
The Journal of Systems and Software 149 (2019) 437–461

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Continuously analyzing finite, message-driven, time-synchronous

component & connector systems during architecture evolution

Arvid Butting

1 , Oliver Kautz

1 , ∗, Bernhard Rumpe

1 , Andreas Wortmann

1

Software Engineering, RWTH Aachen University, Aachen, Germany

a r t i c l e i n f o

Article history:

Received 30 September 2017

Revised 28 May 2018

Accepted 18 December 2018

Available online 19 December 2018

Keywords:

Component Software Engineering

Semantics

Automata

Refinement

Semantic Differencing

Evolution Analysis

a b s t r a c t

Understanding the semantic differences of continuously evolving system architectures by semantic analy-

ses facilitates engineers during evolution analysis in understanding the impact of the syntactical changes

between two architecture versions. To enable effective semantic differencing usable in practice, this re-

quires means to fully automatically check whether one version of a system admits behaviors that are

not possible in another version. Previous work produced very general system models for message-driven

time-synchronous (MDTS) systems that impede fully automated semantic differencing but very ade-

quately describe such systems from a black-box viewpoint abstracting from hidden internal component

behavior. This paper presents a system model for MDTS systems from a white-box viewpoint (assum-

ing component implementation availability) and presents a sound and complete method for semantic

differencing of finite MDTS system architectures. This method relies on representing (sub-)architectures

as channel automata and a reduction from the semantic differencing problem for such automata to the

language inclusion problem for Büchi automata. The system model perfectly captures the logical basics

of MDTS systems from a white-box viewpoint and the method enables to fully automatically calculate

semantic differences between two finite MDTS systems on push-button basis, yields witnesses, and ulti-

mately facilitates semantic evolution analysis of such systems.

© 2018 Elsevier Inc. All rights reserved.

1

d

r

b

a

(

p

f

l

r

p

s

a

f

M

r

m

s

l

o

T

m

t

i

p

t

F

o

g

a

i

p

i

h

0

. Introduction

Component-based software engineering (Naur and Ran-

ell, 1969) promises improving software development through

euse of independently developed and validated off-the-shelf

uilding blocks with stable interfaces. These building blocks usu-

lly are implemented in general-purpose programming languages

GPLs), Hence, they are subject to the conceptual gap between the

roblem domains and solution domains of discourse, which arises

rom addressing problem domain challenges with programming

anguage complexities (France and Rumpe, 2007).

Model-driven development (MDD) (Völter et al., 2013) aims at

educing this gap by lifting domain-specific, abstract, models to

rimary development artifacts. Such models can leverage domain-

pecific vocabulary to be better comprehensible as well as more

bstract and hence are better suited towards analysis and trans-

ormation than GPL programs. Software engineering also applies

DD to itself to facilitate addressing its challenges. Consequently,
∗ Corresponding author.

E-mail addresses: butting@se-rwth.de (A. Butting), kautz@se-rwth.de (O. Kautz),

umpe@se-rwth.de (B. Rumpe), wortmann@se-rwth.de (A. Wortmann).
1 www.se-rwth.de

s

t

a

S

ttps://doi.org/10.1016/j.jss.2018.12.016

164-1212/© 2018 Elsevier Inc. All rights reserved.
odeling languages for various challenges in software engineering,

uch as database manipulation languages, build process description

anguages, and architecture description languages have been devel-

ped.

Architecture description languages (ADLs) (Medvidovic and

aylor, 20 0 0) leverage the potential of model-driven develop-

ent (Völter et al., 2013) for the description of software architec-

ures. In many domains, knowing the precise semantics of models

s crucial due to safety concerns, but current architecture modeling

rocesses, such as MDA (Object Management Group, 2003) do not

ake these into account. Stepwise refinement (Broy, 2010; Broy and

uchs, 1992) is a software engineering methodology for continu-

us architecture modeling based on controlled evolution and pro-

ressive improvement of components: each subsequent version of

 component model must adhere to properties already proven for

ts predecessors. To this effect, checking whether successor com-

onent versions refine their predecessors in terms of observable

nput/output behavior is crucial.

Similar to UML (Object Management Group, 2010), the specific

emantics of many ADL details are encoded in their infrastruc-

ures and tools only. Where fully detailed denotational or oper-

tional semantics are available, such as with Focus (Broy and

tølen, 2001), these are usually too complex for fully automated

https://doi.org/10.1016/j.jss.2018.12.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.12.016&domain=pdf
mailto:butting@se-rwth.de
mailto:kautz@se-rwth.de
mailto:rumpe@se-rwth.de
mailto:wortmann@se-rwth.de
http://www.se-rwth.de
https://doi.org/10.1016/j.jss.2018.12.016

438 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

c

r

T

o

a

u

c

1

f

t

m

t

m

p

s

d

a

d

a

t
refinement checking and typically require to (partially) manually

prove refinement between two component versions. This impedes

stepwise refinement so severely that it becomes a “highly ideal-

istic” (Broy, 2010) idea. However, enabling automatic stepwise re-

finement for software architecture models would greatly facilitate

development in domains where component adherence to certain

properties is crucial. With automated methods, manual proofs be-

come redundant. This enables users who are no experts in formal

methods to prove or disproof refinement between architecture ver-

sions. As programmers are rarely experts in formal methods, this

opens the possibility to apply stepwise refinement methodologies

to a broader user range. In case an architecture is no refinement

of another, the method presented in this paper fully automatically

calculates a behavior that is possible in the one architecture but

not in the other. This behavior serves as witness and is a concrete

disproof for refinement. Software engineers can use the witness as

evidence for efficiently identifying the syntactic elements in the ar-

chitecture’s implementation that cause non-refinement.

In Butting et al. (2017) , we identified a subset of the Fo-

cus (Broy and Stølen, 2001) semantics for time-synchronous, dis-

tributed, interactive systems that is powerful enough to model

complex and realistic systems and is adaptable to enable fully au-

tomated refinement checking between components. Based on this,

Butting et al. (2017) describes an approach to transform software

component models into a variant of port automata (Grosu and

Rumpe, 1995), compose these syntactically, and translate the

results into Büchi automata, where their refinement can be

checked through language inclusion (Kupferman and Vardi, 1996).

This approach is realized with the MontiArcAutomaton compo-

nent & connector ADL (Ringert et al., 2015; 2014) and the RA-

BIT (RABIT Tool Homepage, 2016; Abdulla et al., 2011) tool for fully

automated language inclusion checking between Büchi automata.

It enables modeling software architectures with powerful ADLs and

checking refinement on a push-button basis. To this effect, the con-

tributions of Butting et al. (2017) are:

• A formulation of the semantics domain of time-

synchronous (Broy and Stølen, 2001) stream processing

functions (TSSPFs) inspired by the notion of stream processing

function (Ringert and Rumpe, 2011).
• A variant of port automata: time-synchronous port automata

(TSPA) (Grosu and Rumpe, 1995) with operational semantics

based on execution traces and denotational semantics based on

sets of TSSPFs.
• A semantically compositional syntactic composition operator

for TSPAs: The semantics of the syntactic composition of two

TSPAs is equal to the composition of the semantics of the indi-

vidual TSPAs.
• A transformation from finite TSPAs to Büchi automata.
• A proof showing the operational semantics of a finite TSPA and

the language accepted by the Büchi automaton resulting from

such a transformation coincide.
• The result that refinement checking and disproof generation in

form of semantic difference witnesses for software architec-

tures where components can be mapped to finite TSPAs can

be reduced to language inclusion checking and counterexample

generation for Büchi automata.
• An implementation based on the MontiArcAutomaton compo-

nent & connector ADL (Ringert et al., 2015; 2014) and RA-

BIT (RABIT Tool Homepage, 2016; Abdulla et al., 2011).

In this paper, we enhance and extend the previous approach to

achieve practical efficiency improvements and technical enhance-

ments of the underlying formal system model. To this effect, this

paper’s additional contributions are:

• Time-synchronous channel automata (TSCAs): an improved

variant of TSPAs that enables defining an associative and com-
mutative syntactic composition operator, while retaining previ-

ous results regarding the relation between the system models

and compositionality.
• The previous composition operator for TSPAs (cf. Butting et al.,

2017) is neither associative nor commutative. Using the com-

mutativity and associativity of the TSCA composition operator

enables to define an intuitive notion of system architecture,

which is not possible with the TSPA composition operator.
• A method for trimming finite TSCAs to reduce complexity of

analyses.
• A method for composing finite TSCAs such that the compound

does not contain any unproductive states to mitigate state ex-

plosions.
• The identification of a subclass of finite non-deterministic

TSCAs, which is a proper superset of deterministic TSPAs, where

semantic differencing is possible in polynomial time.
• The insight that the Büchi automata resulting from transform-

ing TSCAs are always “weak” and therefore enable the applica-

tion of efficient algorithms enabling, for instance, easy comple-

mentation or minimization.
• A notion of system architecture based on a white-box view-

point on message-driven time-synchronous (MDTS) systems

and the previously developed theory. The associativity and

commutativity of the composition operator for TSCAs is im-

portant for the notion of system architecture to be well

defined. The system architecture definition as introduced

in this paper is not possible with TSPAs as introduced

in Butting et al. (2017) because TSPAs do not have a commu-

tative and associative composition operator.
• A method for mitigating the state explosion problem during se-

mantic differencing of finite system architectures, which is es-

pecially useful during continuous architecting when it comes

to understanding the semantic differences between two suc-

cessor versions. The method not only relies on trimming but

also on iteratively applying refinement checking to smaller sub-

architectures.
• An extended evaluation including an additional example and an

improved composition method that combines composition with

trimming.

