
specified TSPA is a TSPA that satisfies ∀i ∈ IΩ

A
∶ |{� ∈ behs(A) | �|IA = i}| ≤ 1 .

If this TSPA did not have the twinning property, then there would exist an input
i ∈ IΩ

A
 such that |{� ∈ behs(A) | �|IA = i}| ≥ 2 . Furthermore, Béal and Carton

(2000, 2002) present a construction that can be used for transforming an unam-
biguously specified TSPA to an equivalent deterministic TSPA. The construction
is a subset construction on the TSPA obtained from removing all unreachable
states. ◻

Thus, every unambiguously specified TSPA can be transformed to a TSPA in
which the output in any time unit only depends on the current input and state.

The following introduces general properties of unambiguously specified
TSPAs that are later used for proving the correctness of the decomposition
method. Two unambiguously specified TSPAs are equivalent if, and only if, one
of the automata is a refinement of the other automaton:

Theorem 2 Let A and B be unambiguously specified TSPAs with IA = IB and
OA = OB . Then, behs(A) ⊆ behs(B) if, and only if, behs(A) = behs(B).

Proof Let A and B be given as above.
“⇒ ”: Assume behs(A) ⊆ behs(B) . Let I = IA and O = OA . Suppose towards a con-

tradiction behs(B) ⊈ behs(A) . Then, there exists a behavior b ∈ behs(B) such that
b ∉ behs(A) . As A is unambiguously specified, IA = IB and OA = OB , there exists a
behavior b� ∈ behs(A) with b�|I = b|I . As b ∉ behs(A) and b�|I = b|I , we have that
b′|O ≠ b|O . As behs(A) ⊆ behs(B) , it holds that b� ∈ behs(B) . This contradicts that
B is unambiguously specified, because b, b� ∈ behs(B) , b|I = b�|I and b|O ≠ b′|O
implies for i = b|I that |{� ∈ behs(B) | �|I = i}| ≥ 2.

“⇐ ”: behs(A) = behs(B) implies behs(A) ⊆ behs(B) . ◻

TSPAs do not influence the behaviors of each other when executed in parallel,
i.e., when neither of the TSPAs has an output channel that is an input channel of
the respective other TSPA. Thus, the parallel composition of two unambiguously
specified TSPAs is again an unambiguously specified TSPA:

Theorem 3 Let A and B be two compatible unambiguously specified TSPAs such
that OA ∩ IB = OB ∩ IA = �. Then, A⊗ B is an unambiguously specified TSPA.

Proof Let A and B be given as above and let K = A⊗ B . We need to show that
|{� ∈ behs(K) | �|IK = i}| = 1 for all i ∈ IΩ

K
.

(1) We first show that |{𝛼 ∈ behs(K) | 𝛼|IK = i}| > 0 for all i ∈ IΩ
K

 : Let i ∈ IΩ
K

 .
As A and B are unambiguously specified, there exist behaviors b ∈ behs(A) and

133

1 3

Automated Software Engineering (2020) 27:119–151

b� ∈ behs(B) such that b|IA = i|IA and b�|IB = i|IB . Let � = s0, �0, s1, �1 … be an
execution of A such that beh(�) = b and let � = s�

0
, �0, s

�
1
, �1 … be an execution

of B such that beh(�) = b� . As � and � are executions, we have that s0 = �A and
s�
0
= �B and (st, �t, st+1) ∈ �A and (s�

t
, �t, s

�
t+1

) ∈ �B for all t ∈ ℕ . As b|IA = i|IA and
b�|IB = i|IB , we have that i|IA∩IB = b|IA∩IB = b�|IA∩IB . Hence, for all t ∈ ℕ , we have
that �t|IA∩IB = �t|IA∩IB . For all t ∈ ℕ , we define �t ∈ C→

K
 as follows: �t(c) = �t(c) ,

if c ∈ CA , and �t(c) = �t(c) , if c ∈ CB⧵CA . Then, by definition �t|CA
= �t . Further,

�t|CB
= �t because �t|IA∩IB = �t|IA∩IB and by definition �t|CB⧵CA

= �t|CB⧵CA
 . Thus, by

definition of TSPA composition, we have that ((st, s�t),�t, (st+1, s
�
t+1

)) ∈ �K for all
t ∈ ℕ . This implies with s0 = �A and s�

0
= �B that e = (s0, s

�
0
),�0, (s1, s

�
1
),�1 … is an

execution of K with beh(e)|IK = i.
(2) We now show that |{𝛼 ∈ behs(K) | 𝛼|IK = i}| < 2 for all i ∈ IΩ

K
:

Suppose towards a contradiction there exist i ∈ IΩ
K

 and �, � ∈ behs(K) such
that �|IK = �|IK = i and � ≠ � . Thus, �|OK

≠ �|OK
 . As �, � are behaviors of

K, there exist executions � and � of K such that � = beh(�) and � = beh(�) .
Let � = (sA

0
, sB

0
), �0, (s

A
1
, sB

1
), �1 … be an execution of K such that beh(�) = � .

Further, let � = (s�A
0
, s�B

0
), �0, (s

�A
1
, s�B

1
), �1 … be an execution of K such that

beh(�) = � . Using the definitions of execution and composition, we obtain that
�A = sA

0
, �0|CA

, sA
1
, �1|CA

… and �A = s�A
0
, �0|CA

, s�A
1
, �1|CA

… are execution of A. Simi-
larly, we have that �B = sB

0
, �0|CB

, sB
1
, �1|CB

… and �B = s�B
0
, �0|CB

, s�B
1
, �1|CB

… are
executions of B. As OK = OA ∪ OB and �|OK

≠ �|OK
 , it holds that beh(�A) ≠ beh(�A)

or beh(�B) ≠ beh(�B) . Without loss of generality, assume beh(�A) ≠ beh(�A) . Then,
�|IK = �|IK implies beh(�A)|IA = beh(�A)|IA since IA ∩ OB = � and thus IA ⊆ IK by def-
inition of composition. This contradicts that A is unambiguously specified because
beh(�A), beh(�A) ∈ behs(A) and beh(�A)|IA = beh(�A)|IA and beh(�A) ≠ beh(�A) . ◻

The TSPA obtained from hiding an unambiguously specified TSPA’s output channel
is again an unambiguously specified TSPA. Hiding an input channel does usually not
preserve the unambiguously specified property.

Theorem 4 Let A be an unambiguously specified TSPA and let o ∈ OA be an output
channel of A. Then, A ↾ (CA⧵{o}) is unambiguously specified.

Proof Let A and o be given as above. Let B = A ↾ (CA⧵{o}) . Suppose B is not
unambiguously specified. Then there exist executions � = s0, �0, s1, �1 … and
� = s�

0
, �0, s

�
1
, �1 … of B such that beh(�)|IB = beh(�)|IB and beh(�) ≠ beh(�) .

