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Abstract—Efficiently engineering modeling languages demands
their reuse through composition. Research in language engineer-
ing has produced many different operators to reuse and compose
languages and language parts. Unfortunately, these operate on
different dimensions of languages, produce diverse results, and
are distributed across various technological spaces and pub-
lications, which hampers understanding the state of language
composition for researchers and practitioners. To mitigate this,
we report the results of a literature review on modeling language
composition operators. In this review, we identify operators, their
properties, and supported language dimensions, and relate them
to categories of language composition. Through this, our survey
draws a new, detailed map of modeling language composition
operators that can guide researchers in software language engi-
neering in identifying uncharted territory and practitioners in
employing the most suitable composition operators.

Index Terms—Software Language Engineering, Modeling Lan-
guages, Language Composition, Literature Review

I. INTRODUCTION

Software is the primary driver of innovation for cyber-
physical systems, the Internet-of-Things, or Industry 4.0. Soft-
ware languages [1], [2] can facilitate this innovation by provid-
ing syntax and semantics that improve abstraction w.r.t the do-
main of investigation. For instance, a systems engineering lan-
guage might include SI units and the respective computations
to facilitate managing physical properties within its models In
contrast, a logic-based query language might include modeling
elements about logical reasoning and corresponding com-
putations. Consequently, many domains have transitioned to
using modeling languages tailored to their specific challenges,
such as automotive [3], [4], avionics [5], biology [6], [7],
chemistry [8], [9], construction [10], insurance [11], law [12],
manufacturing [13], [14], medicine [15], [16], robotics [17],
and systems engineering [18], [19]. But the engineering of
modeling languages often demands expertise in multiple meta-
languages, tools, or paradigms, such as describing abstract
and concrete syntaxes [20], [21], [22], [23] as well as model
transformations operating on instances of these syntaxes [24],
[25], [26] to, e.g., realize their semantics [27].

For software, we know reuse is a main driver for its
proliferation, that is, reuse-in-the-large (e.g., complete applica-
tions, frameworks, libraries) and reuse-in-the-small (individual
modules or their fragments). As software languages are also
software [28], they can benefit from reusing them or their parts
in the engineering of new languages as well. Reusing language
parts requires means for modeling language composition [29].

Ten years ago, Erdweg et al. uncovered five different
categories of language composition [30]: language extension,
language restriction, language unification, self-extension, and
extension composition. But since then, much has happened
in software language engineering: Various language work-
benches [31] have emerged and perished, projectional editing
has become popular [32], language engineering is moving
toward becoming web-based [33], [34], and concepts to better
understand and organize language reuse have been devel-
oped [35], [29]. Given the importance of software languages
today and these developments, we aim to understand how the
composition of languages and language parts has evolved in
the last decade. This work, hence, aims to guide researchers
in the field in directing their efforts towards research gaps
in modeling language composition and to help practitioners
in finding suitable modeling language composition operators
efficiently. To this end, we investigate the following questions:

RQ1 Which kinds of modeling language composition opera-
tors are there, and how do they relate to the five categories
of [30]?

RQ2 Which language definition dimensions (regarding syntax
and semantics) are supported by the operators?

RQ3 Which properties do language composition operators
have concerning being black-box, modular, additive, and
closed under composition?

The findings of the presented study show that most com-
position operators can be classified as language extension.
Furthermore, the composition of syntax is covered by all
operators although the realization of syntax specifications
differs between the operators and oftentimes depends on a
technological space of a language workbench. The compo-
sition of semantics is supported by 10 out of 25 operators
we found in our study. Besides, many operators are modu-
lar, but only one enables black-box composition. Language
workbenches and composition operators are closely related.
However, our findings show that three operators are described
without a realization in the technological space of a language
workbench. We, therefore, decided not to focus on the support
of composition operators in the different technological spaces.

In the remainder, Sec. II recapitulates categories of language
composition. Afterward, Sec. IV describes the research method
and study design, and Sec. V reports our findings. Next,
Sec. VI discusses related studies, and Sec. VII highlights
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observations. Finally, Sec. VIII concludes.

II. CATEGORIES OF LANGUAGE COMPOSITION

Erdweg et al. [30] identified five categories of language
composition to address the lack of precise language engineer-
ing terminology concerning composition. To this end, they
assume that languages comprise context-free syntax, well-
formedness rules, and semantics [36] and can be reused
unchanged. The categories are:

1.) LANGUAGE EXTENSION. Language extension is a direct
form of language composition that operates on the level
of language definitions. It requires the reuse of a language
without changes to extend that language. This, e.g., can be
achieved by creating a new grammar that inherits from a parent
grammar to reuse its productions.
Example: Creating a grammar for timed state machines by
extending an existing state machine grammar and adding
productions for handling time to the new grammar.

2.) LANGUAGE RESTRICTION. Language restriction is a
special case of language extension in which the extension
restricts the language. Restriction can be, e.g., achieved by
extending a language definition with new context conditions
that prevent the occurrence of certain model elements. Hence,
models with these elements are restricted from the language.
Example: Removing fork nodes and join nodes from an activ-
ity diagram language to prevent modeling parallel activities.

3.) LANGUAGE UNIFICATION. Language unification is a
language composition "on equal terms" [30], i.e., without
direction, which requires that the definitions of both languages
can be reused unchanged by adding glue code only.
Example: Unifying OCL with transitions of statechart, such
that statechart transitions can fire based on OCL constraints
in their guards.

4.) SELF-EXTENSION. Self-extension describes the embed-
ding of languages into a host language by providing a host
language model that encapsulates the embedded language’s
concepts. The concepts of the embedded language are realized
only with the concepts of the host language.
Example: Having an object-oriented programming language
and creating a program that adds new classes to the language.
Other programs can then use these; hence, the language has
been extended without modifying the language definition (e.g.,
the compiler). As this is not a property of a composition
operator but of a language itself, we do not consider self-
extension in the following.

5.) EXTENSION COMPOSITION. Extension composition de-
scribes the capability of language extensions to work together.
That is, whether language extensions can be composed, either
through the incremental extension of a language or by the
union of independent extensions. As extension composition
is trivial for operators that are closed under composition and
matter of a language workbench for operators not closed under
composition, this also is not considered in the following.

However, the exact interpretation of these categories de-
pends on what can be considered "glue code" and what "equal
terms" are. Language composition operators that produce a

new language by copying and merging elements of their
input languages, e.g., to create a new grammar by joining
all productions of two input grammars, can be considered
to be composing on "equal terms", but without glue code
(unless the resulting grammar can be considered being the
glue). Consequently, the lack of precision in the formulation
of the initial categories leaves some freedom of interpretation
that we leverage and explain in the description of our findings.

III. TERMINOLOGY

For the analysis of language composition operators, we
investigate the following important properties of operators (not
of the composed language parts):

Modularity of Composition: An operator supports the
modular composition of language fragments if the composed
parts continue to exist as identifiable artifacts in the composite.
Modular composition allows, for instance, to evolve or main-
tain the composed language fragments individually so that the
composite can also automatically benefit from these changes.
Example: When composing a state machine language with a
data type language defining the properties usable in the state
machines through linking (e.g., importing of data types), both
parts continue to exist as uniquely identifiable languages with
only little composition "glue" between them.
Counterexample: When merging two metamodels into a new
metamodel, the result often is a single new metamodel artifact
containing the elements from both input metamodels. Hence,
changes to the input metamodels are not propagated to the
composed new metamodel.

Closed under Composition: An operator is closed under
composition if the operator’s application on two instances of
a type T (e.g., grammars or metamodels) produces an instance
of type T again. This ensures that the operator can be applied
to the result of the composition again.
Example: The metamodel composition outlined above takes
two input metamodels and produces another metamodel.
Counterexample: When restricting a language by composing
an abstract syntax definition (e.g., grammars or metamodels)
with well-formedness rules to prevent instantiation of certain
abstract syntax elements (cf. [37]), the inputs are of different
types.

Additive or Restrictive: An additive (restrictive) operator
can only add elements to (remove elements from) a language
definition. Note that an additive operator on well-formedness
rules can add restrictions to a language definition that ulti-
mately reduce the language.
Example: The metamodel composition outlined above pro-
duces a new metamodel containing the elements of both input
metamodels.
Counterexample: The restriction operator outlined above adds
new elements to the language definition but reduces the
resulting language.

Black-box (BB) or White-box: A black-box composition
operator does not require detailed insights into the language
definitions to be composed but operates on their well-defined
interfaces. A white-box operator, on the other hand, needs



detailed insights into the definitions and their constituents.
Example: For languages with operational semantics, a corre-
sponding black-box composition operator could only rely on
the interfaces of the language interpreters to compose them.
Counterexample: Composing two grammars usually requires
understanding both grammars completely to understand in-
tended extension points.

In the following, we assume the following definitions
from [29] to investigate language composition on the more
detailed level of language definitions: (1) A language is a set
of possible sentences; and (2) A language definition comprises
concrete syntax (CS), abstract syntax (AS), context conditions
(CoCos), and semantics (Sem) .

• action language (AL),
• interpreter (Int),
• code generator (CG),
• general-purpose language (GPL),
• grammar (Gr), and
• metamodel (MM).

In our analysis, we refer to grammar rules as "productions" and
metamodel elements as "classes". For directed composition
operators, we use the prefix "base" for the language, gram-
mar, metamodel, etc., that elements of the "client" language,
grammar, metamodel, etc., are composed into.