This paper further contains many additional examples that in-

rease comprehensibility and illustrate this paper’s approach. The

esulting fully automatic analysis technique for comparisons of

SCAs greatly supports continuously evolving projects where the

verall architecture changes frequently. It also greatly facilitates

nalyzing the semantic differences between products of a prod-

ct line architecture where the individual products are syntacti-

ally only slightly different.

.1. Paper structure and overview

Section 2 sketches the idea of stepwise refinement. To this ef-

ect, it presents two architecture models, the elevator control sys-

em presented and evaluated in Butting et al. (2017) as well as a

ore compact architecture serving as running example throughout

his paper.

Subsequently, Section 3 presents the Focus subset used as se-

antics domain from a black-box viewpoint (as functions). This

aper’s approach is applicable to finite systems where it is pos-

ible to describe the system’s semantics with the system model

escribed in this section. It is argued that the system model is

dequate for describing architectures while abstracting from hid-

en internal details, but hiding internal details hampers automated

nalyses.

This motivates Section 4 , which describes a new system model

hat represents components from a white-box perspective (as au-

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 439

Fig. 1. The elevator control system ECS comprises subcomponents to manage serving elevation requests on up to three floors.

t

o

d

i

m

v

r

p

a

i

M

S

w

u

2

r

p

i

M

t

t

t

m

2

t

T

c

p

W

s

v

t

fl

v

T

(

M

l

t

t

i

p

q

f

i

S

c

t

a

l

F

h

T

p

B

m

a

t

m

s

j

p
omata). The automata model is compatible to the function model

f the previous section and explicitly captures internal component

etails.

Afterwards, Section 5 presents automated semantic differenc-

ng based on the latter system model (automata). We obtain a

ore efficient semantic differencing method as described in pre-

ious work. The compatibility of the system models ensures the

esults equally apply to both semantic domains. However, this pa-

er’s approach is only applicable if component implementations

re available and can be transformed to the automata introduced

n Section 4 .

Section 6 presents the implementation of our approach with

ontiArcAutomaton and RABIT and evaluates its applicability.

ection 7 discusses observations and Section 8 highlights related

ork before Section 9 concludes. The appendix describes examples

sed throughout the paper in more detail.

. Examples

This section presents two example architectures for stepwise

efinement. The first example illustrates the benefits of our ap-

roach on an elevator control system (Section 2.1) as presented

n Butting et al. (2017) . The second example describes a distributed

odulo-8-Counter (Section 2.2), which is used as running example

hroughout the remainder of this paper. While the former is suited

o comprehending the benefits of stepwise refinement intuitively,

he latter is compact enough to be discussed in details in the re-

ainder.

.1. An elevator control system

Consider the model-driven development of an elevator con-

rol system (ECS) as presented in Strobl and Wisspeintner (1999) .

he ECS depicted in Fig. 1 comprises two hierarchically composed

omponents representing the three floors the elevator serves (com-

onent Floors) and the elevator cabin (component Elevator).
henever a button on a floor (indicated, for example, by a mes-

age on the incoming port btn1) is pressed, the ECS should acti-

ate the light (by sending a message via outgoing port led1) on

he corresponding floor and instruct the elevator cabin to visit that

oor. The control logic of the elevator is modeled via a statechart

ariant embedded into the Elevator ’s subcomponent Control .
his component receives messages upon arriving at a specific floor

 e.g., via incoming port at1) and sends messages to Door and

otor to operate its door and to move between the floors. The

atter two embed models of compact action languages to describe

heir respective behavior.

For this version of the ECS , the software architects have proven

hat certain properties hold (e.g., that it cannot produce block-

ng situations). Now they aim to replace the Elevator com-

onent with a smarter version that reacts only to elevator re-

uests on a floor if there is no such request yet. To this ef-

ect, the company employs stepwise refinement to avoid prov-

ng the properties of Elevator again for its successor version

martElevator . Therefore, the behavior descriptions of all sub-

omponents are translated into TSCAs. For composed components,

he behavior descriptions of their subcomponents are translated

lso and merged iteratively. This ultimately eliminates all hierarchy

evels but the last. The result of this transformation is depicted in

ig. 2 , where the behavior descriptions of all three subcomponents

ave been transformed accordingly and merged into a single TSCA.

he same is performed for the improved SmartElevator com-

onent before both are transformed into weak non-deterministic

üchi automata as presented in Section 6 .

Using this transformation reduces semantic component refine-

ent to language inclusion on Büchi automata and can be solved

utomatically, for instance, by using the tool RABIT. Hence, with

his infrastructure in place, the company now can fully auto-

ated ensure whether the SmartElevator , and its potential

uccessors, actually refine their predecessors or require further ad-

ustment. Where refinement is refuted, difference witnessing in-

ut/output pairs are produced. This automation of stepwise refine-

440 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

Fig. 2. The composed components Elevator and SmartElevator each are transformed into flat components with a single port automaton prior to being transformed

into Büchi automata and checked for language inclusion.

m

i

t

i

t

t

o

b

t

i

F

i

w

3

n

S

2

f

l

t

s

t

b

p

r

u

i

T

t

s

a

A

s

b

P

t

c

t

t

Z

s

a
ment can increase the pace of each refinement step and, hence,

overall development efficiency.

2.2. A Modulo-8 counter

This example presents a modulo-8 counter inspired by the

model presented in Fuchs (1995) as demonstration of stepwise

refinement along the depth of composition layers. The modulo-8

counter outputs the binary representation of a number n between

0 and 7, which can be incremented ((n + 1) % 8) or reseted (n =
0). The initial value of n is 0. The modulo-8 counter is modeled

as the MontiArcAutomaton component Mod8Counter depicted in

Fig. 3 (a). The component has two incoming ports and three outgo-

ing ports of the data type Boolean. In the initial definition, only the

behavior of the outermost component Mod8Counter is specified.

The valuations of the outgoing ports x 2 , x 1 , and x 0 are equal to the

Boolean representations of the variables in the binary representa-

tion of n (i.e., n = x 2 · 2 2 + x 1 · 2 1 + x 0 · 2 0). Upon receiving true via

the incoming port inc , the value of n is increased if the value on

port res is not equal to true , and on receipt of true via the port

res , the value of n is set to 0, regardless of the value received on

port inc .
To decouple parts of the functionality of the modulo-8 counter,

e.g., for individual testing, the behavior of the Mod8Counter
is structurally refined by introducing the two subcomponents

Controller and Counter , as depicted in Fig. 3 (b). The con-

troller component is responsible to delegate a reset of the counted

value to the counter. This reset is triggered either after receiv-

ing a message true on its incoming port rIn or if the current

counted value is 7 and the value should be further increased. The

counter component realizes the counting functionality, but is un-

able to reset a counted value from 7 to 0 after increasing. Us-

ing the method for refinement checking presented in this paper,

it is possible to fully automatically check whether the original ver-

sion (atomic Mod8Counter) is equivalent to its successor version

(composed Mod8Counter).
Later, the behavior of the counter is refined in a further struc-

tural refinement step (cf. Fig. 3 (c)) by introducing subcomponents

to the component Counter . The company reuses these subcom-

ponents from a different project. The behavior of the component

Counter is then defined by three counter bit components pos0 ,
pos1 , and pos2 , which all have the same component behavior -

denoted in MontiArcAutomaton by the fact that they are of the

same component type CBC . Each of these can count a single bit

component only. The MontiArcAutomaton component CBC with

an embedded automaton realizing the component behavior is de-

picted in Fig. 4 . The bit value can be increased (modulo 2) via a

message true on the incoming port i and reseted to false via a
essage true on the incoming port r . The current value of the bit

s output via the outgoing port v , and the value of q is true iff, af-

er increasing, the bit value changes from true to false . Otherwise,

t emits false . Using our method, checking whether the new archi-

ecture is semantically equivalent to any of the other two architec-

ures is possible within milliseconds.

At this point, another modeling expert notices that the design

f the mod-8 counter is too complex and can be simplified, as the

ehavior of each CBC components already realizes the overflow of

he modulo. Therefore, the expert proposes to model the behav-

or as depicted in Fig. 5 . As it is not obvious if the behaviors of

ig. 3 (c) and Fig. 5 are equivalent, the refinement check presented

n this paper is employed and yields sound and complete results

ithin milliseconds.