By definition of TSPA restriction, this implies there exist executions
�� = s0, �

�
0
, s1, �

�
1
… and �� = s�

0
, ��

0
, s�

1
, ��

1
… of A such that �i = ��

i
|B and �i = ��

i
|B

for all i ∈ ℕ . This contradicts that A is unambiguously specified because
beh(��)|IA = beh(�)|IB = beh(�)|IB = beh(��)|IA and beh(��) ≠ beh(��) since
beh(��)|CB

= beh(�) ≠ beh(�) = beh(��)|CB
 . ◻

134 Automated Software Engineering (2020) 27:119–151

1 3

4.2 An influence relation between channels of components

A component’s input channel influences an output channel if the messages sent via
the latter depend on the messages received via the former.

Definition 2 (Channel Influence Relation) Let A = (I,O, S, �, �) be an unambigu-
ously specified TSPA, let i ∈ I be an input channel of A, and let o ∈ O be an output
channel of A. The channel i influences the channel o in A (denoted i ⇝A o) iff

The above definition requires that there exist two behaviors �, � with the same
messages on all input channels except i such that the behaviors are different on
the output channel o. As the inputs are equal on all channels except i, the values
received on i are responsible for the differences regarding the possible outputs on o.

The other way around, the channel i does not influence the channel o in A iff
for any two possible inputs that are equal on all channels except i, the automaton
A always produces the same outputs on o when processing the inputs. More for-
mally, negating the definition we obtain: a channel i does not influence a channel
o in A (denoted i ⇝A o) iff ∀�, � ∈ behs(A) ∶ �|I⧵{i} = �|I⧵{i} ⇒ �|{o} = �|{o} . Hid-
ing an input channel does not always preserve the unambiguously specified property
(cf. Sect. 4.1). However, if an input channel i does not influence an output channel o
in an unambiguously specified TSPA A, then hiding the input channel i and all out-
put channels except o results again in an unambiguously specified TSPA:

Theorem 5 Let A be an unambiguously specified TSPA, let i ∈ IA be an input chan-
nel of A, and let o ∈ OA be an output channel of A. If i ̸⇝A o , then A ↾ ({o} ∪ I⧵{i})
is unambiguously specified.

Proof Let A, i, and o be given as above. Let B = A ↾ ({o} ∪ I⧵{i}) . We need to show
that |{� ∈ behs(B) | �|IB = h}| = 1 for all h ∈ IΩ

B
.

(1) We first show that |{𝛼 ∈ behs(B) | 𝛼|IB = h}| > 0 for all h ∈ IΩ
B

 : Let h ∈ IΩ
B

 .
As A is unambiguously specified and IB ⊆ IA , there exists a behavior b ∈ behs(A)
such that b|IB = h . Let � = s0, �0, s1, �1 … be an execution of A such that beh(�) = b .
Then, by definition of execution s0 = �A and (sj, �j, sj+1) ∈ �A for all j ∈ ℕ . By defini-
tion of restriction, we have that s0 = �A = �B and (sj, �j|CB

, sj+1) ∈ �B for all j ∈ ℕ .
Hence, � = s0, �0|CB

, s1, �1|CB
… is an execution of B with �|IB = h.

(2) We now show that |{𝛼 ∈ behs(B) | 𝛼|IB = h}| < 2 for all h ∈ IΩ
B

 : Suppose
towards a contradiction there exist h ∈ IΩ and �, � ∈ behs(B) such that �|IB = �|IB
and � ≠ � . Thus, �|OB

≠ �|OB
 . Let � = s0, �0, s1, �1 … and � = s�

0
, �0, s

�
1
, �1 … be exe-

cutions of B such that beh(�) = � and beh(�) = � . As � and � are executions of B,
we have s0 = s�

0
= �B and (sj, �j, sj+1), (s�j , �j, s

�
j+1

) ∈ �B for all j ∈ ℕ . By definition of
TSPA restriction, this implies s0 = s�

0
= �B = �A and for all j ∈ ℕ , there exist

�j, �j ∈ C→

A
 such that (sj, �j, sj+1) ∈ �A and �j|CB

= �j and (s�
j
, �j, s

�
j+1

) ∈ �A and
�j|CB

= �j . Hence, �� = s0, �0, s1, �1 … and �� = s�
0
, �0, s

�
1
, �1 … are executions of A.

This contradicts that i ̸⇝A o because

∃�, � ∈ behs(A) ∶ �|I⧵{i} = �|I⧵{i} ∧ �|{o} ≠ �|{o}.

135

1 3

Automated Software Engineering (2020) 27:119–151

beh(��)|I⧵{i} = beh(��)|IB = beh(�)|IB = �|IB = �|IB = beh(��)|I⧵{i} and
beh(��)|{o} = �|{o} ≠ �|{o} = beh(��)|{o} . ◻

If there exists a pair of an input and an output channel of an unambiguously spec-
ified component such that the input channel does not influence the output channel, it
is possible to split the component into a semantically equivalent architecture of two
components. This architecture models a new component that is functionally better
separated as the original component. This does not only improve the architecture’s
design but also increases understandability of the architecture and enables independ-
ent functional testing. Further, dividing the component also facilitates compositional
architecture verification: A property might be independent of the behaviors of one of
a composed component’s subcomponents. Thus, verifying the property is possible
without considering the subcomponent not influencing the property’s satisfaction.

Section 4.3 shows that the channel influence relation of every finite unambigu-
ously specified TSPA is decidable. Subsequently, Sect. 4.4 introduces the automated
decomposition procedure based on the channel influence relation.

4.3 Deciding influence in unambiguously specified TSPAs

This section shows that it is decidable whether one channel influences another chan-
nel in an unambiguously specified finite TSPA. The decision relies on the construc-
tion of finite Büchi automata (BA) accepting infinite words (Büchi 1962; Farwer
2002; Safra 1988). BAs are well-known and studied in the automata theory domain.
The next section fixes our notation for BAs and recaps decidability properties of
BAs used in this paper before Sect. 4.3.1 presents the decision procedure.

A Büchi automaton (BA) is a tuple (Σ,Q, I,F, �) where

• Σ is a finite alphabet,
• Q is a finite set of states,
• I ⊆ Q is a set of initial states,
• F ⊆ Q is a set of accepting states, and
• 𝛿 ⊆ Q × Σ × Q is the transition relation.