Furthermore, we understand semantics as the meaning of
a model [27], which is constructed by its language’s syntax
to a well-understood semantic domain. The semantic domain
can, e.g., be mathematical theories, such as stream-processing
functions [38] or Petri-nets [39], as well as sufficiently un-
derstood domains. Denotational, translational, or operational
semantics can define such a semantic mapping.

IV. RESEARCH METHOD

To answer RQ1-RQ3, we conducted a systematic literature
review [40], [41], [42] on modeling language composition1

consisting of five phases: (1) First, we decided on our study’s
scope and research questions. (2) Based on this scope, we
performed a literature search in the second phase to identify
the initial corpus of our study. (3) We then removed irrelevant
publications from our initial corpus by screening keywords,
abstracts, and titles in the third phase. (4) Afterward, we
analyzed the publications in detail, applying classification
schemes based on our research questions and removing the
remaining irrelevant publications from the corpus. (5) Finally,
we extracted the data from the publications of the corpus
to answer our research questions. As we also performed
backward and forward snowballing [43], we applied phases
two to five a second time for the additional identified literature.

A. Search strategy and data sources

To produce a corpus of relevant publications on modeling
language composition, we first identified relevant search terms
as follows: Synonymous or at least closely related to these is

1Replication package is available at https://awortmann.github.io/
language-composition/

also the term "domain-specific language" or "DSL" for short.
The basis for defining such languages and, thus, language com-
position mechanisms are usually metamodels or grammars.
These terms, therefore, form the first part of our search clause.
Then, conjugated with these terms, we consider the concept
of composition in the second part of the search clause and
include terms used in the context of language composition,
namely integration, derivation, and extension. These led to the
following search term:

("metamodel" OR "modelling language"
OR "modeling language" OR "software
language" OR"DSL" OR "domain-specific
language" OR "grammar")
AND
("composition" OR "integration" OR
"derivation" OR "extension").

For this study, we were interested in publications that
explicitly present a language composition operator in detail.
We, therefore, limited the text search to keywords, titles, and
abstracts. Publications, where language composition is part of
the contribution, should mention combinations of terms of our
search clause in the keywords, title, or abstract. However, to
avoid missing relevant publications due to this limitation, we
have included synonyms for the term modeling language in
the search clause. Since we are interested in how language
composition has evolved since the classification of language
composition in [30], we limit our search to the years after
its publication. That is, we limited our search to publications
published after the first of January 2012 up to the first of
March 2022, our search date. For our search, we used the
ACM Digital Library, IEEE Xplore, Springer, Scopus, and the
Web of Science. We excluded Google Scholar for its well-
known problems [44], [45]. Instead, we employed snowballing
to identify potentially relevant literature that we might have
missed in the initial search.

For the databases that did not support the search query
as presented, we split the query into multiple queries and
merged their results manually. For the ACM Digital Library,
this resulted in three search queries, one for the keywords,
one for the title, and one for the abstract. For Scopus, we
similarly split the search query into three parts but could
combine these parts using disjunctions. For Springer, we had
to search for exact phrases, i.e., perform a search for each
conjunction of the search terms separately. Finally, for the Web
of Science, we could reuse the search query as presented with
minor modifications. Other limitations did not affect our query.
Overall, applying the search query to the selected databases
under the aforementioned constraints returned the 8.741 results
presented in Figure 1.

Since we had to use multiple overlapping queries for some
of the libraries, the search on these libraries already resulted
in duplicate findings. When merging the multiple queries for
a single library, we removed the duplicate findings for that
library. The numbers of publications given per library are,
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therefore, without duplicates. However, across the different
libraries, we again had duplicate findings.

To identify the corpus relevant to our study, we first removed
the 2.703 duplicates resulting in 6.038 unique publications. We
then applied inclusion and exclusion criteria (cf. Sec. IV-B) to
keywords, titles, and abstracts to remove an additional 5.915
publications, resulting in 123 English, potentially relevant,
peer-reviewed publications. These publications we then ana-
lyzed in detail during the classification phase (cf. Sec. IV-C) to
understand if they were relevant to our study. Again applying
our inclusion and exclusion criteria, this time to a deeper
analysis of the publications resulted in 28 publications. Ap-
plying forward and backward snowballing (cf. Sec. IV-D) we
added another 11 publications. This resulted in 39 publications
relevant to our study.

("metamodel" OR "modelling language" OR "modeling language" OR "software 

language" OR "DSL" OR "domain-specific language" OR "grammar") AND

("composition" OR "integration" OR "derivation" OR "extension") 

Springer

390

IEEE

609

WoS

2.217

ACM

320

Scopus

5.205

Inclusion

Criteria

Exclusion

Criteria

Inclusion

Criteria

Exclusion

Criteria

Removing 2.703 duplicates

Screening removes 5.915 irrelevant publications

Detailed reviewing removes 95 publications

Snowballing adds another 11 publications

Forward

Snowballing

Backward

Snowballing

Figure 1: Our literature search and selection process

B. Screening papers for inclusion and exclusion

We applied the following inclusion and exclusion criteria
to keywords, titles, and abstracts of the unique 6.038 publica-
tions.

Inclusion: (1) Peer-reviewed publications published in jour-
nals, conferences, and workshops. (2) Publications that are
accessible electronically. (3) Publications where from the title,
abstract, and keywords, we can deduce that the publication
focuses on software language composition. (4) Publications
that describe a language composition operators.

Exclusion: (1) Publications that are not available in English.
(2) Publications that are not systematically peer-reviewed, such
as monographs, slides, and websites. (3) Teasers and short
papers of less than four pages, such as calls for papers,
editorials, or curricula. (4) Publications that are secondary

studies. (5) Pure case studies that apply but do not explain
a language composition operator. (6) Publications on internal
domain-specific languages (DSLs). (7) Publications that are
not about DSLs, DSMLs or modeling languages

We included a publication if it met every inclusion criteria
and did not meet any exclusion criteria. By screening the pub-
lications, we identify relevant publications and eliminate all
non-relevant and further publications that meet our exclusion
criteria, removing publications from the corpus that are not
to be considered in our study. We first performed an initial
screening, thereby pre-selecting and identifying potentially
relevant publications using our inclusion and exclusion criteria
based on keywords, titles, and abstracts only. Thereby, we
included publications where in doubt.

C. Classifying studies

Removing 5915 publications in the screening phase, we
obtained 123 potentially-relevant publications for further con-
sideration. We divided these between authors for detailed
analysis and classification and documented the results for each
publication in a detailed questionnaire tailored to our research
questions. Classifying studies with multiple reviewers entails
aligning the reviewers’ understanding of the matter at hand.
Therefore, each author classified the same set of 20 (ca. 16%)
randomly selected publications from our corpus. By comparing
the results and discussing discrepancies, we developed and
refined our shared understanding of the publications, the em-
ployed questionnaire, and the inclusion and exclusion criteria.
We then split the remaining publications evenly among the
authors, who analyzed and classified the publications in detail.
However, we did not exclude any publication solely based
on its comprehensibility. Instead, in cases where a single
author was uncertain about the analysis or classification of
a publication, we discussed the publication among all authors.
The questionnaire and the classification scheme we conceived
to answer our research questions. Possible answers to the
questions of our questionnaire manifested as a simple yes
or no, answers alongside a classification scheme, or free-
text answers in cases where appropriate. During classification,
we eliminated another 95 publications to obtain 28 relevant
publications.

For each relevant publication, we extracted the presented
language composition operators and classified these along
the classification scheme revisited in Sec. II, where such a
classification was appropriate. This classification partially en-
ables us to answer RQ1 regarding how language composition
has evolved in recent years. Either the previously proposed
classification scheme still holds, that is, we can classify all
of the presented language composition operators, or there
are new language composition operators that do not uphold
this classification scheme. Where publications presented more
than one language composition operator, we investigated each
operator in isolation.



D. Snowballing
To identify relevant publications we might have missed,

we applied forward snowballing [43] to [46], identifying all
citations of this publication. For this search, we used semantic
scholar2, identifying 115 citations. Before looking at the pub-
lications in detail, we removed duplicates already considered
in our initial search. After removing 44 duplicates, we applied
our inclusion and exclusion criteria to the remaining 71 publi-
cations, thereby removing 4 publications for being short papers
or non-peer-reviewed. For the remaining 67 publications, we
decided on inclusion by looking first at the title, then the
abstract, the location of the citation, and finally, the full
publication to decide if the publication is relevant to our
study. During these steps, we successively removed irrelevant
publications, thereby removing 60 publications irrelevant to
our study in total. Through forward snowballing of [46], we,
therefore, identified 7 publications relevant to our study.

Performing backward snowballing, we applied a similar
process, this time to references of publications in our corpus.
Using semantic scholar, we identified 89 references in the
initial search. From the search result, we removed 34 dupli-
cates and one publication because of inaccessibility. Applying
our inclusion and exclusion criteria, we removed another 31
publications for being published at a date outside the scope of
our study (27 publications), non-peer-reviewed (1 publication),
not available (1 publication), or short papers (2 publication)
only. We again decided inclusion for the remaining 22 pub-
lications by looking at the title, abstract, place of citation,
and the paper in full. We thereby identified 19 publications
as irrelevant to our study, leaving 4 for inclusion. Applying
backward snowballing again to the results of backward and
forward snowballing did not yield any new results, wherefore
we terminated the search. Therefore, we identified 11 publi-
cations relevant to our study through forward and backward
snowballing. Together with the relevant publications of our
initial search, this resulted in 39 publications that remained in
the corpus of this study. From these, we extracted 25 unique
language composition operators.