. A semantics domain for components

This section introduces the semantics domain for compo-

ents based on the Focus framework (Broy, 2010; Broy and

tølen, 2001; Grosu and Rumpe, 1995; Ringert and Rumpe,

011; Rumpe, 1996) and recapitulates the most important results

rom Butting et al. (2017) ; Grosu and Rumpe (1995) , which under-

ie the approach presented in this paper.

We interpret software architectures as networks of au-

onomously acting components communicating in a time-

ynchronous manner via directed, typed channels connecting

he components’ interfaces. A time-synchronous architecture can

e interpreted as a system where component computations are

erformed concurrently and controlled by a global clock that splits

untime into discrete and equidistant time units. In every time

nit, each component receives finitely many input messages via its

nterfaces and outputs finitely many messages to its environment.

he computations of each component in every time unit must

erminate. To this end, components partition time slices into

equences of operations (e.g., assessing the guard of an embedded

utomaton’s transition or assigning values according to its actions).

lthough these sequences of operations are untimed in the Focus

ense, they are causally related. The semantics of component

ehavior thus happens logically in superdense time (Manna and

nueli, 1993), which, following (Lee, 2010), distinguishes between

he discrete “time continuum” (global Focus time) and “untimed

ausally-related actions” (a component behavior’s actions within

he component’s time slice).

In the remainder, we denote by [X → Y] the set of all func-

ions from a set X to a set Y . For a function f ∈ [X → Y] and a set

 ⊆ X , the restriction of f to Z is the function f | Z ∈ [Z → Y] that

atisfies f | Z (x) = f (x) for all x ∈ Z . Given two functions f ∈ [X → A]

nd g ∈ [Y → B], the overriding union of f with g is the function

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 441

Fig. 3. Graphical representation of the component Mod8Counter in MontiArcAutomaton syntax (a) in its initial specification and (b) after a first and (c) a second structural

refinement step. All ports are of data type Boolean.

Fig. 4. Automaton model realizing the component behavior of CBC .

Fig. 5. Alternative model of the mod-8 counter, with the behavioral equivalence to

the model in Fig. 3 (c) in question.

a

3

i

t

a

e

w

E

fi

F

b

t

fi

e

s

t

t

c

d

m

s

i

o

t

C

m

b

e

h

B

c

a

c

w
f + g ∈ [(X ∪ Y) → (A ∪ B)] that satisfies (f + g)(x) = g(x) if x ∈ Y

nd (f + g)(x) = f (x) if x ∈ X �Y for all x ∈ X ∪ Y .

.1. Streams, messages, types, and communication histories

The history of messages a component receives or sends via an

nterface (e.g., channel) is formally described as a stream that con-

ains messages in order of their transmission. Let M be an arbitrary

lphabet. A stream over the set M is a finite or infinite sequence of

lements from M . Following (Broy and Stølen, 2001; Rumpe, 1996),

e denote by

• M

∗ the set of all finite streams over M ,
• M

∞ the set of all infinite streams over M ,
• 〈〉 the empty stream, which is an element of M

∗,
• s ̂ t the concatenation of two streams s and t such that ((M

∗ ∪
M

∞) , ̂ , 〈〉) is a monoid. If s ∈ M

∞ then s ̂ t = s .
•
 the prefix relation over streams, which is a partial order de-

fined by: ∀ s, t ∈ (M

∗ ∪ M

∞) : s
 t ⇔ ∃ u : s ̂ u = t,
• s.t the (t + 1) -st element of a stream s ∈ (M

∗ ∪ M

∞),
• s ↓ t the prefix of a stream s ∈ M

∞ of length t ∈ N .

xample 1. The finite sequence f ib 7 = 0 , 1 , 1 , 2 , 3 , 5 , 8 ∈ N

∗ is a

nite stream of natural numbers. It contains the first seven

ibonacci numbers. The infinite stream of all Fibonacci num-

ers f ib ∈ N

∞ is defined by f ib. 0 = 0 ∧ f ib. 1 = 1 ∧ ∀ t ∈ N : t ≥ 2 ⇒
f ib.t = f ib. (t − 2) + f ib. (t − 1) . By definition, we have f ib ̂ f ib 7 =
f ib. Further, fib 7
 fib because the prefix of length 7 of fib is equal

o fib 7 , i.e., fib ↓ 7 = f ib 7 . Thus, the first seven elements of fib 7 and

b are equal, e.g., f ib 7 . 0 = f ib. 0 = 0 and f ib 7 . 3 = f ib. 3 = 2 .

In the remainder, let M denote an arbitrary but fixed set of data

lements, such as messages, and let Type be a set of data types

uch that each t ∈ Type satisfies t ⊆ M . Types facilitate restricting

he set of messages a component may emit or receive via an in-

erface. We assume a discrete model of time where component

omputation is divided into discrete time units of equal and finite

uration. In each time unit each component receives at most one

essage via each incoming interface, may perform finitely many

tate changes and emits at most one message via each outgoing

nterface. We use the special symbol ε ∈ M to denote the absence

f a message during a time unit and require ε ∈ t for each t ∈ Type .

A channel is an identifier for a communication link between in-

erface elements of components. In the following, we denote by

 a set of typed channel names. The function type ∈ [C → Type]

aps each channel in the set C to its type. Let B ⊆ C be an ar-

itrary set of channel names. We model the history of messages

mitted via the channels in the set B as a communication history

 ∈ B �, which is an element of the set B � defined as follows:

� def = { h ∈ [B → M

∞] | ∀ b ∈ B : h (b) ∈ type (b) ∞ } . Let h ∈ B � be a

ommunication history, H ⊆ B � a set of communication histories,

nd t ∈ N a natural number. We lift the operator ↓ to communi-

ation histories and sets of communication histories in a point-

ise manner, i.e., b ↓ t ∈ [B → M

∗] denotes the function that satisfies

442 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

t

Fig. 6. Graphical representation of the TSSPFs add and acc .

e

t

[

.

t

i

i

s

l

q

E

o

t

n

b

{

r

[

f

o

p

t

p

p

t

t

N

i

�

t

e

s

t

c

D

t

c

O

n

t

d

b

f

i

s

t

s

fi

c

i

b
b ↓ t (i) = b(i) ↓ t for all i ∈ B and H ↓ t
def =

⋃

h ∈ H h ↓ t denotes the set re-

sulting from applying the operator to each element in H .

Example 2. Let c ∈ C be a channel of natural numbers. Then, in

each time unit, the channel c can be either assigned a natural

number or the empty message. Thus, type (c) = N ∪ { ε} ∈ T ype ⊆
M. The communication history that assigns the channel c the se-

quence of Fibonacci numbers is given by h = { c �→ f ib} ∈ c � where

fib is defined as in Example 1 . The stream containing all nega-

tive integers neg defined by ∀ t ∈ N : neg.t = −t is no valid assign-

ment to channel c because there exists a time unit t ∈ N such

that neg.t �∈ type (c) = N ∪ { ε} , e.g., we have neg ↓ 2 = −1 , −2 . Thus,

{ c �→ neg} �∈ a � is no communication history. The function mapping

the channel c to its first 7 elements is given by h ↓ 7 = { c �→ f ib 7 }
where fib 7 is defined as in Example 1 . Let empty ∈ { c} � be de-

fined by ∀ t ∈ N : empty (c) .t = ε denote the communication history

that always assigns the channel c to the empty message. Then, { h,

empty } ↓ 7 = { h ↓ 7 , empty ↓ 7 } = {{ c �→ f ib 7 } , { c �→ ε , ε , ε , ε , ε , ε , ε }} .

3.2. Time-synchronous stream processing functions

We model the semantics of distributed interactive sys-

tems as sets of time-synchronous stream processing functions

(TSSPFs) (Butting et al., 2017). The notion of TSSPFs is inspired

by the notion of timed SPFs (Broy and Stølen, 2001; Grosu and

Rumpe, 1995; Ringert and Rumpe, 2011; Rumpe, 1996). The ma-

jor and crucial difference between the two notions is that TSSPFs

process exactly one message per channel per time unit, whereas

SPFs process a stream of messages per channel per time unit. The

key idea is to treat components as black-boxes having an observ-

able behavior characterized by the interactions on channels be-

tween systems and subsystems while hiding internal implemen-

tation details. A component is mapped to a set of functions de-

scribing the component’s possible behaviors. Such a function maps

communication histories over the set of input channels of a com-

ponent to communication histories over the set of the component’s

output channels. Thus, each function in the semantics of a compo-

nent with input channels I ⊆ C and output channels O ⊆ C is of

the form f ∈ [I � → O

�] . However, such functions are not always

realizable in the sense that they can be implemented (Broy and

Stølen, 2001; Ringert, 2014). Intuitively, the characterizing proper-

ties for realizability are captured by the notion of weak-causality:

a component cannot change messages it received or sent in the

past and cannot react to messages it receives in the future (Broy

and Stølen, 2001; Ringert, 2014; Ringert and Rumpe, 2011; Rumpe,

1996). Thus, the output of a behavior describing function until time

t must be completely determined by its input until time t :

Definition 1 (Time-Synchronous Stream Processing Function) . Let

I, O ⊆ C be two disjoint sets of input and output channels. A

function f ∈ [I � → O

�] is called (weakly causal) time-synchronous

stream processing function iff

∀ i, i ′ ∈ I � : ∀ t ∈ N : i ↓ t = i ′ ↓ t ⇒ f (i) ↓ t = f (i ′) ↓ t .