Let A = (Σ,Q, I,F, �) be a BA. A run of A on a word w = �1, �2 ⋯ ∈ Σ∞ start-
ing in a state q0 ∈ Q is an infinite sequence q0, q1 … such that (qj−1, �j, qj) ∈ �
for all j ∈ ℕ with j > 0 . The run q0, q1 … is accepting if q0 ∈ I and
qi ∈ F for infinitely many i ∈ ℕ . The accepted language of A is defined as
L(A) = {w ∈ Π∞ | there exists an accepting run of A on w} . The emptiness
problem, asking whether L(A) = � for a BA A is decidable (Büchi 1962; Farwer
2002). The language of BAs is further closed under intersection (Büchi 1962):
For all BAs A and B , there exist an algorithm for constructing a BA C such that
L(C) = L(A) ∩ L(B) . The languages accepted by BAs are closed under complement:
For every BA A = (Σ,Q, I,F, �) , there is an algorithm for computing a BA B such
that L(B) = Σ∞⧵L(A) (Safra 1988). We denote the BA accepting the complement of
the language accepted by a BA A with A.

136 Automated Software Engineering (2020) 27:119–151

1 3

4.3.1 Deciding influence

In the remainder of this section, let A be a finite unambiguously specified TSPA, let
i ∈ IA be an input channel of A and let o ∈ OA be an output channel of A. The pro-
cedure for checking whether i influences o in A relies on constructing three Büchi
automata A , I , and O.

• The automaton A encodes all tuples of behaviors of A.
• The automaton I models the set of all tuples of behaviors in CΩ

A
 that are equal on

all input channels in IA⧵{i}.
• The automaton O encodes the set of all tuples of behaviors in CΩ

A
 that are equal

on the output channel o.

Thus, the automaton accepting L(A) ∩ L(I) ∩ L(O) accepts all tuples of behaviors
of A that are equal on the input channels in IA⧵{i} and not equal on the output chan-
nel o. We show that L(A) ∩ L(I) ∩ L(O) = � if, and only if, i does not influence o
in A.

The Büchi automaton A that encodes all tuples of behaviors of A is constructed
as follows:

A = (C→

A
× C→

A
, SA × SA, {(�A, �A)}, SA × SA, �), where

� = {((s, u), (a, b), (t, v)) |(s, a, t), (u, b, v) ∈ �A}
As A is finite, C→

A
 and SA are finite. Hence, C→

A
× C→

A
 and SA × SA are finite. This

implies that � is finite. Therefore, A is a well-defined BA.

Theorem 6 For all �, � ∈ CΩ
A

 , it holds that

Proof Let �, � ∈ CΩ
A

.
“⇒ ”: Assume it holds that �, � ∈ behs(A) . Then, there exist two executions

� = s0, �0, s1, �1 ⋯ ∈ execs(A) and � = s�
0
, �0, s

�
1
, �1 ⋯ ∈ execs(A) such that

beh(�) = � and beh(�) = � . By definition of execution we have that s0 = s�
0
= �A

and (st, �t, st+1), (s�t , �t, s
�
t+1

) ∈ �A for all t ∈ ℕ . By definition of the transition rela-
tion � of the BA A , this implies ((st, s�t), (�t, �t), (st+1, s

�
t+1

)) ∈ � for all t ∈ ℕ . Hence,
(s0, s

�
0
), (s1, s

�
1
)… is a run of A on the word (�0, �0), (�1, �1)… . As all states in A

are accepting, all states on the run are accepting. As further (s0, s�0) = (�A, �A) , we
have that the run is accepting. Thus, it holds that (�0, �0), (�1, �1)… is a word
accepted by A . Observing that �t = �.t and �t = �.t for all t ∈ ℕ , we can conclude
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A).

“⇐ ”: Assume (�.0, �.0), (�.1, �.1)⋯ ∈ L(A) . This implies there exists an accept-
ing run � = (s0, s

�
0
), (s1, s

�
1
)… on the word (�.0, �.0), (�.1, �.1)… in A . Thus, we

have (s0, s�0) = (�A, �A) and ((st, s�t), (�.t, �.t), (st+1, s
�
t+1

)) ∈ � for all t ∈ ℕ where � is
the transition relation of A . Using the definition of the transition relation � of A ,
the above implies (st, �.t, st+1), (s�t , �.t, s

�
t+1

) ∈ �A for all t ∈ ℕ . Hence, by definition
of execution � = s0, �.0, s1, �.1⋯ ∈ execs(A) and � = s�

0
, �.0, s�

1
, �.1⋯ ∈ execs(A) .

�, � ∈ behs(A) ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(A).

137

1 3

Automated Software Engineering (2020) 27:119–151

From observing that beh(�) = � and beh(�) = � , we can conclude that
�, � ∈ behs(A) . ◻

The constructions of the BAs I and O are analogous to each other. We thus
first present a more general construction before defining I and O . Let B ⊆ CA be
a set of channels of A. The BA E(B) encoding all pairs of behaviors in CΩ

A
 that are

equal on the channels in B is constructed as follows:

As A is finite, C→

A
 is finite. Thus, C→

A
× C→

A
 is finite. Further, E(B) has exactly

one state. Hence, � is finite and E(B) is well-defined.

Theorem 7 Let B ⊆ CA . For all behaviors �, � ∈ CΩ
A

 it holds that
�|B = �|B ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(E(B)).

Proof Let B ⊆ CA and let �, � ∈ CΩ
A

.
“⇒ ”: Assume �|B = �|B . This implies �.t|B = �.t|B for all t ∈ ℕ . Thus, by defini-

tion of the transition relation of E(B) , we have that (⊤, (𝛼.t, 𝛽.t),⊤) ∈ 𝛿 for all t ∈ ℕ
where � is the transition relation of E(B) . Using the definition of accepting run, we
have that ⊤,⊤,⊤… is an accepting run on the word (�.0, �.0), (�.1, �.1)… in E(B) .
Thus, (�.0, �.0), (�.1, �.1), (�.2, �.2)⋯ ∈ L(E(B)).

“⇐ ”: Assume � = (�.0, �.0), (�.1, �.1)⋯ ∈ L(E(B)) . Then, there
exists an accepting run � of E(B) on the word � . As ⊤ is the only state of
E(B) , we have that 𝜎.t = ⊤ for all t ∈ ℕ . As � is a run of E(B) , we have
(𝜎.t, (𝛼.t, 𝛽.t), 𝜎.(t + 1)) = (⊤, (𝛼.t, 𝛽.t),⊤) ∈ 𝛿 for all t ∈ ℕ where � is the transition
relation of E(B) . By definition of the transition relation, this implies �.t|B = �.t|B for
all t ∈ ℕ . This is equivalent to �|B = �|B . ◻

The Büchi automata I and O are defined as I = E(IA⧵{i}) and O = E({o}).

Theorem 8 It holds i ⇝A o iff L(A) ∩ L(I) ∩ L(O) ≠ �.