V. FINDINGS

We categorized all 25 language composition operators into
three of the five categories described in [30]. For these
categories, we distinguish between operators that compose
syntax only and those that compose both syntax and semantics.
Overall we identified 9 cases of language extension composing
syntax, 6 cases of language unification composing syntax, 4
cases of language extension composing syntax, 4 cases of
language unification composing syntax and semantics, and 2
cases of language restriction composing syntax and semantics.

In the following, we detail our findings regarding RQ1 -
RQ3.

A. RQ1: Which Language Composition Operators Exist?
With this question, we aim to investigate which composition

operators exist for language extension, language restriction,

2https://www.semanticscholar.org/

and language unification. We grouped our findings by the
dimensions (syntax, semantics) of language definitions com-
posed by the respective operators. Overall, we found operators
composing definitions of syntaxes (e.g., grammars, metamod-
els) and operators composing language modules comprising
definitions of syntaxes and semantics (e.g., code generators,
interpreters, transformations). We did not find an operator that
composes only semantics or syntax with semantics. Since none
of the composition operators we found provided a formalized
definition, we decided on a semi-formal description of each
operator.

The tables presented in this section report one language
composition operator per row. The tables include the language
operators’ publication, the constituents (AS, CS, Sem, . . . ), the
kind of technical realizations (Gr, MM, GPL, . . . ) it addresses,
the technological space it operates within, and its modularity,
that is, whether it is closed under composition, additive, and
black-box. Consequently, a paper reporting multiple operators
is referenced in multiple rows. Also, this does not imply
that a specific technological space comes with the described
composition operator but that a composition operator was
developed in the referenced technological space (e.g., by a
third party).

1) Language Extension Operators Composing Syntax: This
section reports our findings on language extension operators
capable of composing the syntax of two language definitions.
Overall, we found operators that can compose either gram-
mars, metamodels, or (RDF) graphs that describe abstract
syntax, as well as operators that can compose grammars with
metamodels. We summarized our findings regarding language
extension composing syntax in Table I.

1.1) Grammar Embedding [47], [48], [49], [50], [51]
The operator takes a base grammar, a production of the
base grammar, a client grammar, and a production of
the client grammar. In the example of Figure 2 grammar
IOAutomaton and its production Automaton is embedded
into the production BehaviorModel of the base grammar
MAAutomaton. Executing the operator produces a new gram-
mar in which the selected production of the base grammar is
augmented with an alternative of the selected client grammar
production. To this end, the base grammar may feature ded-
icated extension points (e.g., special kinds of productions) to
denote the incompleteness of the grammar. Models conforming
to the resulting grammar can use base grammar production in-
stances as usual and the embedded client grammar production
instances in place of the selected base grammar production in
the same model (cf. Figure 2).

1.2) Grammar Inheritance [47], [48], [50], [51], [52], [53]
The operator takes base grammar and client grammar as input.
This results in a client grammar where all productions from the
base grammar are made available. Hence, the client grammar
can reuse or override the productions of the base grammar



grammar MAAutomaton {

external BehaviorModel;

Behavior extends ArcElement = 

"behavior" kind:name "{" 

BehaviorModel

"}"; } 

1

2

3

4

5

6

component Controller {

behavior IOAutomaton {

//…

}

}

1

2

3

4

5

6

grammar IOAutomaton {

Automaton = "automaton" States+ 

Initial+ Transitions+ "+";

States = "states" Name* ";";

Transisiton = src:Name "->"  

tgt:Name Guard? In? Out?;

1

2

3

4

5

6

7

MCG component Controller {

behavior IOAutomaton {

states IDLE, DRIVING, //…

IDLE -> DRIVING //…

DRIVING -> BACKING //…

}

}

1

2

3

4

5

6

7

language embedding {
Automaton in 

BehaviorModel
}

MCG MAA

MAA

selected base 

grammar production

base grammar

client grammar

selected client 

grammar production

Figure 2: The operator for grammar embedding on the left and
the effect on the model level on the right [48].

(cf. Figure 3). Models conforming to the resulting grammar
can use instances of base and client productions in the same
model (cf. Figure 3). An algebraic formalization of grammar
inheritance is available from [53].

grammar MontiArc {

ArcPort = ("in" | "out") 

Type Name?;

} 

1

2

3

4

out SensorValue dataStore1

2

3

4

grammar ClArc extends 

ArchitectureDiagram {

ClArcPort extends ArcPort =

("in" | "out") 

Type Name? ["[*]"]?;

}

1

2

3

4

5

6

MCG out SensorValue dataStore[*]1

2

3

4

5

6

MCG

base grammar

client grammar

Figure 3: The operator for grammar inheritance on the left and
the effect on the model level on the right [51].

1.3) Grammar Mixins [54]
The operator takes a base grammar (cf. l. 1 of Figure 4)
and a client grammar, the mixin (cf. l. 2 of Figure 4), as
input. Any grammar can be used as a mixin. It makes
the abstract syntax, defined in a metamodel, of the client
grammar available to be referenced in the client grammar’s
productions. However, they cannot be overwritten or extended.
On the model level, this has the effect that models of the
base grammar can leverage modeling concepts from the client
grammar’s metamodel within the same model.

1.4) Metamodel Embedding [55]
The operator takes a base metamodel, a client metamodel,
a metaclass of the base metamodel, a metaclass of the client
metamodel, the cardinality of the relation between the selected
metaclasses, and two Boolean arguments denoting whether the
relation between the classes should express a composition or
aggregation. It composes both metamodels by introducing an
association with the given cardinality and the relation between
the client metaclass and the base metaclass (cf. Figure 5). The
example given in the paper is that of an expression metaclass
which is embedded into a cell class of sheet metamodel, which

grammar View with Md2Basics

import "http://md2.de/Model" as model

OptionInput = 'Option' name=ID

widgetInfo

'options' values = [model::Enum]

fragment widgetInfo:

'label' labelText= STRING

'tooltip' tooltipText = STRING

1

2

3

4

5

6

7

8

9

10

XText

base grammar

client  metamodel

client  metaclass

Figure 4: The operator for grammar mixins exemplified with
a grammar View where a metamodel Model is imported as
mixin [54].

then has the effect that cells now can define expressions (cf.
Figure 5). An algebraic, partial, formalization of metamodel
embedding is available from [55].

base metamodel

client 

metamodel

result on 

model level

Figure 5: The operator for metamodel embedding that embeds
expressions into sheet cells [55].

1.5) Metamodel Fragment Composition [56]
A metamodel fragment is a container for a metamodel that ex-
poses contractually specified provided and required interfaces.
A provided interface exposes metaclasses of the fragment’s
metamodel, whereas a required interface demands implemen-
tation by a metaclass of another metamodel fragment. For
instance, the Business Process Diagram metamodel
in Figure 6 demands a implementation of IPerformer that
is fulfilled by the IOrgElement of the Organization
Model. The Composition of a base metamodel fragment and



a client metamodel fragment is realized by mapping classes of
the provided interface of the client metamodel fragment to the
required interfaces of the base metamodel fragment. Thereby,
the client metamodel fragment classes implement the required
interfaces of the base metamodel fragment. The effect on the
modeling level is similar to Metamodel Embedding where
the mapped modeling concepts can be used in the models
conforming to the base metamodel.

base metamodel 

fragment

client metamodel 

fragment

Figure 6: The operator for metamodel fragment composition
applied to a business process diagram that is composed with
an organization and a risk catalog metamodel [56].

1.6) Metamodel Mixins [57]

FlowObject

Gateway Task

Task

Extender

RiskHolder

Mixin

Risk RiskGroup

Performer

Simulation

ActivityMixin

Time: UTC

Costs: Double

subGroups

0,*risks

0,*

0,*

assignedRisks

assignedPerformer

0,*

sequenceFlow

«inclusion»

«inclusion»«extension»

BPMN RM

PS

extBMPNc

base metamodel mixin metamodel

result

mixin element

Figure 7: The operator for metamodel mixins that mixes
Simulation and Risk into a Task metaclass [57].

This composition operator takes two metamodels, the base
metamodel, and the mixin metamodel as input. They are
composed by adding the elements of an abstract metamodel
class (the "mixin element"), e.g., RiskHolderMixin and
SimulationActivityMixin (cf. Figure 7), of the mixin
metamodel to a class of the base metamodel, e.g., Task (cf.
Figure 7). The result is a new metamodel comprising the base
metamodel, and the mixin metamodel, and an additional class

that extends the class of the base metamodel, and references
the mixin class (cf. Figure 7). Note that the result of a mixin
composition cannot be used as a mixin element again.

1.7) Metamodel Template Instantiation [58]
The template instantiation operator takes a metamodel tem-
plate, which comprises abstract classes as extension points,
and a "variant" metamodel as input together with renamings.
For instance, in Figure 8 the extension points SoundSource
and Filter of a base metamodel are implemented by the
variant metaclasses Oscillator and Filter, respectively.
The operator then merges both metamodels based on naming
and thereby instantiates the metamodel template. The result is
a new metamodel. Models that conform to this new metamodel
can utilize the non-abstract concepts of the metamodel of
the template, and, in addition, the instantiated abstract classes
instantiated by the "variant" metamodel.

metamodel 

template

variant 

metamodels

extension points

Figure 8: The input for the operator for metamodel template
instantiation that takes the template classes SoundSource
and Filter and instantiates them with Oscilator and Filter
respectively [58].

1.8) Syntax Component Composition [59], [60]

The operator takes two language components, comprising
grammars, Java well-formedness rules, and bindings between
interfaces of provided and required extension points as in-
put. The components are composed by relating the provided
extension points of the client component to the required
extension points of the base component. Figure 9 shows the
operator exemplified with three language components that are
composed according to their extension points via a feature
diagram. This governs how the artifacts of the client language
need to be composed with the artifacts of the base language
component. The result is a language component again. Models



conform to the composed language can use all the concepts of
the base language component, and, additionally, the concepts
of the client component in place of the bound concepts of the
required extensions.