We denote by [I �
wc −→ O

�] the set of all (weakly causal) TSSPFs

mapping input histories in I � to output histories in O

�.

Example 3. This example defines the stream processing func-

tion add that specifies the behavior of a component for adding

natural numbers. The interface of the TSSPF is graphically illus-

trated on the left hand side of Fig. 6 . The input channels are

I = { a, b} and the set of output channels is O = { c} . The type of all

channels is the type of natural numbers, i.e., type (a) = type (b) =
ype (c) = N ∪ { ε} ∈ T ype ⊆ M. If the function add receives natu-

ral numbers on both channels a and b in a time unit t , then

the function outputs the sum of the received messages via the

channel c in time unit t . Otherwise, if the function receives the
mpty message ε on any of the input channels in time unit t ,

hen the function outputs ε in time unit t . The function add ∈
 I � → O

�] is formally defined by ∀ i ∈ I � : ∀ t ∈ N : (ad d (i))(c) .t =

{
i (a) .t + i (b) .t, if i (a) .t, i (b) .t ∈ N

ε, otherwise

The function add is weakly causal because its output in each

ime unit is fully specified by its inputs in the same time unit, i.e.,

n each time unit, the function’s output does not depend on future

nput and the function does not change previously processed mes-

ages. This is verifiable with a short proof by induction over the

engths of prefixes of communication histories.

The following example illustrates that the weak causality re-

uirement on TSSPFs is necessary.

xample 4. This example defines the function u (unrealizable)

ver communication histories that is not weakly causal. We define

he function over Boolean messages. The function’s input chan-

el set is given by I = { in } and its output channel set is given

y O = { out } . The types of in and out are t ype (in) = t ype (out) =
� , ⊥ , ε} ∈ T ype ⊆ M where � represents the value true and ⊥
epresents the value false . In each time unit t , the function u ∈
 I � → O

�] outputs the value it receives in time unit t + 1 . It is

ormally defined by ∀ i ∈ I � : ∀ t ∈ N : u (out) .t = i (in) . (t + 1) . Obvi-

usly, the functionality described by the function u cannot be im-

lemented by a component: A component implementing the func-

ion would be able to predict its future input to determine its

resent output. This is formally captured by weak-causality. To

roof that the function u is not weakly causal, we need to find

wo input channel histories i, i ′ ∈ I � and a time unit t ∈ IN such

hat i ↓ t = i ′ ↓ t ∧ u (i) ↓ t � = u (i ′) ↓ t . We choose i and i ′ such that ∀ t ∈
 : i (in) .t = ⊥ and i ′ (in) . 0 = ⊥ ∧ ∀ t ∈ N : t ≥ 1 ⇒ i ′ (in) .t = � . Then,

 ↓ 1 = { in �→ ⊥} = i ′ ↓ 1 and u (i) ↓ 1 = { out �→ ⊥} and u (i ′) ↓ 1 = { out �→
} . Thus, i ↓ 1 = i ′ ↓ 1 ∧ u (i) ↓ 1 � = u (i ′) ↓ 1 .

A single TSSPF is well-suited to model the semantics of a de-

erministic component. However, as a TSSPF maps each input to

xactly one output, TSSPFs are not general enough to model the

emantics of underspecified components where the exact output

o an input is not fully specified. We thus model the semantics

omponents as sets of TSSPFs:

efinition 2 (Component Semantics Describing) . Let I, O ⊆ C be

wo disjoint sets of channels. A set of TSSPFs F ⊆ [I �
wc −→ O

�] is

alled component semantics describing iff it satisfies ∀ g ∈ [I �
wc −→

�] : ((∀ i ∈ I � : ∃ f ∈ F : g(i) = f (i)) ⇒ g ∈ F) .

The definition above makes the semantics domain of compo-

ents fully abstract (Grosu and Rumpe, 1995; Grosu et al., 1997) in

he sense of Jonsson (1994) and allows to handle unbounded non-

eterminism (Grosu and Rumpe, 1995). Full abstraction is achieved

y the closeness property, which requires that each TSSPF resulting

rom a combination of TSSPFs included in the set F is also included

n F . The closeness property is also important to make component

emantics as little distinguishing as possible. This is illustrated by

he fact that two different arbitrary sets of TSSPFs may encode the

ame component behaviors. The reason for this is that one may

nd a TSSPF g �∈ F that is not included in a set of TSSPFs F , which

an be interpreted as a combination of different TSSPFs contained

n F . It thus does not induce a new behavior not already covered

y a TSSPF in F but, for instance, induces a semantic difference be-

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 443

t

n

o

i

n

e

a

O

3

C

t

b

f

t

v

b

l

i

c

c

f

i

a

i

s

D

T

p

(

T

E

E

m

a

m

O

t

W

∀

a

a

t

s

b

E

T

t

t

t

c

T

i

c

r

i

m

n

i

t

u

T

fi

o

i

i

i

t

o

c

a

p

D

a

w

(

E

a

o

a

a

s

t

i

w

c

d

o

d

s

p

n

t

i

c

c
ween a component with semantics described by F and a compo-

ent with semantics described by F ∪ { g }. As a result the semantics

f two components that have the exact same observable behav-

ors may be considered unequal. Consequently, full abstraction is

ot achieved. Thereby, the closeness property is necessary. How-

ver, each arbitrary set of TSSPFs F ⊆ [I �
wc −→ O

�] can be lifted to

 component semantics describing set of TSSPFs F
def = { g ∈ [I �

wc −→

�] | ∀ i ∈ I � : ∃ f ∈ F : g(i) = f (i) } that satisfies F ⊆ F and F = F .

.2.1. Composition of TSSPFs

Composition is an important concept to achieve modularity.

omposing the semantics of the individual components of a sys-

em leads to the semantics of the whole system. Composing ar-

itrary sets of TSSPFs can lead to realizability problems in delay-

ree feedback loops where the input of a component in time unit

 depends on another component’s output in time unit t and vice

ersa. Thus, composition is only defined for TSSPFs where causality

etween inputs and outputs on channels connected via a feedback

oop is ensured. This is the case if one of the TSSPFs participat-

ng in a composition is strongly causal with respect to its channels

onnected by the composition. Intuitively, a TSSPFs f is strongly

ausal modulo the input channels J and output channels P , if the

unction’s outputs on the channels in P until time unit t + 1 is not

nfluenced by the function’s inputs received on the channels in J

fter time unit t . Other than with weak causality, this especially

ncludes that the outputs do not rely on the inputs received in the

ame time unit.

efinition 3 (Strongly Causal Modulo) . Let f ∈ [I �
wc −→ O

�] be a

SSPF and let J ⊆ I and P ⊆ O be two subsets of input and out-

ut channels names. The TSSPF f is called strongly causal modulo

 J, P) iff ∀ i, i ′ ∈ I � : ∀ t ∈ N :

((i | J) ↓ t = (i ′ | J) ↓ t ∧ i | I\ J = i ′ | I\ J) ⇒ f (i) | P ↓ t+1 = f (i ′) | P ↓ t+1 .

The following example illustrates that there are weakly causal

SSPFs that are not strongly causal.

xample 5. The function add ∈ [I �
wc −→ O

�] as defined in

xample 3 and depicted in Fig. 6 is not strongly causal

odulo (I, O). This holds because the function’s output in

 time unit always depends on its present input. To for-

ally show that add is not strongly causal modulo (I,

), we need to find two inputs i, i ′ ∈ I � and a time unit

 ∈ N such that i | I ↓ t = i ′ | I ↓ t and add (i)| O ↓ t+1 � = ad d (i ′) | O ↓ t+1 .

e chose i and i ′ such that ∀ t ∈ N : i (a) .t = i (b) .t = 1 and

 t ∈ N : i ′ (a) .t = 2 ∧ i ′ (b) .t = 1 . Then, i | I ↓ 0 = { c �→ 〈〉} = i ′ | I ↓ 0 and

dd (i)| O ↓ 1 = { c �→ 2 } and add (i ′)| O ↓ 1 = { c �→ 3 } . Thus, i | I ↓ t = i ′ | I ↓ t

nd add (i)| O ↓ t+1 � = ad d (i ′) | O ↓ t+1 , which we needed to show. Using

he same counterexample, it is possible to show that add is not

trongly causal with respect to ({ a }, O), either. Analogously, it can

e shown that add is not strongly causal modulo ({ b }, O).