Proof Using Theorems 6 and 7, we have for all behaviors �, � ∈ CΩ
A

:

�, � ∈ behs(A) ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(A) and
�|IA⧵{i} = �|IA⧵{i} ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(I) and
�|{o} ≠ �|{o} ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(O).

Combining the three equivalences, we obtain for all behaviors �, � ∈ CΩ
A

:

(�, � ∈ behs(A) ∧ �|IA⧵{i} = �|IA⧵{i} ∧ �|{o} ≠ �|{o}) ⇔
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A) ∩ L(I) ∩ L(O).

E(B) = (C→

A
× C→

A
, {⊤}, {⊤}, {⊤}, 𝛿) where 𝛿 = {(⊤, (a1, a2),⊤) | a1|B = a2|B}.

138 Automated Software Engineering (2020) 27:119–151

1 3

“⇒ ”: Assume i ⇝A o . Then, there exist behaviors
�, � ∈ behs(A) ∶ �|I⧵{i} = �|I⧵{i} ∧ �|{o} ≠ �|{o} . Using the above, this implies
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A) ∩ L(I) ∩ L(O) . Thus, L(A) ∩ L(I) ∩ L(O) ≠ �.

“⇐ ”: Assume L(A) ∩ L(I) ∩ L(O) ≠ � . This implies that there exists a word
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A) ∩ L(I) ∩ L(O) . Let �, � be two behaviors defined
by: � = �.0, �.1⋯ ∈ CΩ

A
 and � = �.0, �.1⋯ ∈ CΩ

A
 . Using the above, we obtain

�, � ∈ behs(A) ∧ �|IA⧵{i} = �|IA⧵{i} ∧ �|{o} ≠ �|{o} . This implies i ⇝A o . ◻

For example, Fig. 8 depicts the TSPA B. The TSPA has the two input channels i
and j and the three output channels o, p, and q. Each channel has the type {�, 1} . The
graphical representation of the TSPA uses eight transition labels that are defined
in the table, which is depicted at the bottom of Fig. 8. The top-right part of Fig. 8
sketches the influence relation between the input and output channels of the TSPA
B. For instance, the channel i influences the channel p, but the channel i does not
influence the channel q. From the graphical representation, the channel influence
relation in the TSPA B is not obvious. Using the procedure presented in this section,
the channel influence relation can be computed fully automatically.

The following example demonstrates the construction to show that the input chan-
nel i influences the output channel p in the TSPA B. In the following, we construct
the three BAs A, I, and O for determining whether the input channel i influences the
output channel p. From these BAs, we construct the BA A × I × O that recognizes

Fig. 8 TSPA where one output channel is not influenced by any input channel, one output channel is
influenced by one input channel, and one output channel is influenced by two input channels

139

1 3

Automated Software Engineering (2020) 27:119–151

the language L(A) ∩ L(I) ∩ L(O) . Using Theorem 8, the language recognized by
A × I × O is not empty iff the channel i influences the channel p in the TSPA B. The
BA A modeling all tuples of behaviors of the TSPA B is graphically illustrated in
the top of Fig. 9. This BA uses the same transition labels as the TSPA B, which are
defined in Fig. 8. The BAs I and O are depicted in the middle of Fig. 9. The BA I
models the set of all tuples of behaviors in C(B)Ω that are equal on all input channels
in IB⧵{i} = {j} . The BA O represents the set of all behaviors in C(B)Ω that are not
equal on the output channel p. The bottom left of Fig. 9 depicts the reachable part
of the BA A × I that accepts the intersection of the languages accepted by the BAs

Fig. 9 The BA A models all tuples of behaviors of the TSPA B, which is depicted in Fig. 8. The BA I
models the set of all tuples of behaviors in C(B)Ω that are equal on the input channels in IB⧵{i} . The
BA O models the set of all tuples of behaviors in C(B) that are not equal on the output channel p. The
reachable part of the BA A × I models all tuples of behaviors of A that are equal on all input channels in
IB⧵{i} = {j} . The reachable part of the BA A × I × O models all tuples of behaviors of A that are equal
on the input channel j and not equal on the output channel p

140 Automated Software Engineering (2020) 27:119–151

1 3

A and I. Thus, the BA A × I models the set of all tuples of behaviors of A that are
equal on the input channel j. The bottom right of Fig. 9 depicts the reachable part of
the BA A × I × O . This BA models all tuples of behaviors of A that are equal on the
input channel j and not equal on the output channel p. As the language accepted by
this BA is not empty, the channel i influences the channel p. For example, a word
accepted by this BA is given by w = (v2, v4) ⋅ ((v5, v5), (v2, v2))

∞ . The word w rep-
resents the behaviors � = v2 ⋅ (v5, v2)

∞ and � = v4 ⋅ (v5, v2)
∞ where �|IB⧵{i} = �|IB⧵{i}

and �|p ≠ �|p . Thus, the word w encodes a concrete proof in the form of two behav-
iors proving that the channel i influences the channel p.

The following example demonstrates the construction to show that the input
channel i does not influence the output channel q in the TSPA B. To this effect, we
first construct the BA O′ . This BA models all behaviors in C(B)Ω that are not equal
on the output channel q. Afterwards, we construct the BA A × I × O� , which models
all behaviors of A that are equal on all channels in IB⧵{i} = {j} and not equal on
the output channel q. The reachable part of the BA O′ is depicted in the left part of
Fig. 10. The right part of Fig. 10 depicts the reachable part of the BA A × I × O� .
The language of this BA is empty. Thus, with Theorem 8, the input channel i does
not influence the output channel q in the TSPA B: For every input, the output on the
channel q does not depend on the input on channel i.

4.4 Decomposing components along influencers

Composing the TSPAs obtained from decomposing a TSPA into two compatible
TSPAs in parallel, such that the composition contains exactly the channels of the
original, always results in a TSPA that generalizes the behavior of the original.
This holds because hiding an input channel from a TSPA removes information that
restricts the TSPA’s behaviors:

Theorem 9 Let A be a TSPA and let D,E ⊆ CA such that D ∩ E ∩ OA = � and
D ∪ E = CA . Then, behs(A) ⊆ behs(A ↾ D⊗ A ↾ E).