Base

Component

Behavior

CmpElem � BehModel

Component

Behavior

BehModel � IOAut

FM

grammar ADLGrammar {

Component = Name CmpElem*

interface CmpElem

Con implements CmpElem = …

//…

}

Well-formedness 

rules

CoreADLLngComponent

grammar BehaviorGrammar {

interface BehModel

}
Well-formedness 

rules

BehaviorLngComponent

grammar IOAutGrammar {

IOAut = …

}
Well-formedness 

rules

AutomataLngComponent

contains

contains

contains

LC

extension point

CmpElem

BehModel

IOAut

Figure 9: The operator for syntax component composition
exemplified with three components that are bound to an-
other [60].

1.9) Metamodel Facet Composition [61], [62]
Facets extend existing objects with a new type, fields and
constraints [62]. They are instances of a metamodel that is
called facet metamodel. Facet metamodels provide an inter-
face restricting the compatible classes to the facet type. The
operator for metamodel facet composition takes at least one
metamodel, one facet metamodel, and a set of facet laws as
input (cf. Figure 10). Facet laws govern the acquisition of
facets by conditions automatically. After the composition, on
the language level, both metamodels remain loosely coupled.
On the model level, facet objects (instances of facet metamod-
els) can be added to metamodel objects. With this, objects are
extended with the type and the properties of the facet.

Figure 10: The operator for metamodel facet composition [62].

2) Language Unification Operators Composing Syntax:
This section reports our findings on language unification oper-
ators capable of composing the syntax of two language defini-
tions on roughly "equal terms" [30]. Some of these are forms

of language coordination [29], i.e., the composition is achieved
mainly by adding glue code between the composed language’
artifacts, some are forms of language integration [29], where
the elements of the composed languages’ artifacts, e.g., their
productions, are copied into a new artifact. With respect
to [30], we consider this reusing the composed languages
unchanged and argue that a new artifact is a form of glue code.
Otherwise, operators, such as metamodel merging, where new
language extensions are composed by copying elements of the
input languages on equal terms, cannot be captured by the
classification of [30]. We summarized our findings regarding
language unification composing syntax in Table II.

2.1) Annotation-Based Language Unification [46]
The operator takes a textual base syntax definition (e.g.,
grammars, abstract syntax tree (AST) classes, JSON, ...) and
a client syntax definition as input. The base syntax definition
needs to support the notion of annotations. It unifies elements
of the base syntax definition with concepts from the client
syntax definition based on annotations in the base syntax
models. For instance, the annotations in Figure 11 reference
elements specified in an XML file that defines a database table.
Models of the composed language can use annotations of client
language concepts in models of the base language.

@EntityRef("Person")

public class Person {

@ColumnRef("Identifier")

private int id;

@ColumnRef("Identifier")

private String name;

@ColumnRef("Identifier")

private int age;

//…

}
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Figure 11: The operator for annotation-based language unifi-
cation exemplified with Java annotation unifying a database
language with Java [46].

2.2) Grammar Unification [63], [64]
The operator takes multiple grammars and creates a new
grammar that contains the union of productions of the input
grammars. For instance, Figure 12 shows the unification of
three grammars resulting into the grammar result (cf.
l. 1-2).. Where productions of the input grammars have the
same left-hand-side name, alternatives for this production are
created. Models conforming to the resulting grammar may use
grammar productions to conform to the composed grammar’s
productions in the same model.

2.3) Graph Merging [65]
The operator takes two graphs that represent the abstract



Table I: Language Extension Operators Composing Syntax

Name Constituents Tech. Space Modular Closed Additive BB
Grammar Embedding [47],
[48], [49], [50], [51]

AS (Gr), CS (Gr) Grammarware, Language
Boxes, MontiCore

✓ ✓ ✓ ✗

Grammar Inheritance [47],
[48], [50], [51], [52], [53]

AS (Gr), CS (Gr) MetaDepth, MontiCore,
Grammarware

✓ ✓ ✓ ✗

Grammar Mixins [54] AS (Gr), CS (Gr) Xtext ✓ ✓ ✓ ✗
Metamodel Embedding [55] AS (MM), CS (MM) EMF ✓ ✓ ✓ ✗
Metamodel Facet Composi-
tion [61], [62]

AS (MM), CoCos (OCL) Metadepth ✓ ✓ ✓ ✗

Metamodel Fragment Com-
position [56]

AS (MM) CML ✓ ✓ ✓ ✓

Metamodel Mixins [57] AS (MM) ADOxx ✓ ✗ ✓ ✗
Metamodel Template Instanti-
ation [58]

AS (MM) EMF & SWAT ✗ ✗ ✓ ✗

Syntax Component Composi-
tion [59], [60]

AS (Gr), CS (Gr), CoCos
(GPL)

MontiCore ✓ ✓ ✓ ✗

unification [Grammar g, Grammar decl, Grammar expr] 

returns [Grammar result]

{unify  = decl + expr;}

{glue   = unify + 'factor: id;’;}

{result = glue  + 'exprdecl: declist expr;’;}

;

1
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4

5

6

Figure 12: The operator for grammar unification [64].

syntax of two languages, nodes of these graphs and connection
rules between these nodes (cf. Figure 13). The graphs are
merged by by applying these rules. Models of the languages
remain separated and are unified by the graph interconnections
on the metalevel. A logical formalization of graph merging is
available from [65].

Figure 13: The operator for graph merging exemplified with
a integration rule int:fw between the nodes itml:FW and
fwcl:FW[65].

2.4) Language Aggregation [48], [51], [66]
Language aggregation takes two syntax definitions, i.e., gram-
mar [48], [51] or metamodel [66], and one named element
of each as input to be aggregated. The named elements of
both languages are aggregated by producing an adapter that
coordinates the interaction between both. For the syntax defi-
nition based on grammars [48], [51], e.g., this happens via an
adapter between the symbol tables of both languages linking
the corresponding defining symbols of one language with the
using symbols of the other language. For metamodel-based
language aggregation, an additional coordinating metaclass
is produced [66]. Both adapters have to be implemented

manually. In both cases, the result is a language in which the
files containing the models remain separate but link to each
other (cf. Figure 14). This is similar to importing classes
in programming languages. An formalization of metamodel
alignment using category theory is available from [67].

CDClass = 

Modifier "class" Name "{"

(CDAttribute

| CDConstructor

| CDMethod)* "}"
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public class SensorValue {
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T value;

}
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Figure 14: The operator for language aggregation exemplified
with a grammar production ClArcPort that references a
Type which is defined in a production CDClass [51].

2.5) Metamodel Alignment [67]
The operator takes multiple similar metamodels and a set of
mapping metaclasses with unidirectional connections between
the similar metaclasses of the metamodels as input. The
metamodels are aligned by mapping a selection of their classes
to the base metamodel using the mapping rules. For instance,
in Figure 15 three metamodels M1, M2, M3 are aligned using
the mapping M0. The resulting metamodel, hence, comprises
all metaclasses of the input metamodels as well as the adapters
and relations between the selected elements. The models of
the composed languages remain separated but are linked to
one another through their metamodels.

2.6) Metamodel Merging [68], [69]
The classes of two metamodels are merged based on the
names of their elements. The result is a new metamodel
featuring classes, attributes, and associations from both input
metamodels (cf. Figure 16). For metamodel classes of the same
name, their elements are merged as well. The effect achieved
on the model level is similar to the effect of applying the
operators Language Aggregation and Metamodel Alignment.
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Figure 15: The operator for metamodel alignment exempli-
fied [67].

An algebraic formalization of metamodel merging is available
from [69].

Figure 16: The operator for metamodel merging by merging
MM2 (b) into MM1 (a) resulting in the metamodel MM1 (c)
[68].

3) Language Extension Operators Composing Syntax and
Semantics: This section reports our findings on language
extension operators capable of composing the syntax and
semantics of two language definitions. Therefore, most of
these operators expect a language definition container, such as

a module or component, or expect that operational semantics
are part of the abstract syntax definition (e.g., a metamodel
with semantics realized in its methods). Some of these apply
to syntax without semantics as well, e.g., where semantics
is defined within the methods of a metamodel’s classes.
We summarized our findings regarding language extension
composing syntax and semantics in Table III.

3.1) Abstract-Syntax-Driven Language Embedding [70]
An abstract-syntax-driven language definition is a language
definition in which the abstract syntax artifacts also comprise
(a) their concrete syntax in the form of annotations and (b)
their semantics in the form of aspects carrying methods for
some abstract syntax classes. For instance, Figure 17 defines
AddOp together with an annotation that states the concrete
syntax. The operator takes a base language definition and a
client language definition, and a mapping from a client class
to a class of the base language definition. The base language
definition then is extended by providing a subclass (carrying
CS and Sem) for a selected base class and registering it as an
alternative for the selected base class (cf. Figure 17). Thus, new
alternatives for syntax and semantics can be embedded into a
base language definition. The effect achieved on the model
level is that the mapped client language concepts are usable
in place of the base language’s concept including concrete
syntax and semantics.

public abstract class Expression {}

public class AddOp extends Expression {

private final Expression expr1;

private final Expression expr2;

@Operator(associativity=Associativity.LEFT)

public AddOp(Expression expr1, @Before("+")

Expression expr2) {

this.expr1 = expr1;

this.expr2 = expr2;

}

}
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Figure 17: The operator for abstract-syntax-driven language
embedding visualized by a subclass AddOp extending the
abstract class Expression [70].