The following example describes a strongly causal TSSPF:

xample 6 (Strongly Causal TSSPF) . Consider the strongly causal

SSPF acc ∈ [I �
wc −→ O

�] where I = { c} and O = { b} and type (c) =
ype (b) = N ∪ { ε} . The interface of the TSSPF is graphically illus-

rated on the right hand side of Fig. 6 . The TSSPF acc specifies

he behavior of an accumulator component. In each time unit, the

omponent outputs the sum of the values it received in the past.

he component initially outputs the message 0, which reflects that

t has not received positive integers, yet. When the component re-

eives a positive integer in a time unit, it outputs the sum of the

eceived integer and the value emitted in the current time unit

n the next time unit. When the accumulator receives the empty

essage ε, the accumulated value remains unchanged. Thus, in the

ext time unit, the component again emits the value that it emits
n the current time unit. Thus, the output of the function acc at

ime unit t + 1 only depends on its input up to and including time

nit t . We formally define the TSSPF acc by the following equation:

∀ i ∈ I � : ∀ t ∈ N : acc(i)(b) .t = {

0 if t = 0

acc(i)(b) . (t − 1) + i (c) . (t − 1) if t ≥ 1 ∧ i (c) . (t − 1) ∈ N

acc(i)(b) . (t − 1) if t ≥ 1 ∧ i (c) . (t − 1) = ε
The function acc is strongly causal modulo (I, O) by definition.

his can be formally proven by induction over the length of pre-

xes of input communication histories:

t = 0 : The property is satisfied because the TSSPF add always

utputs the same initial value in time unit t = 0 , independent of

ts inputs in time unit t = 0 .

Let n ∈ N . Assume for all t ≤ n and all i, i ′ ∈ I �, it holds that

 | I ↓ t = i ′ | I ↓ t ⇒ acc (i)| O ↓ t+1 = acc(i ′) | O ↓ t+1 .

Let t = n + 1 .

Let i, i ′ ∈ I � such that i | I ↓ t = i ′ | I ↓ t .

We need to show acc (i)| O ↓ t+1 = acc(i ′) | O ↓ t+1 .

Using the induction hypothesis: acc (i)| O ↓ t = acc(i ′) | O ↓ t .

Therefore, especially acc(i)(b) . (t − 1) = acc(i ′)(b) . (t − 1) .

By assumption i | I ↓ t = i ′ | I ↓ t and thus i (c) . (t − 1) = i ′ (c) . (t − 1) .

As t = n + 1 , we have that t ≥ 1.

If i (c) . (t − 1) = i ′ (c) . (t − 1) ∈ N , then the above implies

acc(i)(b) .t = acc(i)(b) . (t − 1) + i (c) . (t − 1) =

acc(i ′)(b) . (t − 1) + i ′ (c) . (t − 1) } = acc(i ′)(b) .t

Similarly, if i (c) . (t − 1) = i ′ (c) . (t − 1) = ε, then

acc(i)(b) .t = acc(i)(b) . (t − 1) = acc(i ′)(b) . (t − 1) = acc(i ′)(b) .t

We can conclude that acc (i)| O ↓ t+1 = acc(i ′) | O ↓ t+1 .

A set of TSSPFs F is called strongly causal with respect to (J, P)

ff there exists a function f ∈ F that is strongly causal with respect

o (J, P). With this, the set of TSSPFs F is required to exhibit at least

ne realization that is strongly causal with respect to (J, P). The

ausality complication is avoided, if causality between the inputs

nd outputs on the connected channels of at least one composition

articipant is guaranteed:

efinition 4 (Composable) . Two sets of TSSPFs F 1 ⊆ [I �
1

wc −→ O

�
1

]

nd F 2 ⊆ [I �
2

wc −→ O

�
2

] are called composable iff F 1 is strongly causal

ith respect to (I 1 ∩ O 2 , I 2 ∩ O 1) or F 2 is strongly causal modulo

 I 2 ∩ O 1 , I 1 ∩ O 2).

xample 7 (Composability) . The TSSPFs add and acc are described

nd formally defined in Example 3 and Example 6 . The interfaces

f the TSSPFs are graphically presented in Fig. 6 . Let Ad d = { ad d }
nd Acc = { acc} denote the singleton sets containing the TSSPFs

dd and acc . The two sets of TSSPFs are composable because, as

hown in Example 6 , the TSSPF acc ∈ Acc is strongly causal modulo

({ c} , { b}) = (I acc ∩ O add , O acc ∩ I add) .

Components communicate with each other via unidirected,

yped channels established by connectors connecting component

nterfaces. Multiple components may read from the same channel,

hereas only one component is permitted to write messages on a

hannel. This ensures that no merging of messages emitted from

ifferent com ponents via the same channel is necessary. Thus the

utput channels of the functions of two sets of TSSPFs need to be

isjoint to enable composition. The output channels of the compo-

ition result are the output channels of both composition’s partici-

ants. The compound’s input channels are exactly the input chan-

els of both components that are no output channels of any of the

wo components.

The composition of two sets of TSSPFs F and G is graphically

llustrated in Fig. 7 . The input channels of F � G are the input

hannels I 1 �O 2 of F that are no output channels of G and the input

hannels I �O of G that are no output channels of F . The output
2 1

4 4 4 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

Fig. 7. Graphical representation of the composition of two sets of TSSPFs.

Fig. 8. Graphical representation of the composition of Add and Acc .

q

i

T

a

F

P

R

f

4

a

t

p

p

i

t

t

a

s

a

c

n

T

t

a

t

o

n

i

n

W

i

p

t

T

e

e

p

b

I

p

R

p

t

D

o

d

s

fi

n

B

n

D

t

channels of F � G are all output channels of F and G . The compo-

sition of two sets of TSSPFs yields a set of TSSPFs:

Definition 5 (Composition) . Let F 1 ⊆ [I �1
wc −→ O

�
1] and F 2 ⊆ [I �2

wc −→
O

�
2

] be two component semantics describing and composable sets

of TSSPFs with disjoint output channel sets O 1 ∩ O 2 = ∅ . Let I =
(I 1 \ O 2) ∪ (I 2 \ O 1) and O = O 1 ∪ O 2 . The composition F 1 � F 2 ⊆
[I �

wc −→ O

�] of F 1 and F 2 is defined by

F 1 � F 2
def = { f | ∀ i ∈ I � : ∃ f 1 ∈ F 1 : ∃ f 2 ∈ F 2 : f (i) = o + p,

where o = f 1 ((i + p) | I 1) , p = f 2 ((i + o) | I 2) }
The composition operator is defined similar as in Grosu and

Rumpe (1995) ; Grosu et al. (1997) ; Rumpe (1996) with the differ-

ence that we consider the time-synchronous system model instead

of the more general timed system model (Broy and Stølen, 2001).

Example 8. The following demonstrates the composition of sets

of TSSPFs by example. Let Ad d = { ad d } and Acc = { acc} be sets of

TSSPFs as defined in Example 7 . The sets Add and Acc are com-

posable (cf. Example 7). As both sets contain a single TSSPF, the

sets are component semantics describing (cf. Definition 2). Further,

the sets of output channels of the sets’ TSSPFs are disjoint. Thus,

the composition operator � is applicable. Fig. 8 graphically illus-

trates the result from composing the two sets Add and Acc . The

set of TSSPFs Add � Acc contains the single TSSPF f ∈ [{ a } � wc −→
{ b, c} �] that satisfies ∀ i ∈ { a } � : f (i) = o + p where o = ad d ((i +
p) | I add

) and p = acc((i + o) | I acc
) . Given an input i ∈ { a } �, iteratively

computing the values of o, p, c , and b is possible because the TSSPF

acc is strongly casual. For instance, let i = { a �→ 1 , 1 , ... } ∈ { a } � de-

note the communication history that always assigns channel a to

1, i.e., ∀ t ∈ N : i (a) .t = 1 . The first output of acc via channel b is by

definition always 0 (cf. Example 6). With this, we can compute that

add outputs 1 = 0 + 1 via channel c in time unit 0. This determines

the output 1 of acc at time unit 1. This again enables to determine

that add outputs 2 = 1 + 1 via channel c in time unit 1. This deter-

mines that acc outputs value 3 via channel b in time unit 2. Thus,

add outputs 4 via channel c in time unit 2. We can approximate

the value of the TSSPF f up to every fixed time unit t ∈ N for every

fixed input i ∈ { a } � by using the method sketched above.