Proof Let A, D, and E be given as above. Let X = A ↾ D and let Y = A ↾ E .
X and Y are compatible because D ∩ E ∩ OA = � implies OX ∩ OY = � . Let
� = s0, �0, s1, �1,… be an execution of A. By definition of execution it holds that
s0 = �A and (si, �i, si+1) ∈ �A for all i ∈ ℕ . Hence, using the definition of restric-
tion we have that (si, �i|CX

, si+1) ∈ �X and (si, �i|CY
, si+1) ∈ �Y for all i ∈ ℕ . Thus,

Fig. 10 The BA O′ and the reachable part of the BA A × I × O� that models all tuples of behaviors of A
that are equal on the input channel j and not equal on the output channel q

141

1 3

Automated Software Engineering (2020) 27:119–151

as by assumption CX ∪ CY = CA , by definition of TSPA composition, this implies
((si, si), 𝜃i, (si+1, si+1)) ∈ 𝛿X⊗Y . Observing that (s0, s0) = (�A, �A) is the initial state
of X ⊗ Y , we can conclude that � = (s0, s0), �0, (s1, s1), �1,… is an execution of
X ⊗ Y . Thus, beh(𝜅) = beh(𝜎) ∈ behs(X ⊗ Y) . To conclude: for each execution
of A, there exists an execution of X ⊗ Y such that the executions have the same
behaviors. This implies that each behavior of A is also a behavior of X ⊗ Y . Thus,
behs(A) ⊆ behs(X ⊗ Y) . ◻.

As hiding may remove information that restrict a TSPA’s behaviors, the other
direction does not necessarily hold. Thus, the composition of two TSPAs resulting
from a decomposition may have behaviors that are not present in the original TSPA.
However, if the decomposition is performed along channels that do not influence
each other, then the composition of two TSPAs resulting from the decomposition
has exactly the same behaviors as the original:

Theorem 10 Let A be an unambiguously specified TSPA, let i ∈ IA , and let o ∈ OA .
If i ̸⇝A o , then behs(A ↾ ({o} ∪ IA⧵{i})⊗ A ↾ (CA⧵{o}) = behs(A).

Proof Let A, i and o be given as above. Let D = A ↾ ({o} ∪ IA⧵{i}) and let
E = A ↾ (CA⧵{o}) . As A is unambiguously specified, Theorem 4 guaran-
tees that E is unambiguously specified. As i ̸⇝A o , Theorem 5 guarantees that
D is unambiguously specified. As D and E are unambiguously specified and
OD ∩ IE = {o} ∩ IA = � = (OA⧵{o}) ∩ (IA⧵{i}) = OE ∩ ID , using Theorem 3, we
have that D⊗ E is unambiguously specified. By definition of D and E, we have
OD ∩ OE = {o} ∩ (OA⧵{o}) = � and CD ∪ CE = ({o} ∪ IA⧵{i}) ∪ (CA⧵{o}) = CA .
Hence, with Theorem 9, we have behs(A) ⊆ behs(D⊗ E) . Therefore, as A and D⊗ E
are unambiguously specified and OA = {o} ∪ (OA⧵{o}) = OD ∪ OE = OD⊗E and
behs(A) ⊆ behs(D⊗ E) , using Theorem 2 we can conclude behs(A) = behs(D⊗ E) .
 ◻

This enables decomposing components based on channel pairs that do not influ-
ence each other. Algorithm 1 is a procedure for iteratively determining a maximal
decomposition with respect to the influence relation between channels in a TSPA.
The basic operations are TSPA restriction and checking whether there exist channels
that influence each other in a TSPA. A procedure for determining whether an input
channel influences an output channel is detailed in the previous Sect. 4.3.

142 Automated Software Engineering (2020) 27:119–151

1 3

For example, decomposing the TSPA B of Fig. 8 with Algorithm 1 yields the
decomposition represented by the set {B ↾ {j},B ↾ {o},B ↾ {j, q},B ↾ {i, j, p}}.

5 Elevator control system example revisited

Section 2 presented the software component for an elevator control system (ECS)
as inspired by Butting et al. (2017b), Strobl et al. (1999) and Ringert et al. (2016).
At some point, the engineers developed a monolithic ECS component as depicted
in Fig. 1. The ECS component is a finite state system (Butting et al. 2017b; Strobl
et al. 1999; Ringert et al. 2016) that can be transformed to a finite TSPA (Butting
et al. 2017b). The component’s implementation has already been shipped but is still
available. Due to changed requirements for the elevator’s successor version, the
team needs to adjust the component’s behavior concerning the control of the floor
lights in response to the elevator’s cabin position. The floor lights are controlled
with messages sent via the channels li1, li2, and li3. The elevator’s position
is indicated by messages received via the channels at1, at2, and at3. Changing
the implementation is error-prone as the architecture is monolithic, i.e., changing
the implementation may change the component’s behavior on channels that are not
impacted by the changed requirement. For instance, as the component is not ade-
quately decomposed, changing the component’s implementation may result in a
change of its behavior on the channels up and down for steering the elevator cabin,
although the behavior on these channels does not need to be adjusted to satisfy the
changed requirement. The engineering team is also uncertain which input channels
influence which output channels, i.e., whether there are hidden influence dependen-
cies between channels. The team thus uses our method for the automated decompo-
sition of components.

Figure 11 depicts three ECS architectures that are obtained as intermediate results
during the decomposition of the initial ECS implementation. The initial implemen-
tation is illustrated in the top-left of Fig. 11.

The decomposition procedure initially detects that the input channel btn2 does
not influence the output channel li1 (cf. Algorithm 1, l. 2). An automatic procedure
for checking whether an input channel influences an output channel is detailedly

143

1 3

Automated Software Engineering (2020) 27:119–151

described in Sect. 4.3.1. The algorithm splits the ECS implementation into the two
components Li1Ctrl and Rest (called D and E in Algorithm 1, ll. 4–5). The
resulting architecture is depicted in the top-right of Fig. 11. The component Li1C-
trl has the single output channel li1 and the five input channels btn1, btn3,
at1, at2, at3. As the input channel btn2 does not influence the output channel
li1 in the component ECS, the channel btn2 is no input channel of the component
Li1Ctrl. At this stage during the decomposition procedure, it is not clear whether
other input channels do not influence the output channel li1, either. Similarly, at
this stage, it has not been detected which channels do not influence the other output
channels. Therefore, all input channels of the initial ECS component are also input
channels of the component Rest and all output channels of the initial ECS compo-
nent except the channel li1 are the output channels of Rest.

In the next three iterations of the decomposition, Algorithm 1 detects that the
channels at2 , at3, and btn3 do not influence the channel li1 in Li1Ctrl,
either. Therefore, Algorithm 1 decomposes the component Li1Ctrl accord-
ingly: The input channels at2, at3, and btn3 are removed from the component

Fig. 11 Representation of different intermediate architectures obtained during the automatic decomposi-
tion. Top-left describes the initial behavior representation as presented in Fig. 1. The architectures repre-
sented clockwise describe intermediate results after various iterations

144 Automated Software Engineering (2020) 27:119–151

1 3

Li1Ctrl. As byproducts from the decomposition, the algorithm produces compo-
nents without output channels. As these components do not sent messages to their
environments, they can be safely removed without changing the semantics of the
architecture and are not depicted above. The resulting architecture after the decom-
position and the removal of the components is depicted in the bottom-right of
Fig. 11.