3.2) Language Component Embedding [71], [72]
A language component comprises a grammar that supports
the integrated definition of CS and AS, Java well-formedness
rules, and a code generator and is encapsulated with interfaces
of required and provided extension points. Figure 18 shows
an example of a language component for a Transition
System. Provided extension points expose elements of the
language component to the environment, whereas required
extension points expose extension points of the language
component’s elements. The operator takes a base language
component, a client language component, and a mapping



Table II: Language Unification Operators Composing Syntax

Name Constituents Tech. Space Modular Closed Additive BB
Annotation-Based Language
Unification [46]

AS N/A ✓ ✗ ✓ ✗

Grammar Unification [63],
[64]

AS (Gr), CS (Gr) APEG, Enso ✓ ✓ ✓ ✗

Graph Merging [65] AS (RDF graph) RDF ✗ ✓ ✓ ✗
Language Aggregation [48],
[51], [66]

AS (Gr/Symbols) MontiCore ✓ ✓ ✓ ✗

Metamodel Alignment [67] AS (MM) N/A ✓ ✓ ✓ ✗
Metamodel Merging [68],
[69]

AS (MM) Melange ✗ ✓ ✓ ✗

from the client language component’s provided interfaces to
the base language component’s required interfaces. Based on
these bindings, the grammars of the language components are
embedded (using grammar embedding), their well-formedness
rules joined, and the code generators embedded as well.
Moreover, a new interface is synthesized from the interfaces
of both language components and a new language component
comprising the composed artifacts as well as the new interface
is created. On the model level, the same effect as with
Grammar Embedding is achieved regarding syntax. However,
by composing also well-formedness rules and code generators,
the semantics of the embedded concepts are also available.

dsl component TransitionSystem {

grammar mc.FSM;

gen FSMG context fsm._gen.FSMGenerators;

provides production StateMachine;

requires optional production Istate;

requires mandatory production Itrans;

provides gen FSMMainGen for StateMachine with FSMG;

requires optional gen StateGen for IState with FSMG;

requires optional gen TransGen for ITrans with FSMG;

wfrs TransitionCorrect {

fsm._cocos.TransitionSourceStateExists;

fsm._cocos.TransitionTargetStateExists;

}

wfrs TSCorrect {

fsm._cocos.AllStatesReachable;

fsm._cocos.NamesAreUpperCase;

}

}
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Figure 18: An example for a language component for a
TransitionSystem language [71].

3.3) Language Concern Composition [68], [73]
A language concern is a metamodel with behavioral semantics
realized in its methods. The metamodel may expose required
extensions as annotated interface classes. This operator takes
a base language concern with required extensions, a client
language concern as input, and a mapping from client con-
cern metamodel classes to base metamodel required inter-
face classes. It establishes interface implementation relations
between the classes of the client metamodel and the re-
quired interfaces of the base metamodel according to this
mapping (cf. Figure 19). For instance, Figure 19 shows a
base language concern FSM that is composed with two client
language concerns AL and Exp via two adapting metaclasses
BindAction and BindGuard, respectively. The models of

the composed language can then use the client’s language
concepts in place of the base language’s concepts according
to the mapping between both concerns including semantics.
An algebraic formalization of language concern composition
is available from [68].

base language 

concern

client language 

concern

client language 

concern

Figure 19: An example for the language composition operator
language concern composition that extends a state machine
language (FSM) with an action language (AL) and expression
(Exp) [73].

3.4) Language Module Extension [74], [75], [76]
A language module [75], called language [76] or trait [74],
comprises definitions of CS, AS, and computation rules (e.g.,
for semantics or well-formedness rules), such that the def-
initions of semantics are unambiguously related to a single
AS element (cf. Figure 20). The client language module can
extend from a base language module to make all CS, AS, and
computation rules of the base language modules available in
the client, which then can override (some of) these elements.
For instance, in Figure 20, the language RobotTime extends
the existing language Robot and extends the rule commands
to add time constraints. The result is that these new CS, AS,
and computation rules are available on the model level.

4) Language Unification Operators Composing Syntax and
Semantics: This section reports our findings on language
unification operators capable of composing the syntax and
semantics of two language definitions. As with language exten-



Table III: Language Extension Operators Composing Syntax and Semantics

Name Constituents Tech. Space Modular Closed Additive BB
Abstract-Syntax-Driven Lan-
guage Embedding [70]

AS (GPL classes), CS (AS
annotations), Sem (AS meth-
ods)

YAJCo ✓ ✓ ✓ ✗

Language Component Em-
bedding [71], [72]

AS (Gr), CS, (Gr) Sem
(GPL), CoCos (GPL)

MontiCore ✓ ✓ ✓ ✗

Language Concern Composi-
tion [73], [68]

AS (MM), Sem (MM) ALEX, Melange ✓ ✓ ✓ ✗

Language Module Extension
[74], [75], [76]

AS (Gr), CS (Gr), Sem (AL) LISA, Neverlang ✓ ✓ ✓ ✗

language RobotTime extends Robot {

attributes double *time;

rule extends start {

compute {

START.time = COMMANDS.time;}

}

rule extends commands {

COMMANDS ::= COMMAND COMMANDS compute {

COMMANDS[0].time = COMMAND.time + COMMANDS[1].time;}

| epsilon compute {

COMMANDS.time = 0;};

}

rule extends command {

COMMAND ::= left  compute {

COMMAND.time = 1;};

COMMAND ::= right compute {

COMMAND.time = 1;};

COMMAND ::= up    compute {

COMMAND.time = 1;};

COMMAND ::= down  compute {

COMMAND.time = 1;};

}

}
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Figure 20: An example for the language composition operator
language module extension that extends a Robot language
with time constraints [76].

sion operators composing syntax and semantics, most of these
operators expect a language definition container and some can
be applied to syntaxes without semantics. We summarized our
findings regarding language unification composing syntax and
semantics in Table IV.

4.1) Language Component Aggregation [77]
This operator takes two language components of the kind
taken by language component embedding and a set of bindings
between the interfaces of both components. It then unifies
selected language symbols exposed through their interfaces
according to the bindings passed to the operator. To realize
this unification, it uses language aggregation between their
symbols, joins their well-formedness rules, and synthesizes
adapters between components’ code generators. Figure 21)
shows language component aggregation exemplified with two
language components CD and Aut. Applying the operator
results into a new composed language component. The effect
on the model level, is, thus, the same as with language
aggregation but additionally includes well-formedness rules
and code generators.

4.2) Language Union [78]
Lang-N-Play defines AS, CS, and Sem by logic rules. Here,
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AutMain
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Class
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IGuard VarType
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AutMain

mandatory
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extension

ClassDef2
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composition
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adapter realizes aggregation from ClassDef to VarType

base component

base component

Figure 21: An example for the language composition operator
language component aggregation that composes two language
components CD and Aut and creates a new component as
result [77].

language union is the merging of new rules, which can extend
the language definition’s syntax, well-formedness rules, or
transformations, into language definitions. The rules to be
merged do not need to be part of another language definition,
but can also be specified in terms of a Prolog program. For
instance, Figure 22) shows the union of a base grammar
lists with client grammar rules for errors. Note that the
rules to be merged into a language definition do not exist as
a stand-alone artifact before and that the result of a union is
a language definition that cannot be merged into another one
directly.

lists U {!

Expression e ::= myError, 

Error er ::= myError,

(elementAt zero nil) --> myError,

(elementAt (succ V) nil) --> myError,

!}
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Figure 22: An example for the language composition operator
language union that enables lists to use error expression [78].

4.3) Metamodel Service Orchestration [79]
This operator can compose language definitions in the form
of metamodels that carry semantics as methods and expose
provider and consumer services contracts. The base language
definition, therefore, comprises consumer interfaces without



implementations and the client language definition comprises
provider interfaces with implementations (cf. Figure 23). At
the "runtime" of the metamodel instances, links between
them can be established by exchanging "XML-based mes-
sages" [79]. Hence, a composite metamodel is a "conceptual
notion" [79] only as the metamodels are not woven together.

Figure 23: An example for the language composition oper-
ator for metamodel service orchestration consisting of three
metamodels that are orchestrated based on their provideer and
consumer interfaces [79].

4.4) Object-Oriented Language Unification [76]
Here, a language module comprises definitions of CS, AS,
and computation rules (e.g., for semantics or well-formedness
rules), such that the definitions of semantics are unambigu-
ously related to a single AS element. This operator then takes
two language modules and a set of glue rules overriding the
rules of the input languages. For instance, in Figure 24 the
language unifies two languages Robot and ExprAdd. As
a result, it creates a new language module extending from
both language modules featuring the overriding rules. Thus,
the models that conform to this newly created language can
use each other’s syntax and semantics in an integrated way
within the same model file.