The composition is well defined and results in a component se-

mantics describing set of TSSPFs. This is a consequence of the re-
uirement that one set of TSSPFs must be strongly causal modulo

ts connected channels.

heorem 1. If F 1 and F 2 are two component semantics describing

nd composable sets of TSSPFs with disjoint output channel sets, then

 1 � F 2 is also component semantics describing.

roof. Analogous to proof of Theorem 9 in Grosu and

umpe (1995) by replacing the set the function f is chosen

rom with [I �
wc −→ O

�] . �

. Time-Synchronous Channel Automata

A TSCA specifies the behavior (of parts) of an interactive system

nd represents a component semantics describing set of TSSPFs

hat is given by its semantics. We later use TSCAs to model com-

onents. TSCAs as introduced in this paper are based on our

revious work on TSPAs (Butting et al., 2017) and are strongly

nspired by port automata (Grosu and Rumpe, 1995), I/O

∗ au-

omata (Ringert and Rumpe, 2011; Rumpe, 1996), and MAA ts au-

omata (Ringert, 2014). Port automata and I/O

∗ automata consume

nd produce time slices of arbitrary but finitely many input mes-

ages in every transition step. In contrast, TSCAs, TSPAs, and MAA ts

utomata consume and produce at most one message per input

hannel in each time slice. Given the set of states and the chan-

el types of an automaton are finite, MAA ts automata, TSPAs, and

SCAs are guaranteed to have finitely many transitions. This is not

he case for I/O

∗ and port automata since both have to define

 transition for each state and each possible input communica-

ion history. Even if the type of a channel is finite, the number

f communication histories (streams) of the channel’s type is infi-

ite. I/O

∗ automata and MAA ts automata enforce causality between

nput and output histories by requiring initial outputs on all chan-

els. In contrast, TSPAs and TSCAs do not require initial outputs.

hile the syntax of MAA ts and TSCAs models variables explicitly,

n TSPAs (Butting et al., 2017) variables have to be represented im-

licitly in the state space. While MAA ts automata distinguish be-

ween data and control states (i.e., variables and (control) states),

SCAs consist of data states (variables) only. This eliminates unnec-

ssary complexity and notational clutter as control states can be

asily represented as data states. Some proofs of some theorems

resented in the following are analog to proofs that have already

een carried out in Butting et al. (2017) ; Grosu and Rumpe (1995) .

n case we are stating an analogous theorem, we refer to the ap-

ropriate corresponding proof in Butting et al. (2017) ; Grosu and

umpe (1995) .

A TSCA consists of a set of states, an interface of input and out-

ut channels, and transitions defining the TSCA’s behavior. The in-

erface is encoded by a channel signature.

efinition 6 (Channel Signature) . Let I, O ⊆ C be two disjoint sets

f channel names. A channel signature is a tuple � = (I, O) . We

enote by C(�)
def = I ∪ O the set of all channels in �. A channel

ignature � is called finite iff C (�) and type (c) for all c ∈ C (�) are

nite.

A channel assignment maps channels to messages of the chan-

els’ types. Let B ⊆ C . A channel assignment is an element of the set

→ defined as B →

def = { a ∈ [B → M] | ∀ b ∈ B : a (b) ∈ type (b) } . Chan-

el assignments are used as TSCA transition labels.

efinition 7 (TSCA) . A time-synchronous channel automaton is a

uple A = (�, X, S, ι, δ) where:

• � = (I, O) is a channel signature,
• X ⊆ C is a set of variable symbols (internal channels),
• S ⊆ X

→ is a set of states,
• ι∈ S is the initial state,

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 445

t

t

δ

c

E

p

p

t

r

i

t

B

“

T

t

t

o

∀

t

e

i

a

n

a

|

C

∀

e

f

c

a

s

a

t

A

i

fi

f

i

E

(

a

p

f

a

s

fi

T

e

c

d

T

P

T

c

t

T

θ

w

d

i

4

h

s

D

e

c

s

f

T

p

D

c

s

c

o

b

e

b

h

d

b

E

a

a

a

i

T

i
• δ ⊆ S × C (�) → × S is the transition relation.

For convenience, we sometimes write s
θ−→ δ t instead of (s, θ ,

) ∈ δ and simply s
θ−→ t if δ is clear from the context. To avoid no-

ational clutter, we often denote the components of a TSCA A =
(�, X, S, ι, δ) with � = (I, O) by �A

def = �, X A
def = X, S A

def = S, ιA
def = ι,

A
def = δ, I A

def = I, and O A
def = O . We also omit the subscripts if they are

lear from the context.

xample 9 (TSCA of the component CBC) . The TSCA of the com-

onent CBC is similar to the behavior automaton of the CBC com-

onent, which is graphically depicted in Fig. 4 . The channel signa-

ure comprises input and output channels. States and transitions

eflect states and transitions in the behavior automaton, and the

nternal channel state reflects the current state of the behavior au-

omaton. We interpret the absence of a message (“ε”) equal to the

oolean value “false ” and, again, denote “� ” as the Boolean value

true ”. The TSCA of the component CBC then can be formulated as

 SCA CBC = (�CBC , X CBC , S CBC , ιCBC , δCBC) with

• channel signature �CBC = (I CBC , O CBC) = ({ i, r} , { v , q }) ,
• channel data types: type (i) = type (r) = type (v) = type (q) =

{� , ε} ,
• internal channel X CBC = { state } with type (state) = { 0 , 1 } ,
• states S CBC = X →

CBC
= { a, b} with a = { state �→ 0 } and

b = { state �→ 1 } ,
• initial state ιCBC = a,

• and transition relation δCBC = {{ (a, θ, a) | (θ (i) = ε ∨ θ (r) =
�) ∧ θ (v) = ε ∧ θ (q) = ε} ∪ { (a, θ, b) | θ (i) = � ∧ θ (r) =

ε ∧ θ (v) = � ∧ θ (q) = ε} ∪ { (b, θ, b) | θ (i) = ε ∧ θ (r) = ε ∧

θ (v) = � ∧ θ (q) = ε} ∪ { (b, θ, a) | θ (r) = � ∧ θ (v) = ε ∧ θ (q) =

ε} ∪ { (b, θ, a) | θ (i) = � ∧ θ (r) = ε ∧ θ (v) = ε ∧ θ (q) = �}} .
The reactions of a TSCA are defined by its transitions. In each

ime unit, a TSCA performs one state change by executing one

ransition enabled by its input and outputs one message on each

utput channel. Let A be a TSCA. A is said to be reactive iff

 s ∈ S : ∀ i ∈ I → : ∃ t ∈ S : ∃ θ ∈ C(�) → : (s, θ, t) ∈ δ ∧ θ | I = i . A reac-

ive TSCA is called component . Components must not block their

nvironments and must be able to react to any possible well-typed

nput in any time unit. Therefore, a component must define a re-

ction to every possible input for each of its states. A is called fi-

ite iff � and S are finite. The size of A , denoted | A |, is defined

s the sum of the number of its states and transitions, i.e., | A | =
 S| + | δ| . A is called deterministic iff ∀ s ∈ S : ∀ i ∈ I → : |{ t ∈ S | ∃ θ ∈
(�) → : θ | I = i ∧ (s, θ, t) ∈ δ}| = 1 . A is called I / O - deterministic iff

 s ∈ S : ∀ θ ∈ C (�) → : |{ t ∈ S | (s, θ , t) ∈ δ}| ≤ 1. Reactive TSCAs are ad-

quate models for components as they specify at least one output

or each input. The size of TSCAs is used for measuring algorithmic

omplexities. Intuitively, if A is deterministic, then for each state

nd each input, A only has at most one choice for switching the

tate when processing the input. It thus acts as a system part in

 deterministic implementation. If A is reactive and deterministic,

hen it has exactly one choice for switching its state. In contrast, if

 is I / O -deterministic, for each state, the state A switches to when

t reads an input and produces an output can be uniquely identi-

ed by the input/output pair. As shown in Section 5 , semantic dif-

erencing of I / O -deterministic TSCAs is possible in polynomial time

n the sizes of the automata.

xample 10 (TSCA CBC is reactive and deterministic) . TSCA CBC

cf. Example 9) is reactive because in both of its states, there is

n outgoing transition with a channel assignment that has all in-

ut channels in its domain. In other words, it defines an output

or each possible state/input combination and therefore it describes

 component. TSCA CBC is finite, because | S | and � are finite: The

et of states S is finite since | S| = 2 . The channel signature � is
nite because | C(�) | = 4 and ∀ c ∈ C(�) : | type (c) | = |{� , ε}| = 2 .

SCA CBC is reactive and deterministic because in both states and for

ach possible input, there is exactly one state that the TSCA may

hange to.

The following theorem shows that determinism implies I / O -

eterminism. The other direction, however, does not hold.

heorem 2. Any deterministic TSCA is I / O-deterministic.

roof. Let A = (�, X, S, ι, δ) with � = (I, O) be a deterministic

SCA. Suppose towards a contradiction there exists a state s and a

hannel valuation θ ∈ C (�) → such that |{ t ∈ S | s
θ−→ t}| > 1 . Thus,

here exist u, v ∈ S such that u � = v and s
θ−→ u and s

θ−→ v . Let i = θ | I .
hen, as u � = v and s

θ−→ u, it holds that u, v ∈ { t ∈ S | ∃ θ ∈ C(�) → :

| I = i ∧ s
θ−→ t} . Thus, |{ t ∈ S | ∃ θ ∈ C(�) → : θ | I = i ∧ s

θ−→ t}| ≥ 2 ,

hich contradicts that A is deterministic. �

With this, problems that are efficiently solvable for I / O -

eterministic TSCAs are at least as efficiently solvable for determin-

stic TSCAs.