Similarly, in the next four iterations of the decomposition procedure, the algo-
rithm detects that the input channels btn1, btn3, at1, and at3 do not influence
the channel li2 in Rest and decomposes the component Rest accordingly. The
resulting architecture after removing the components without output channels is
depicted in the bottom-left of Fig. 11.

Analogously, the input channels btn1, btn2, at1, and at2 do not influence
the channel li3 in Rest. Therefore, the algorithm decomposes the component
Rest accordingly. The resulting architecture after removing all components with-
out output channels is depicted Fig. 12. In this architecture, every input channel of
every component influences every output channel of the component. Therefore, the
decomposition procedure terminates.

By the decomposition procedure’s properties, the decomposed component
(cf. Fig. 12) is semantically equivalent to the original and clearly better separated
regarding the influence relation between channels. From reviewing the new architec-
ture, the engineers now understand that messages emitted via a channel for control-
ling a floor light only depend on the corresponding elevator cabin position sensor
and whether the corresponding request button has been pressed. The implemen-
tation of a light controller can now be changed without the threat of accidentally
changing the behavior on other channels. They also understand that all input chan-
nels influence the channels open, close, up, and down. Thus, the messages the
component sends via these channels depend on the messages received via all input

Fig. 12 Semantically equivalent decomposed variant of the ECS

145

1 3

Automated Software Engineering (2020) 27:119–151

channels. The behavior of the floor lights controlling components and the cabin con-
trolling component can now be unit tested and formally verified individually. As the
decomposition is a refactoring, the satisfactions of preexisting symbolic system tests
and formally specified requirements for the ECS component are preserved.

6 Discussion

Currently, our approach applies only to unambiguously specified and deterministic
component implementations. This prevents automated decomposition of component
specifications, which usually are underspecified (e.g., by non-determinism). Also,
our influence-based decomposition is limited to time-synchronous systems. While
these are ubiquitous in embedded and cyber-physical systems, other domains, such
as cloud computing, usually rely on event-based message passing. Although Focus
supports both, non-deterministic specification and untimed communication, apply-
ing the notion of channel influencing requires additional research. We consider this
as interesting future work.

As our notion of influencing channels establishes relations from input channels to
output channels, the resulting decomposition always is parallel, i.e., produces sub-
components connecting a subset of the input channels to a subset of the output chan-
nels. Prescribing intermediate channels for more detailed decomposition might be
additionally helpful. This also is subject to future research.

The algorithm for the decomposition of components as presented in Sect. 4
always computes a maximal decomposition: It decomposes the input component
(respectively the intermediate decomposition results) as long as there exists at least
one input/output channel pair where the input channel does not influence the out-
put channel. A user might consider an input channel to be associated with an out-
put channel, although the input channel does not influence the output channel. This
might be the case, for instance, because the channels are functionally related. In the
ECS example (cf. Fig. 12), for instance, a user might consider each button-channel
(btn1, btn2, btn3) to be associated with each light-channel (li1, li2, li3).
This might be the case, because the channels are functionally related in the sense

146 Automated Software Engineering (2020) 27:119–151

1 3

that they are all used for steering different floor lights. In such cases, the user might
be not interested in a maximal decomposition of the system. Instead, she might be
interested in a decomposition procedure that does definitely not decompose prede-
fined pairs of input and output channels, disregarding whether the input channel of
a pair influences the output channel of the pair. Algorithm 2 is an adjusted version
of Algorithm 1 for accomplishing this task. The algorithm additionally takes a set
I (for inseparable) of pairs of input and output channels of the TSPA as input. The
algorithm separates an input channel from an output channel iff the input channel
does not influence the output channel and the input/output channel pair is no ele-
ment of the set I containing the pairs of inseparable channels. Thus, the adjusted
algorithm computes a maximal decomposition while respecting pairs of channels
that should not be separated from each other.

Focus operates on component instances, i.e., the information about component
types is implicit only. Consequently, our approach produces component instances
also. If these, as illustrated by components Li1Ctrl, Li2Ctrl, and Li3Ctrl of
Fig. 12, are equivalent, we could deduce type information and synthesize new com-
ponent types for patterns identified through decomposition accordingly. This might
facilitate component reuse. In this case, the decomposition would derive a new com-
ponent type LightCtrl and instantiate it three times accordingly.

This paper presents the theoretical foundations of automated decomposition
along pairs of channels that influence each other. The automated decomposition
rests on the assumption that the systems largely comprise components that are free
of side effects, i.e., “pure”, Focus components. Where components yield side effects,
checking whether system functions or capabilities have changed demands additional
measures, such as sufficient test coverage or manual analysis. Another challenge in
using our method for automated decomposition is its scaling-up. For instance, the
ECS sketched in Fig. 1 and based on Butting et al. (2019) will be translated into a
TSPA with a large number of transitions, which might be too large for human com-
prehension and reproduction in this paper. However, usually, the models that engi-
neers start with are specified manually and, from our experience, thus, small and
comprehensible.

Our approach for automated decomposition is limited to Focus-compatible archi-
tectures, which belong to a group of more formal modeling techniques that might
not yet be state-of-practice. For modelers operating within less well-defined or
incompatible technological spaces, we consider our contribution towards the auto-
mated evolution of software architecture models a relevant case in point for at least
investigating the benefits of more formal modeling techniques in practice. Whether
the results from the decomposition are useful for engineers needs further evaluation
including real systems and engineers. We consider this interesting future work.

7 Related work

While agile architecting has been under investigation lately, e.g., driven by change
impact analysis (Díaz et al. 2013), cost-and-risk analysis (Poort 2014), or for spe-
cific domains (Díaz et al. 2014), there are only a few approaches towards agile

147

1 3

Automated Software Engineering (2020) 27:119–151

architecting with semantically well-defined ADLs and these usually rest on Focus or
the �-calculus (Milner 1999).

7.1 Automata decomposition

The decomposition of automata has been subject to research for several decades. For
instance, our contribution also relates to parallel decomposition of automata (Gerace
and Gestri 1967). While it also aims at a practical decomposition (Nozaki 1978), i.e.,
the resulting components yield fewer states than the component they were decom-
posed from, in contrast to more current related work (Uygur and Sattler 2013), it
operates specifically on time-synchronous port automata. Similarly, while port
automata generally can be decomposed into compositions consisting of FIFOs and
XORs only (Koehler and Clarke 2009), this resulting granularity does not produce
automata accessible for constructive systems engineering. Related decomposition
approaches also exist for probabilistic automata (Carlsson and Yu 2015) or linear
automata (Plotkin and Plotkin 2015), none of which consider automated decomposi-
tion in the presence of influencing channels.