5) Language Restriction Operators Composing Syntax and
Semantics: The operators presented in this section can be
applied to restrict the set of accepted models or semantic
mapping of these models of a base language. Some do not
require semantics and can be applied to pure syntax as well.
We summarized our findings regarding language restriction
composing syntax and semantics in Table V.
5.1) Language Module Restriction [50], [53], [75], [78]
This operator takes a base language module and a list of
language elements of the base language that shall be reused.
The result is a new grammar that extends the base language
module without inheriting all its elements. Thus language
restriction, in this case, is achieved by not selecting the
elements of the base language module to be restricted. For

language RobotUnificationExprAdd extends Robot, ExprAdd {

rule extends start {

compute {}

}

rule overrides command {

COMMAND ::= left EXPR compute {

COMMAND.outx = COMMAND.inx – EXPR.val;

COMMAND.outy = COMMAND.iny;

COMMAND ::= right EXPR compute {

COMMAND.outx = COMMAND.inx + EXPR.val;

COMMAND.outy = COMMAND.iny;

COMMAND ::= up EXPR compute {

COMMAND.outy = COMMAND.iny;

COMMAND.outx = COMMAND.inx + EXPR.val;

COMMAND ::= down EXPR compute {

COMMAND.outy = COMMAND.iny;

COMMAND.outx = COMMAND.inx - EXPR.val;

}

}
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Figure 24: An example for object-oriented language unifica-
tion [76].

instance, in the language definition in Figure 25, one of the
slices could be removed to restrict the language. The effect
on the model level is that all language concepts of the base
language without the restricted ones are available to be used.
An algebraic formalization of language module restriction is
available from [53].

language sm.ext.Lang {

slices

sm.base.State

sm.base.Transition

sm.StateList

sm.TransitionList

sm.base.Identifier

endemic slices

sm.base.SMBuilder al.VarTable

roles syntax < collect-states < validate < translate

}
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sm.ext.ProgramSlice
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Figure 25: An example for the language composition operator
for language module restriction depicting a state machine lan-
guage in Neverlang consisting of slices that reference modules.
By removing slices, the language can be restricted [75].

5.2) Language Slicing [68]

In language slicing, elements of one metamodel (pattern)
are removed from a base metamodel by matching of names
of, e.g., classes, attributes, methods, etc.. The resulting meta-
model then yields fewer elements than its base metamodel.
For instance, in Figure 26 the class D is sliced. Where
the metamodels can carry semantics in the form of method
implementations, this also slices semantics realizations. The
effect on model level is the same as in Language Module
Restriction. An algebraic formalization of language module
restriction is available from [68].



Table IV: Language Unification Operators Composing Syntax and Semantics

Name Constituents Tech. Space Modular Closed Additive BB
Language Component Aggre-
gation [77]

AS (Gr), CS (Gr), Sem
(GPL), CoCos (GPL)

MontiCore ✓ ✓ ✓ ✗

Language Union [78] AS, CS, Sem (GPL) Lang-N-Play ✗ ✗ ✓ ✗
Metamodel Service Orches-
tration [79]

AS, CS, Sem (GPL) N/A ✓ ✗ ✓ ✗

Object-Oriented Language
Unification [76]

AS (MM), CS (Gr), Sem (AS
methods)

LISA ✓ ✓ ✓ ✗

Table V: Language Restriction Operators Composing Syntax and Semantics

Name Constituents Tech. Space Modular Closed Additive BB
Language Module Restriction
[50], [53], [75], [78]

AS (Gr), CS (Gr), Sem (AL) Grammarware, Neverlang ✗ ✗ ✗ ✗

Language Slicing [68] AS (MM), Sem (Int) GEMOC / Melange ✓ ✓ ✗ ✗

base metamodel resulting

metamodel

Figure 26: An example for the language composition operator
for language slicing with the source left and the result on the
right based on the input of metaclass D [68].

6) Summary of Findings and Practitioners Guide: Our
findings show that most of the operators found work solely
composing syntax. Thereby, using graphs, metamodels, gram-
mars, or GPL classes for specifying the abstract syntax. For
the desired composition effect, most operators are classified
into language extension (13), followed by language unification
(10). Only two operators, that we found can be used for
language restriction. From our findings, we extracted a guide
for practitioners (see Figure 27) that gives an overview of
all composition operators available in literature today and to
identify the most accurate operator for their needs. To this end,
Figure 27 depicts different decisions that ultimately lead to a
composition operator identified in our study. For all operators,
we decide between the different abstract syntax realizations,
whether semantics is required, if yes, how it is realized, and
what the desired effect of applying the operator should be,
i.e., how it is classified. Where necessary to distinguish from
other operators, we furthermore added decision nodes for
properties or technological spaces. Otherwise, the properties
and technological spaces are stated in the Tables I-V. For
instance, for abstract syntax is realized in a metamodel,
and semantics is not required, the desired effect should be
classified as an extension, and all the investigated properties
of our studies should be fulfilled, then the only appropriate
operator is Metamodel Fragment Composition. For the paths

that are not covered in Figure 27 we did not find an operator
in our study. This lets researchers identify uncharted territory,
e.g., no composition operator composes metamodels including
semantics defined in code generators.

B. RQ2: Which Language Dimensions are Supported by Com-
position Operators?

Most language composition operators only support a subset
of language constituents or may only be realized in certain
technological spaces. Therefore, they are only applicable to
some implementations of language constituents. For example,
some language composition operators may only support the
composition of abstract or concrete syntax, whereas others
also enable the composition of semantics (meaning [27]).
Furthermore, some language composition operators operate on
metamodels, whereas others operate on context-free grammars.
With this research question, we aim to identify which language
composition operators support which language constituents
and which implementations. In particular, we are interested in
language composition operators that support the composition
of semantics and whether or not any language composition
operators support a multitude of implementations.

Regarding language constituents, our primary question is if
any language composition operators support both the compo-
sition of syntax and semantics. While all identified operators
support the composition of language syntax in one form
or another, only 10 (40%) of the 25 identified language
composition operators support the composition of semantics.
For the composition of abstract syntax, composition operators
mainly operate on grammars (40%) and metamodels (40%).
On these, the composition of languages’ abstract syntax is
well-understood. Other composition operator utilizes GPL
classes [70] or employs RDF graphs [65] for abstract syn-
tax composition. For the remaining language composition
operators, the respective publications claimed to support the
composition of abstract syntax. However, these did not specify
how the abstract syntax is defined. On both grammars and
metamodels, operators exist that support language extension
(cf. Table I and Table III), unification (cf. Table II and
Table IV), restriction (cf. Table V). There are language
composition operators such as language extensions, aggrega-
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Figure 27: A guide to choosing a suitable composition operator for specific needs. Whenever an option for a decision is not
available, we found no suitable operator in our study for it.

tion, and language embedding for the composition of abstract
syntax defined by grammars, and language merging and slicing
for the composition of abstract syntax defined by metamodels.
For the definition of language semantics, language definitions
rely on code generators, internal and external interpreters, and
aspects. For all these, at least one operator exists that supports
their composition. Furthermore, all of these can be combined
with the common concepts for abstract syntax definition, i.e.,
grammars and metamodels.

Besides the combined support for language syntax and
semantics, we were also interested in whether language com-
position operators support different implementations, e.g., the
composition of grammars with metamodels. Such composition
operators could help to bridge the gap between technological
spaces and foster the reuse of legacy languages. Furthermore,
the composition of grammars with metamodels would enable
language developers to benefit from both concepts, utiliz-
ing their strengths and mitigating their weaknesses. Through



such composition operators, for example, language developers
could utilize grammars’ close connection of concrete and
abstract syntax to define the syntax-heavy part of a language,
such as expressions, and utilize metamodels for the structural
parts. However, in our study, we did not identify any operator
that supports the composition of grammars with metamodels.

Besides the composition of grammars with metamodels,
language composition operators should also support the com-
position of language semantics to ensure that also the mean-
ings of their models can be composed. Otherwise, composing
modeling languages is reduced to composing syntax and
"gluing" the different semantics carrying artifacts together
manually again. This entails that modeling language reuse
through composition is limited to experts in the corresponding
technological spaces. However, the findings of our corpus
suggest that the semantics of modeling languages are largely
realized through interpretation or translation (compiling), i.e.,
the semantics are specified as code in the interpreter or through
transformations that produce artifacts carrying the semantics
of the models. This entails that the semantics of a modeling
language often is implemented in code and polluted with
technical details to an extent that complicates analyzing and
composing their semantics realizations.

C. RQ3: Which properties do language composition opera-
tors have concerning being black-box, modular, additive, and
closed under composition?

With this question, we aim to investigate the properties of
the composition operators that we identified in our review.
Thereby, we aim to identify how much knowledge about lan-
guage specifics and internals is necessary to apply composition
operators. Furthermore, we want to find out how modular the
composed language is, i.e., whether the composed languages
continue to exist as identifiable and changeable artifacts from
which changes are propagated to the composed language.
Besides, we want to investigate which operators are additive
and which are restrictive. Finally, we are interested in the
operability of the operators, i.e., whether they are closed under
composition. Summarized, in this section, we aim at answering
the following research questions:
RQ 3.1 How much knowledge about the internals of a lan-

guage is necessary to perform the composition, i.e., what
are existing black-box approaches to language composi-
tion?

RQ 3.2 How modular are existing composition operators?
RQ 3.3 Are the existing operators additive or restrictive?
RQ 3.4 Are the existing operators closed under composition?

RQ 3.1: How much knowledge about language internals is
necessary for composition?: With this research question, we
want to investigate, how much knowledge about the internals
of the languages to be composed is necessary. This includes
knowledge about the technological space, the realization of
the constituents, e.g., is it important to know whether the
abstract syntax is specified in a metamodel or a grammar,
and also the knowledge about the internal structure of these
artifacts, e.g., is it important to know the right-hand side of
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Figure 28: The number of operators with the properties of
being a) black-box (1), b) modular (20), c) additive (22), and
d) closed under composition (19).

a grammar production that we want to compose. A black-
box composition operator for composing metamodels is the
operator Metamodel Fragment Composition [56]. The opera-
tor introduces metamodel fragments as units of composition
with contractually specified provided interfaces and required
interfaces. A metamodel fragment encapsulates metamodel
elements that contribute to either fragment implementation or
fragment interface definition. To support information hiding,
a fragment defines a set of interfaces, which hide the internal
implementation of a fragment. By binding interfaces of two
fragments, metamodels can be composed.