.1. Execution and Behavior Semantics of TSCAs

This section formalizes the intuitive descriptions of a TSCA’s be-

avior. Further analyses on TSCAs will be based on the operational

emantics introduced in this section.

efinition 8 (Execution) . Let A = (�, X, S, ι, δ) be a TSCA. An ex-

cution σ of A is an infinite, alternating sequence of states and

hannel assignments starting with the initial state ι:

σ = s 0 , θ0 , s 1 , θ1 , ... such that s 0 = ι and ∀ i ∈ N : s i
θi −→ s i +1 . The

et of all executions of A is denoted by execs (A).

Executions comprise the state changes and interactions per-

ormed by a TPSA. Abstracting from state changes allows to treat

SCAs as black boxes with hidden internal details. This requires ex-

licating the behavior of a TSCA.

efinition 9 (Behavior) . Let A = (�, X, S, ι, δ) be a TSCA with

hannel signature � = (I, O) . The behavior of an execution σ =
 0 , θ0 , s 1 , θ1 , ... of A is defined as the sequence beh (σ)

def = θ0 , θ1 , ...

ontaining only channel assignments. For P ⊆ C (�), the restriction

f beh (σ) to P is defined as beh (σ) | P def = θ0 | P , θ1 | P , We denote

y behs (A)
def =

⋃

σ∈ execs (A) beh (σ) the set of all behaviors of all ex-

cutions of A . The named communication history h α induced by a

ehavior α ∈ behs (A) with α = e 0 , e 1 , ... is defined as the function

 α ∈ (I ∪ O) � that satisfies h α(x) .t = e t (x) for all x ∈ I ∪ O and t ∈ N .

Given a TSCA A with �A = (I, O) and an input history i ∈ I �, we

enote the set of communication histories induced A with input i

y A [i]
def = { o ∈ O

� | ∃ α ∈ behs (A) : o = h α| O ∧ h α| I = i } .
xample 11 (Execution and behavior of TSCA CBC) . An execution of

 TSCA is an infinite sequence in general. Let a, b, θ ab , θba , θ res ,

nd θnop be given as follows:

• a = { state �→ 0 } , b = { state �→ 1 } ,
• θab = { i → � , r �→ ε, v �→ � , q �→ ε} ,
• θba = { i �→ � , r �→ ε, v �→ � , q �→ �} ,
• θres = { i �→ � , r �→ � , v �→ ε, q �→ ε} , and

• θnop = { i �→ ε, r �→ ε, v �→ ε, q �→ ε} .
An execution of the TSCA CBC , for instance, is e =

, θab , b, θba , a, θab , b, θres , a (, θnop , a) ∞ . Accordingly, the behav-

or of this execution is given by beh (e) = θab , θba , θab , θres (, θnop) ∞ .

his behavior can be restricted to include only a subset of the

nvolved channels, which is done by restricting the individual

446 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

Algorithm 1 Trimming a finite TSCA.

Input: Finite TSCA A = (�, X, S, ι, δ)

Output: TSCA containing only reachable parts of A

define R ← { ι} asset /* reachable, visited states */

define U ← ⊥ as emptystack /* states to visit */

define δ′ ← ∅ as set

push (ι, U)

while U � = ⊥ do

s ← top(U)

δ′ ← δ′ ∪ { t ∈ δ | ∃ θ ∈ C(�) → : ∃ r ∈ S : t = (s, θ, r) }
if { r ∈ S | ∃ θ ∈ C(�) → : (s, θ, r) ∈ δ} ⊆ R then

pop(U)

else

let s ′ ∈ { r ∈ S | ∃ θ ∈ C(�) → : (s, θ, r) ∈ δ} \ R be arbitrary

push (s ′ , U)

R ← R ∪ { s ′ }
end if

end while

return (�, R, ι, δ′)

r

r

d

T

fi

s

r

T

n

A

P

R

A

s

o

{

r

i

t

t

e

e

4

i

b

n

s

R

D

c

c

a
channel assignments. For instance, the restriction e | { q } of e to

{ q } is given by e | { q } = θab | { q } , θba | { q } , θab | { q } , θres | { q } (, θnop | { q }) ∞ =
{ q �→ ε} , { q �→ �} , { q �→ ε} , { q �→ ε} , { q �→ ε} ∞ . The communication

history h e induced by the behavior e maps the channel q , for

instance, to the stream h e (q) = ε, � , ε, ε, ε ∞ .

If a state is not visited by any of the TSCA’s executions, then it

is not productive in the sense that it does not influence any be-

havior. Thus, when analyzing the set of behaviors of a TSCA it suf-

fices to analyze only the TSCA’s reachable part that only consists

of states visited by at least one execution. A state is reachable in a

TSCA if there is an execution that visits it.

Definition 10 (Reachable) . Let A = (�, X, S, ι, δ) be a TSCA with

channel signature � = (I, O) . A state s ∈ S is called reachable in A if

there exists a finite alternating sequence of states s 0 , θ1 , s 1 , θ2 , ...,

θn , s n starting in the initial state s 0 = ι and ending in state s = s n

such that s i
θi +1 −−→ s i +1 for all 0 ≤ i < n . The set of all reachable states

in A is denoted by reach (A).

Non-reachable states are redundant in the sense that they do

not affect a TSCA’s behavior.

Example 12 (Reachable states in T SCA CBC) . In T SCA CBC , both states

are reachable because reach (T SCA CBC) = { a, b} . The execution e de-

picted in Example 11 reaches both states of the TSCA. To this ef-

fect, any prefix of e ending in state a and any prefix of e ending in

state b are valid finite alternating sequences of states and channel

assignments. This shows that both states are reachable.

Removing the unreachable states from a TSCA results in a TSCA

with exactly the same behaviors.

Theorem 3. Let A = (�, X, S, ι, δ) be a TSCA with channel signa-

ture � = (I, O) and let R = reach (A) denote the reachable states of

A. Then, B
def = (�, R, ι, δ ∩ R × C(�) → × R) is a TSCA that satisfies

behs (A) = behs (B) .

Proof. Let A and B be given as above and let
 = δ ∩ R × C(�) → ×
R denote the transitions of B .

behs (A) ⊆ behs (B): Let σ = s 0 , θ1 , s 1 , θ2 , s 2 ... be an execu-

tion of A . Then, it holds that s 0 = ι and ∀ i ∈ N : s i
θi +1 −−→ δ s i +1 .

Now, let j ∈ N . As ∀ i ∈ N : s i
θi +1 −−→ δ s i +1 is satisfied, it especially

holds that s i
θi +1 −−→ δ s i +1 for each 0 ≤ i < j . Thus, the finite se-

quence s 0 , θ1 , s 1 , θ2 , s 2 , ..., θ j , s j satisfies s i
θi +1 −−→ δ s i +1 for all

0 ≤ i < j . From this, we can conclude that each state s j where

j ∈ N is reachable in A . As ∀ i ∈ N : s i ∈ R, we have that ∀ i ∈ N :

(s i , θi +1 , s i +1) ∈ R × C(�) → × R . From this and ∀ i ∈ (s i θi +1 , s i +1) ∈ δ,
we can conclude (s i θi +1 , s i +1) ∈
 = δ ∩ R × C(�) → × R, i.e., ∀ i ∈
N : s i

θi +1 −−→ s i +1 . From the above we can conclude σ ∈ execs (B). All in

all, we obtain execs (A) ⊆ execs (B) and therefore behs (A) ⊆ behs (B).

behs (B) ⊆ behs (A): Let σ = s 0 , θ0 , s 1 , θ1 , ... be an execution of

A . Then, it holds that s 0 = ι and ∀ i ∈ N : s i
θi −→ s i +1 . As R ⊆ S and

 ⊆ δ, we obtain ∀ s, t ∈ R : ∀ θ ∈ C(�) → : s
θ−→
⇒ s

θ−→ δ t . There-

fore, ∀ i ∈ N : s i
θi −→
 s i +1 implies ∀ i ∈ N : s i

θi −→ δ s i +1 . Thus, it holds

that σ ∈ execs (A). We can conclude execs (B) ⊆ execs (A) and there-

fore behs (B) ⊆ behs (A). �

Algorithm 1 shows a procedure for removing the unreachable

states from any finite TSCA. The algorithm performs a depth-first

traversal on the input TSCA to only retain the input TSCA’s states

that are reachable from its initial state. While traversing the au-

tomaton, the algorithm also adds the transitions originating from

any reachable state to the resulting automaton. As any state that is

the target of any transition with a reachable source state is also
eachable, the transitions added in Algorithm 1 always connect

eachable states. The operations push, pop , and top denote the stan-

ard stack operations and the symbol ⊥ denotes the empty stack.

he algorithm terminates because the input TSCA is required to be

nite and every state is visited at most once.

Removing the unreachable states from a component again re-

ults in a component. Thus, the reactivity property is not lost by

emoving unreachable states.

heorem 4. Let A = (�, X, S, ι, δ) be a component with channel sig-

ature � = (I, O) and let R = reach (A) denote the reachable states of

. Then, B
def = (�, R, ι, δ ∩ R × C(�) → × R) is a component.

roof. Let A and B be given as above and let
 = δ ∩ R × C(�) → ×
 denote the transitions of B .