There also are related approaches in the parallel decomposition of pro-
cesses (Jongmans et al. 2016). Here, the decomposition leverages the underlying
Reo (Razavi and Sirjani 2006) process algebraic semantics (Kokash et al. 2010).
With Reo, communication is untimed in the Focus (Broy and Stølen 2001; Broy
2010) sense and the decomposition follows process actions instead of shared chan-
nels. How the parallel decomposition of Reo processes can be translated to untimed
Focus systems is subject to ongoing research.

7.2 Agile architecting

Industry and research have produced over 120 ADLs (Malavolta et al. 2013). Most
of these feature the composition of components into larger architectures and some of
these also feature the denotational semantics necessary to support agile architecting
through automated decomposition. This section discusses related ADLs and their
support for automated decomposition.

AutoFocus 3 (Hölzl and Feilkas 2010) and MontiArc (Butting et al. 2017a) are
ADLs featuring tool chains for developing architectures of reactive software sys-
tems that are grounded in Focus (Broy and Stølen 2001). This paper’s system model
describes the formal foundations of both ADLs. AutoFocus 3 supports model check-
ing the behavior of architectures against LTL and CTL properties (Campetelli et al.
2011). MontiArc supports semantic differencing of components (Butting et al.
2017b). However, both currently lack fully automated component decomposition
methods. Hence, even if employed in agile processes, the challenge of manually
decomposing monolithic architectures remains. Our approach can directly be inte-
grated into the tool chains of both ADLs.

The �-ADL supports model checking for verifying software architectures against
DynBLTL properties (Cavalcante et al. 2016). Therefore, a statistical model of finite
system executions is created and the probability of satisfying a property within

148 Automated Software Engineering (2020) 27:119–151

1 3

confidential bounds is calculated. However, we are unaware of any agile architect-
ing methods based on the �-calculus. As our approach is based on Focus and not on
the �-calculus, it cannot be directly integrated into the tool chains of ADLs that are
based on the �-calculus. Developing an influence relation and a decomposition pro-
cedure for systems based on the �-calculus is interesting future work.

7.3 Applicability to other automata models

Other automata models, such as I/O automata (Lynch and Tuttle 1989), Interface
automata (de Alfaro and Henzinger 2005), team automata (ter Beek et al. 2003),
and component-interaction automata (Brim et al. 2006), do not include the notion of
channel. Instead, they distinguish between input, internal, and output actions. Com-
position operators compose different automata according to their actions. As these
automata models do not explicitly incorporate the notion of channel, it is not pos-
sible to define an influence relation between the channels of these automata. How-
ever, it could be interesting to define a notion of influence between input and output
actions of the automata. The relation could be defined such that it identifies whether
the receipt of a specific input action influences the output of a specific output action.
Transferring this idea to the automata model used in this paper, the above corre-
sponds to the question whether a specific message on a specific input channel influ-
ences the output of a specific message on a specific output channel. We consider
the definition of such a relation and the development of automated tool support as
interesting future work. This would enable a more fine-grained analysis as presented
in this paper. Whether this analysis or the analysis presented in this paper is more
appropriate depends on the use case and intention by the developer.

For other automata models that include the notion of channel, such as port
automata (Grosu and Rumpe 1995), time-synchronous channel automata (Butting
et al. 2019), and MAAts automata (Ringert 2014), it is possible to transfer the notion
of influence between channels. However, some of these automata models use a dif-
ferent semantics as the automaton model used in this paper. The method for detect-
ing whether one channel influences another channel needs to be adjusted depending
on the semantics of the respective automaton model. Consequently, the decomposi-
tion method also needs to be adjusted depending on the composition operator of the
respective automaton model.

8 Summary

We have presented a method to automatically decompose a monolithic deterministic
component into an architecture consisting of multiple subcomponents that are com-
posed in parallel. This supports agile architecting by reducing the effort for analyz-
ing and implementing system behavior along subcomponents and facilitates refine-
ment and refactoring of architectures. To this end, we have conceived a notion of
influence between channels and formalized it in the Focus (Broy and Stølen 2001)
theory. We have proven that this decomposition is an actual refactoring, i.e., the

149

1 3

Automated Software Engineering (2020) 27:119–151

resulting systems are semantically equivalent to the original systems. Hence, this
decomposition can be applied to stepwise refinement and ultimately facilitates archi-
tecture modeling.

Acknowledgements This research has partly received funding from the German Federal Ministry for
Education and Research under Grant No. 01IS16043P. The responsibility for the content of this publica-
tion is with the authors.

References

Béal, M., Carton, O.: Determinization of transducers over infinite words. In: ICALP, Springer, Lecture
Notes in Computer Science, vol. 1853, pp. 561–570 (2000)

Béal, M.P., Carton, O.: Determinization of transducers over finite and infinite words. Theor. Comput. Sci.
289(1), 225–251 (2002)

Brim, L., Černá, I., Vařeková, P., Zimmerova, B.: Component-interaction automata as a verification-ori-
ented component-based system specification. SIGSOFT Softw. Eng. Notes 31, 4-es (2006)

Broy, M.: A logical basis for component-oriented software and systems engineering. Comput. J. 53(10),
1758–1782 (2010)

Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus on Streams, Interfaces
and Refinement. Springer, Heidelberg (2001)

Büchi, J.R.: On a decision method in restricted second order arithmetic. In: International Congress on
Logic, Methodology and Philosophy of Science, pp. 1–11 (1962)

Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe, B., Wortmann, A.: Systematic language
extension mechanisms for the MontiArc Architecture Description Language. In: Modelling Founda-
tions and Applications (ECMFA’17), Held as Part of STAF 2017, Springer International Publishing,
pp. 53–70 (2017)

Butting, A., Kautz, O., Rumpe, B., Wortmann, A.: Semantic differencing for message-driven component
& connector architectures. In: International Conference on Software Architecture (ICSA’17), IEEE,
pp. 145–154 (2017)

Butting, A., Kautz, O., Rumpe, B., Wortmann, A.: Continuously analyzing finite, message-driven, time-
synchronous component & connector systems during architecture evolution. J. Syst. Softw. 149,
437–461 (2019)

Campetelli, A., Hölzl, F., Neubeck, P.: User-friendly model checking integration in model-based develop-
ment. In: International Conference on Computer Applications in Industry and Engineering (2011)

Carlsson, G., Yu, J.: A prime decomposition of probabilistic automata (2015). arXiv preprint arXiv
:15030 1502