The operators Language Component Embedding [71], [72]
and Language Component Unification [77] are white-box
composition operators employing language components rep-
resenting language fragments that can be reused. Language
components can comprise syntax and semantics. These con-
stituents can then be provided for other components to be
reused by the component’s interface. The interface points of
multiple components can then be bound to each other for
the underlying language artifacts to be composed. Thus, the
language engineer does neither require knowledge about the
artifacts to realize the language nor their internal structure.
For the automated composition of the realizing artifacts, the
authors present composition operators for context-free gram-
mars, well-formedness rules, and code generators realizing
the semantics. However, when composing code generators
via this mechanism, the language engineer needs to write
glue code, thus, he needs white-box knowledge in this case.
Hence, both operators are only black-box when considering
the composition of syntax and context conditions, otherwise,
they are white-box.

Another borderline white-box composition operator is Lan-
guage Module Extension based on Neverlang [75]. In Never-
lang, languages are defined at multiple levels of abstraction.
The lowest level is modules. Modules can declare syntax and
arbitrary many roles. Roles implement the semantics for the
respective syntax. Slices, the next higher level of abstraction



are language components that comprise multiple modules that
belong to one another. For example, a module containing a
syntax definition for a while loop, a module with a role for
checking whether the condition evaluates to a Boolean and a
role for generating executable code. Slices then can be reused
in languages where multiple slices are imported and composed.
This seems like a black-box operator at first but requires white-
box knowledge as there are no explicit bindings of roles or
syntax rules in the language definition. Thus, when composing
two slices containing syntax and roles, the language engineer
has to know, which syntax rule fits another one, and which
role has to be executed in which order.

RQ 3.2: How modular are the composition operators?:
This research question aims at finding out, whether the result
of the composition is modular. The result is modular if the
composed parts continue to exist as identifiable artifacts in the
composite. Figure 28 b) shows the findings of our literature
review regarding this question. 80%, i.e., 20 of the operators,
are modular, whereas 20%, i.e., 5 operators, are not. In the
following, we present a modular and a non-modular compo-
sition operator. A modular composition operator is Grammar
Embedding [47], [48], [49]. This operator takes a production of
a host grammar and a production of a client grammar as input.
The result is a new grammar with an extended production
that embeds the client grammar’s production into the host
grammar’s production. Both composed productions exist and
are identifiable after the embedding. The involved grammars
may be imported and the host production be extended by a
new alternative on its right-hand side containing the client’s
production. Thus, all of the operator’s input continues to exist
after the composition.

A non-modular operator is Metamodel Merging [52], [69].
It takes two metamodels as input and produces one merged
metamodel comprising all concepts of both metamodels and
merged concepts that are shared across both metamodels.
However, the result, i.e., the merged metamodel, no longer
provides information about the two source metamodels or
which concepts originate from which metamodel.

RQ 3.3: Are the composition operators additive or re-
strictive?: We consider a language composition operator as
additive when the operator only adds language constituents to
a language definition, whereas a restrictive operator removes
constituents. All of the found language composition operators
classified as language extension or language unification are
additive. For instance, Abstract-Syntax-Driven Language Em-
bedding supports language unification by extending an existing
language with concepts that enable the embedding of concepts
of a second language. However, there are operators that are
additive in the language definition but can be restrictive on
the language that results. Syntax Component Composition is
additive in the way that it enables to add grammar productions
and context conditions to a language definition. Since context
conditions add constraints based on the abstract syntax of a
language adding context conditions can restrict a language.
There are two restrictive language composition operators.
Language Slicing gets a metamodel class and a metamodel

and removes the class and all its dependencies from the
metamodel recursively and, thereby, restricts the language and
its definition.

RQ 3.4: Are the composition operators closed under com-
position?: We consider a language composition operator as
closed under composition if it takes two language fragments of
the same type (e.g., two grammars) and produces another frag-
ment of that type, such that the result of the composition again
can serve as input for another composition. This facilitates
reuse and language evolution. Figure 28 d) shows our results
on composition operators that are closed under composition.
Most of the operators (76%) are closed under composition.
One of the operators that is not closed under composition is
Metamodel Mixins [57]. The operator for metamodel mixin
takes two inputs, a parent element and a mixin element.
A parent element is a compound metamodel class that can
contain other elements such as attributes or reference other
metamodel classes. A mixin element is a compound element
that must be abstract to be reused. The result of the operator
is an extended metamodel with the mixins mixed in the parent
element. However, the result of the operator, the extended
metamodel, cannot be reused as a mixin element in another
composition step.

VI. RELATED WORK

Systematic mapping studies [80] and systematic literature
reviews [81] are common methods for investigating state-of-
the-art and open challenges in software engineering. Several
mapping studies and literature reviews examining the current
state of DSLs, their reuse, and variability exist today.

Studies on the Engineering of DSLs

A systematic mapping study on DSLs [82] investigates,
which techniques and methods are used when working with
DSLs. Regarding the composition of DSLs, their mapping
study states that the development and tooling for single DSLs
is well-studied, but research on the interaction and integration
of multiple DSLs is still ongoing. Another systematic map-
ping study on DSLs [83] points out that there is a lack of
research in the direction of validation and maintenance. We
think, that by giving DSL developers a clear understanding of
the existing landscape of composition operators, maintenance
could be improved by better modularization and reusability of
DSLs. However, both mapping studies aim at giving a general
overview of techniques for DSL development and which DSLs
are created with which tools and for which domain, instead
of being focused on the reuse and composition of DSLs. For
managing variability in DSLs, the concept of language product
lines has emerged. A systematic literature review on lan-
guage product lines [84] analyses the capabilities of currently
existing approaches. The paper identifies three dimensions
of variability: (1) Abstract syntax variability describes the
capability to select suitable language constructs for a particular
user, (2) concrete syntax variability to the support selecting a
different representation of the same construct, and (3) semantic
variability is supported when different interpretations for a



language construct can be selected. For capturing all of these
dimensions of variability, different feature model representa-
tions are proposed in the literature. One possibility is feature
models supporting functional variability where one feature is
associated with one language that comprises all dimensions.
Another one is multi-dimensional variability with concern-
specific features, where each feature comprises either abstract
syntax, concrete syntax, or semantics, but it is not mandatory
to comprise all aspects at once. The third possibility is multi-
dimensional variability with concern-specific subtrees. In this
feature tree, all dimensions of variability are one abstract
feature and the concerns are then children of the respective
dimension feature. Besides, for supporting language modular-
ization the review differentiates between two techniques: (1) In
endogenous modularity relationships between languages are
defined as part of the language definition itself. Usually, this
is done via import statements. By importing another language
definition, all of its language constructs are available. (2) In
exogenous modularity, however, the relationship between lan-
guages is defined externally in third-party artifacts that are
then input for the composition process of both languages. For
future research, the paper identifies the analysis, evaluation,
and evolution of language product lines as open challenges.
Since the paper investigates language product lines and the
modularity of languages that should be incorporated into
these, the composition of languages or identifying language
composition operators and their specifics is not the main focus
of the literature review.

Studies on Language Workbenches

A comparison of language workbenches [31], extracts a
feature model on the realization of constituents of modeling
languages, i.e., notation, semantics, validation, editor, and
composability, in different language workbenches. The re-
sults of the comparison on composability show that most of
the investigated language workbenches support incremental
extension and language unification across all constituents
of their respective language specifications. To evaluate their
results, they performed various benchmarks in the course of
the language workbench challenge. Although the comparison
partly investigated composability, this is not the main focus
of the study and is also limited to the scope of language
workbenches, whereas our review also included operators
conceptualized without having a specific technological space
of a language workbench in mind.

The survey performed in [85] provides an overview of
DSL implementation aspects and classifies 14 language work-
benches according to these implementation approaches. Be-
sides the implementation aspects for language structure, i.e.,
syntax, language semantics, language validation, and lan-
guage editors, they consider language composability as one
implementation aspect of DSLs. The investigated language
workbenches support composability in different means. For
instance, Xtext supports only language extension and from
only one grammar and thus, does not support language exten-
sion composition or unification. Enso realizes composability

by defining its merge operator between two grammars resulting
in a new combined language. Although the authors mention
different composition operators, they do not argue, why and
in which way they support the classifications of [30]. Further-
more, their investigations on composition operators are limited
to the scope of language workbenches and potentially missing
operators described on a conceptual level only.

Language Composition Classifications

We based the classification of extracted composition opera-
tors based on [30]. However, there are other classifications in
the literature, that we could have used instead. For instance,
classify between language extension and specialization [86].
The former describes the extension of a base language with ad-
ditional concepts, and the latter the specialization by restricting
a base language. We consider both classifications in this paper
but adopt the more precise differentiation in language exten-
sion and call specialization restriction instead. Besides, papers
describing composition operators also name new composition
classifications like merging [54], [57], inheritance, slicing, and
mixin [65], [68], [69].

However, we only found a few implementations of each
classification and found that they could be classified as lan-
guage extension and unification according to the definition
of Erdweg et. al.. A literature study on model composi-
tion [87] classifies studies into model-driven development-
oriented, aspect-oriented modeling, collaborative program-
ming, and domain-specific languages. Only the last classifi-
cation is focused on language composition that propagates the
composition to the model level. Nonetheless, the study’s scope
is model composition, and therefore they do not provide any
new language composition classifications.

VII. DISCUSSION

This section summarizes our observations, identifies future
challenges for language composition, and discusses threats to
the validity of our literature review.