Cavalcante, E., Quilbeuf, J., Traonouez, L.M., Oquendo, F., Batista, T., Legay, A.: Statistical model
checking of dynamic software architectures. In: European Conference on Software Architecture
(2016)

de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories of Software Intensive
Systems (2005)

Debruyne, V., Simonot-Lion, F., Trinquet, Y.: EAST-ADL—an architecture description language. In:
Architecture Description Languages, pp. 181–195. Springer (2005)

Díaz, J., Pérez, J., Garbajosa, J., Yagüe, A.: Change-impact driven agile architecting. In: 2013 46th
Hawaii International Conference on System Sciences, pp. 4780–4789 (2013)

Díaz, J., Pérez, J., Garbajosa, J.: Agile product-line architecting in practice: a case study in smart grids.
Inf. Softw. Technol. 56(7), 727–748 (2014)

Farwer, B.: ω-Automata. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics and Infinite
Games: A Guide to Current Research, pp. 3–21. Springer, Berlin (2002)

Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the SAE Architec-
ture Analysis & Design Language. Addison-Wesley, Boston, MA (2012)

France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap. In: Future
of Software Engineering 2007 at ICSE (2007)

http://arxiv.org/abs/150301502
http://arxiv.org/abs/150301502

150 Automated Software Engineering (2020) 27:119–151

1 3

Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language.
The MK/OMG Press. Elsevier Science, Amsterdam (2011)

Gerace, G., Gestri, G.: Decomposition of synchronous sequential machines into synchronous and asyn-
chronous submachines. Inf. Control 11(5), 568–591 (1967)

Grosu, R., Rumpe, B.: Concurrent timed port automata. Technical Report TUM-I9533, TU Munich
(1995)

Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
Hölzl, F., Feilkas, M.: AutoFocus 3—a scientific tool prototype for model-based development of compo-

nent-based, reactive, distributed systems. In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B.
(eds.) Model-Based Engineering of Embedded Real-Time Systems. Springer, Berlin (2010)

Jongmans, S.S., Clarke, D., Proença, J.: A procedure for splitting data-aware processes and its application
to coordination. Sci. Comput. Program. 115, 47–78 (2016)

Koehler, C., Clarke, D.: Decomposing port automata. In: Proceedings of the 2009 ACM symposium on
Applied Computing, pp. 1369–1373. ACM (2009)

Kokash, N., Krause, C., de Vink, E.P.: Data-aware design and verification of service compositions with
Reo and mCRL2. In: Proceedings of the 2010 ACM Symposium on Applied Computing. ACM
(2010)

Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q. 2(3), 219–246 (1989)
Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs from architectural

languages: a survey. IEEE Trans. Softw. Eng. 39, 869–891 (2013)
Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software architecture

description languages. IEEE Trans. Softw. Eng. 26, 70–93 (2000)
Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, New

York, NY (1999)
Naur, P., Randell, B. (eds.): Software engineering: report of a conference sponsored by the NATO Sci-

ence Committee, Garmisch, Germany, 7–11 Oct 1968, Brussels, Scientific Affairs Division, NATO
(1969)

Nozaki, A.: Practical decomposition of automata. Inf. Control 36(3), 275–291 (1978)
Plotkin, B., Plotkin, T.: Decompositions and complexity of linear automata (2015). arXiv preprint arXiv

:15060 6017
Poort, E.R.: Driving agile architecting with cost and risk. IEEE Softw. 31(5), 20–23 (2014)
Razavi, N., Sirjani, M.: Using Reo for formal specification and verification of system designs. In: Pro-

ceedings of the Fourth ACM and IEEE International Conference on Formal Methods and Models
for Co-design, 2006. MEMOCODE’06. Proceedings. IEEE Computer Society, pp. 113–122 (2006)

Ringert, J.O.: Analysis and Synthesis of Interactive Component and Connector Systems. Aachener Infor-
matik-Berichte, Software Engineering, Band 19. Shaker Verlag, Herzogenrath (2014)

Ringert, J.O., Rumpe, B.: A little synopsis on streams, stream processing functions, and state-based
stream processing. Int. J. Softw. Inform. 5(1–2), 29–53 (2011)

Ringert, J.O., Rumpe, B., Wortmann, A.: Model-based specification of component behavior with con-
trolled underspecification. In: Modellbasierte Entwicklung eingebetteter Systeme (MBEES’16)
(2016)

Safra, S.: On the complexity of σ-automata. In: Proceedings of the 29th Annual Symposium on Founda-
tions of Computer Science, pp. 319–327. IEEE Computer Society (1988)

Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics: communication pat-
terns as key for a robotics component model. In: Chugo, D., Yokota, S. (eds.) Introduction to Mod-
ern Robotics. iConcept Press, Hong Kong (2011)

Strobl, F., Wisspeintner, A., Marz, A.: Specification of an elevator control system. Technical report, TU
Munich (1999)

ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team automata for groupware
systems. Comput. Support. Coop. Work (CSCW) 12, 21–69 (2003)

Uygur, G., Sattler, S.M.: Parallel decomposition for safety-critical systems. In: 2013 3rd International
Electric Drives Production Conference (EDPC), pp. 1–8 (2013)

Van Ommering, R., Van Der Linden, F., Kramer, J., Magee, J.: The Koala component model for con-
sumer electronics software. Computer 33(3), 78–85 (2000)

Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki, K.: Model-Driven Software Devel-
opment: Technology, Engineering, Management. Wiley Software Patterns Series. Wiley, Hoboken
(2013)

http://arxiv.org/abs/150606017
http://arxiv.org/abs/150606017

151

1 3

Automated Software Engineering (2020) 27:119–151

Weber, A.: Transforming a single-valued transducer into a mealy machine. J. Comput. Syst. Sci. 56(1),
46–59 (1998)

Weber, A., Klemm, R.: Economy of description for single-valued transducers. Inf. Comput. 118(2), 327–
340 (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Automated semantics-preserving parallel decomposition of finite component and connector architectures
	Abstract
	1 Introduction
	2 Example
	3 Preliminaries
	3.1 Streams
	3.2 Messages, types
	3.3 Channels, histories
	3.4 Finite time-synchronous port automata
	3.5 TSPA composition
	3.6 TSPA restriction

	4 Semantics preserving parallel decomposition respecting influences between channels
	4.1 Unambiguously specified TSPAs
	4.2 An influence relation between channels of components
	4.3 Deciding influence in unambiguously specified TSPAs
	4.3.1 Deciding influence

	4.4 Decomposing components along influencers

	5 Elevator control system example revisited
	6 Discussion
	7 Related work
	7.1 Automata decomposition
	7.2 Agile architecting
	7.3 Applicability to other automata models

	8 Summary
	Acknowledgements
	References