A. Observations

Regarding the classification of the composition operators
that we found, most of the operators belong to the classifica-
tion of language extension. All of the identified composition
operators across all classifications support the composition
of syntax. However, there are differences in the realization
of syntax specifications between the operators. Language
extension composing syntax is entailed in the composition
of grammars, metamodels, and GPL classes. The operators
classified into language restriction are even more restrictive by
supporting grammars and metamodels only. In that regard, we
observed that there are no composition operators for restricting
syntax solely. Consequently, there are many unexplored paths
in our guide for practitioners that are not covered by current
publications on language composition operators, and, thus,
are open to future research (cf. Figure 27). The specification
of a language’s constituents depends on the technological



space. We observed that two-thirds of the composition oper-
ators are specific to a single technological space or at least
are presented that way. The operators that were described
without a technological space were either pure conceptual
work using pseudo code or technology-unspecific descrip-
tion techniques, e.g., MOF models as metamodels. Since
composition operators and language workbench are strongly
intertwined, investigating how the composition operators can
be realized using different language workbenches would be a
great opportunity for future research. Regarding modularity,
most operators are modular. This is also the case for closed
under composition. The operators that are not closed under
composition and do not compose language artifacts of the
same type; instead, these operators use the language as one
input and a second input specifying the operation or the
element to be modified, e.g., removed. Another observation
is that, besides the operators for reduction, all operators are
additive. We found that black-box capabilities are rare with
only one operator supporting this property. Taking a look at
the different classifications for the operators shows that there
exists one black-box operator for syntax extension only. No
black-box composition operator exists regarding the extension
of syntax with semantics, unification, and restriction. Since
only five of the found operators provide formal descriptions,
i.e., making an effort to describe their composition operators
mathematically, it is unclear whether some of these cases
describe different mechanisms or whether they are essentially
the same but in slightly different contexts, for instance, at
different levels of abstraction. Also, our findings indicate the
usefulness or fitness of using a language composition operator
along the classification of Erdweg et. al. and the properties that
we observed. However, the suitability for a specific purpose
or use case cannot be indicated as they may feature other
properties outside of the scope of this paper, e.g., whether they
can be applied fully automatically or whether the application
can produce conflicts that need to be resolved (manually).

In summary, many extension operators for external model-
ing languages focus on abstract syntax, either specified through
grammars or metamodels of which all are additive and none is
usable in a black-box fashion. There also are some operators
for the extension of modeling languages featuring syntax
and semantics. The prevalent means to compose semantics
seems to be by including methods realizing the semantics in
the abstract syntax and the use of the same (mostly object-
oriented) composition mechanisms for both syntax and seman-
tics. This eases the composition as fewer different composition
mechanisms need to be understood then. For the unification of
modeling languages including syntax and semantics, only four
operators were identified and these use different mechanisms
each. Likewise, for the restriction of modeling languages,
only two operators were identified, one removing metamodel
elements and the other removing grammar rules. A side effect
of the diversity of modeling language composition operators
being spread across different technological spaces is that there
currently is no technological space supporting all kinds of
language composition operators as outlined in Sec. II.

Of course, the pure technical availability of a model-
ing language composition operator is not sufficient for its
adoption. This requires also awareness of their existence by
practitioners as well as support in sufficiently sophisticated
language workbenches. For the former, surveys or interviews
with practitioners would be necessary, for the latter, a detailed
analysis of implementations in the different workbenches.
Both of which should be the subject of future research.

For this survey we opted to reuse the classification schema
of [30], to ensure some comparability with their initial work on
language composition. Naturally, there are other means to clas-
sify modeling language composition operators as well, such as
the distinction into merging, inheritance, and slicing [68] or
referencing, embedding, and extension [88]. Such classifica-
tions usually stem from a specific technological background,
such as metamodeling [68], and, hence, are partly applicable
to general modeling language composition.

B. Challenges

Our observations regarding existing language composition
operators and their properties lead to challenges for future
investigations:

1.) Black-box Composition
Furthermore, composition operators should be easy to learn
and apply. Black-box composition of languages can help with
that as the implementation details of the languages to be
composed remain hidden. In our study, we could only identify
one black-box composition operator. Beyond these, further
black-box operators supporting various kinds of language
composition operators may be developed.

2.) Heterogeneous Composition
Language composition is a means of language (part) reuse.
As such, language composition operators should support the
composition of languages and language parts across different
technological spaces (e.g., embedding a Neverlang language in
an Xtext language). However, none of the identified operators
supports such heterogeneous language reuse.

3.) Automated Composition
Another challenge is the automation of the composition,
i.e., how much-handwritten extension is necessary after the
composition took place. This is especially important for black-
box approaches because otherwise, white-box knowledge is
needed after the composition to finish integrating all parts of
the composed languages. For instance, the composition oper-
ator Language Component Embedding [71], [72] is black-box
regarding the composition of syntax and context conditions,
but requires a handwritten adaptation of the generator after
the composition for the generators of both languages to be
integrated, and, thus, ultimately, is white-box.

4.) Alignment of Operators
In summary, we identified 36 publications reporting on 25
distinct language composition operators in the past ten years.



Hence, much effort is put into the development of new compo-
sition operators. We took a detailed look into the functioning
of the operators on the language definition level and distin-
guished the operators based on that. However, in the future,
their effect on model level could be investigated further to
align operators on that level, too. From that operators could be
further generalized to be reusable across technological spaces.
Furthermore, another literature review could investigate what
the most frequently used operators are. With this knowledge,
we could tackle the challenges mentioned before for these
operators first.

5.) Formalization
In this paper, we informally described 25 different composition
operators. This is, because only 8 of 25 and only 6 out of
39 papers provide a formal description of their presented
operator. As we are conducting a secondary study, we can only
report on what is available. Where formal descriptions were
provided, these usually build upon either a specific algebraic
or logical theory built up in the corresponding publication.
Future investigations could be formalizing existing operators
to target exact definitions and relations between the various
approaches and operators.

C. Threats to Validity

We identify threats to validity according to the four basic
types of validity threats [89]: Our study is subject to threats
to construct validity (research design), internal validity (data
extraction), and conclusion validity (reliability). Threats to
external validity (generalizability) are irrelevant as the results
of our study cannot be generalized to other domains besides
software languages and their composition.

Construct validity: the presented findings are only valid for
our sample of papers. Thus, we ensured to include as many
relevant papers as possible. To achieve this, we included the
ACM digital library, SCOPUS, WOS, Spring Link, and IEEE
Explore and only very carefully under the given exclusion
criteria, excluded publications. Furthermore, we did not restrict
our search query to only "language composition" but also
included other terms for language like "DSL" or "grammar"
for the definition of a language’s syntax in the first part of
our conjunction. For the second part, we also have chosen
three more synonymous terms for "composition". This enabled
capturing related publications without focussing on the exact,
very specific, partly ambiguous "language" and "composition"
terminology. Another threat to research design validity arises
from the definition of the criteria of inclusion and exclusion.
During the screening, we only considered the title, abstract,
and keywords. To prevent excluding relevant publications
based on the lack of investigation, we included papers we
were uncertain of temporarily. In the subsequent phase, the
complete papers were read and inclusion or exclusion was
decided ultimately. Furthermore, in this step, all authors of
this paper read 25% of the potentially relevant papers, filled
out the analyses sheet, and discussed these papers together
by comparing each other’s sheets. This helped us get more

confident in the analysis of the subsequent papers and im-
proved our understanding of the questions in the analysis
sheet. Besides, our review also is subject to the so-called
publication bias, i.e., it can report on published results only.
Thus, we can only report on composition operators found
in the literature. Furthermore, in cases where authors claim
that their composition operators apply to certain language
constituents without proving their claim, we have to trust their
scientific ethics.

Internal validity: copes with problems arising during data
extraction. Of course, our study relies on the quality of
the primary studies. The most important threat regards the
terminology used in the different publications to describe the
composition operators. To deal with this issue we discussed
terminology among the authors during the classification phase
and agreed on the names in Sec. V-A. Another threat to
internal validity is the description of the operators. Some
papers provide a fine-grained description, whereas others only
provide a cursory introduction to their operator. To counteract
this issue we designed a detailed questionnaire that was
required to be filled out for each operator. We excluded all
publications that did not provide a sufficient description to fill
out our questionnaire.

Conclusion validity: Threats here are making wrong con-
clusions and a lack of replicability. Regarding the former,
we have discussed various issues that could lead to wrong
conclusions in the context of threats to internal validity. For
the study’s replicability, we detailed the complete research
method in Sec. IV, which enables replicating every phase of
this mapping study.

VIII. CONCLUSION

We investigated the state of language composition based on
the categories identified by Erdweg et al [30] ten years ago
through a systematic literature review. Our findings amplify
their categories as we did not find a language composition
operator outside of these categories. Based on a corpus of 36
relevant publications, we identified 25 composition operators.
We detailed the identified operators regarding the language
constituents they consider, the technological space they operate
within, and whether they are modular, closed, additive, or
require white-box expertise for their application. We found
some operators considering both syntax and semantics, which
suggest that there are approaches to holistic language reuse.

Based on the insights about the identified operators, we
identified four important challenges for easing language reuse
even further, which are (1) composition across technological
spaces, (2) in a black-box fashion, (3) fully automated, as
well as (4) improving our understanding of the commonalities
and differences of operators to guide research on language
composition and enable investigation of language extension
composition.

Overall, the findings reported in this study draw a map
of composition operators, that can guide practitioners in
identifying the language composition mechanisms they need
for specific challenges based on our classification related to



Erdweg et. al. and the properties we analyzed. However, there
are still unexplored paths in our map that are up to future
investigations on the topic.
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