We need to show that B is reactive: Let r ∈ R be a state of B .

s r ∈ R is a reachable state in A , it clearly holds that each target

tate of any transition in A with source state r is also an element

f R, i.e., ∀ u ∈ S : (∃ θ ∈ C(�) → : s
θ−→ u) ⇒ u ∈ R . Thus, we have that

 (s, θ, t) ∈ δ | s = r} ⊆ R × C(�) → × R . As further { (s, θ, t) ∈ δ | s =
} ⊆ δ, it holds that { (s, θ, t) ∈ δ | s = r} ⊆ δ ∩ R × C(�) → × R . This

s equivalent to ∀ t ∈ S : r
θ−→ δ t ⇒ r

θ−→
 t . As A is reactive and each

ransition of A starting from a reachable state r ∈ R is also a transi-

ion of B , we obtain that B is also reactive. �

Therefore, the resulting from trimming a component is again an

quivalent component that uses less space than the original. This

ases analyses of the original component’s behaviors.

.2. Composition of TSCAs

As for TSSPFs, causality expresses the dependency between the

nputs and outputs of a TSCA. A TSCA’s output in time t must

e completely determined by its input until time t . Thus it can-

ot change messages sent in the past and cannot predict mes-

ages it receives in the future (cf. pulse-drivenness in Grosu and

umpe (1995)):

efinition 11 (Weakly Causal TSCA) . A TSCA A with �A = (I, O) is

alled weakly causal iff

∀ i, i ′ ∈ I � : ∀ t ∈ N : i ↓ t = i ′ ↓ t ⇒ A [i] ↓ t = A [i ′] ↓ t .

Weak causality states that for every two inputs i, i ′ having a

ommon prefix of length t and for every behavior α ∈ A [i] there is

 behavior β ∈ A [i ′] having a common prefix of length t with α.

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 447

Fig. 9. A strongly causal TSCA A that permits every possible output in reaction to

every possible input.

S

p

D

c

o

c

o

i

E

f

i

I

(

p

p

a

fi

T

a

p

s

m

i

c

A

a

E

b

{

e

a

o

S

i

O

p

a

r

⊆

c

p

w

a

d

Fig. 10. Composition of two compatible TSCAs.

D

n

O

t

t

p

u

T

o

o

D

c

�

O

s

f

s

D

c

i

c

b

c

s

f

D

p

A

(s | , θ | , t|) ∈ δ ∧ (s | , θ | , t|) ∈ δ }
imilar as for TSSPFs, weak causality can lead to composition com-

lications, which are avoidable analogously.

efinition 12 (Strongly Causal Modulo) . Let A be a TSCA with

hannel signature �A = (I, O) and let J ⊆ I and P ⊆ O be two sets

f input and output channels of A . The TSCA A is called strongly

ausal modulo (J, P) iff

∀ i, i ′ ∈ I � : ∀ t ∈ N :

((i | J)) ↓ t = (i ′ | J) ↓ t ∧ i | I\ J = i ′ | I\ J)⇒ (A [i] | P) ↓ t+1 = (A [i ′] | P) ↓ t+1 .

Intuitively, a TSCA is strongly causal with respect to (J, P), if its

utputs on the channels in P until time t + 1 are not influenced by

ts inputs on the channels in J after time t .

xample 13 (Strongly Causal Modulo: TSCA CBC) . The TSCA TSCA CBC ,

or instance, is not strongly causal with respect to ({ r }, { v }). This

s simple to show by contradiction: Let in = { r �→ �

∞ , i �→ �

∞ } ∈

�
CBC

and in ′ = { r �→ ε ∞ , i �→ �

∞ } ∈ I �
CBC

be two input histories. As

 in | { r }) ↓ 0 = (in ′ | { r}) ↓ 0 = { r �→ 〈〉} and in | { i } = in ′ | { i } = { i �→ �

∞ } , the

remises of the implication in Definition 12 hold for the chosen in-

ut histories and time t = 0 . But as (TSCA CBC [in]| { v }) ↓ 1 = 〈{ v �→ ε}〉
nd (TSCA CBC [in

′]| { v }) ↓ 1 = 〈{ v �→ �}〉 , the conclusion is not satis-

ed. Thus, the property stated in Definition 12 does not hold and

SCA CBC is not strongly causal modulo ({ r }, { v }).

At first sight, it might seem that a TSCA is strongly causal if,

nd only if, it always delays it’s outputs. However, delaying of out-

uts is only a sufficient, not a necessary condition for a TSCA to be

trongly causal. This holds because a TSCA A might simultaneously

odel a realization that is not strongly causal and another real-

zation that is strongly causal, i.e., a deterministic strongly causal

omponent that only exhibits behaviors that are also possible in A .

n example TSCA modeling arbitrary behavior illustrates this situ-

tion:

xample 14 (Arbitrary Behavior is Strongly Causal) . Let a, b ∈ C

e two channels over Boolean values, i.e., type (a) = type (b) =
 ε, ⊥ , �} . Further, let e ∈ C be a channel that only permits the

mpty message, i.e., type (e) = { ε} . We define the reactive TSCA A

s illustrated in Fig. 9 that is able to react with every possible

utput to every possible input as follows: �A = ({ a } , { b}) , X A = e,

 A = { s } , ιA = s, δA = { (s, θ, s) | θ ∈ { a, b} → } where s = { e �→ ε} . It

s easy to proof by induction that A is strongly causal modulo (I A ,

 A) because A permits every possible output in reaction to every

ossible input. Intuitively, this holds because when interpreting A

s specification, we can find a strongly causal implementation I (a

eactive deterministic component) that implements A, i.e., behs (I)

behs (A). An example for I is a TSCA that always outputs ε via

hannel b , independent of the input on channel a .

TSCAs communicate with each other via their input and out-

ut channels. Multiple automata may read from the same channel,

hereas only one automaton is permitted to write messages on

 channel. Thus, no merging of messages on channels emitted by

ifferent automata is necessary.
efinition 13 (Compatible Channel Signatures) . Two channel sig-

atures �A = (I A , O A) and �B = (I B , O B) are called compatible iff

 A ∩ O B = ∅ .
By composing two TSCAs, the output channels of one automa-

on are connected to the input channels with the same name of

he other automaton. The connected input channels are hidden im-

licitly. The set of output channels of the new automaton is the

nion of the sets of the output channels of the two original TSCAs.

he input channels of the new automaton are the input channels

f the two automata that do not share a common name with the

utput channels of the other automaton.

efinition 14 (Composition of Signatures) . The composition of two

hannel signatures �A = (I A , O A) and �B = (I B , O B) is defined as

A � �B
def = (I, O) where I = (I A \ O B) ∪ (I B \ O A) and O = (O A ∪

 B) .

The composition of two TSCAs should be a TSCA that repre-

ents the behaviors of the TSCAs when they run in parallel. There-

ore, we require the TSCAs participating in a composition must not

hare any internal variables (states).

efinition 15 (Compatible TSCAs) . Two TSCAs A and B are called

ompatible iff �A and �B are compatible and X A ∩ X B = ∅ .
Fig. 10 illustrates the composition of two TSCAs A and B . The

nput channels of the compound A � B is the union of the input

hannels of A and B minus the union of the output channels of

oth TSCAs. The output channels of A � B are exactly the output

hannels of A and B . The composition of the TSCAs’ states and tran-

itions reflect the parallel execution of both TSPAs. The following

ormally defines the composition operator for TSCAs.

efinition 16 (Composition of TSCA) . Let A and B be two com-

atible TSCAs. The composition of A and B is defined as the TSCA

 � B
def = (�, X, S, ι, δ) where

• � = �A � �B ,

• X = X A ∪ X B ,
• S = { s A ∪ s B | s A ∈ S A ∧ s B ∈ S B }
• ι = ιA ∪ ιB

• δ = { (s, θ, t) ∈ S × C(�) → × S |

S A C(�A) S A A S B C(�B) S B B

448 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

Fig. 11. Composition of two CBC instances.

s

a

o

w

m

f

q

n

n

c

a

D

a

E

t

c

c

I

o

o

c

The union of the functions of S A and S B used in the definition

of S (cf. Definition 16) is well defined since the the functions’ do-

mains X A and X B are disjoint.

Example 15 (Composition of two instances of TSCA CBC) . This ex-

ample describes the composition of the TSCAs of the components

pos0 and pos1 as depicted in Fig. 3 (c). In MontiArcAutoma-

ton, port names of different components may be equal and con-

nectors establish channels between connected ports. In contrast,

TSCAs communicate via shared channels. With this, a connector

between two MontiArcAutomaton components describes a channel

in the TSCA that formally describes the composed component’s be-

haviors. Thus, the port names of the MontiArcAutomaton compo-

nents have to be adjusted to achieve compatibility on TSCA level.

We denote the TSCA of pos0 by CBC 0 and the TSCA of pos1 by

CBC 1 . The two TSCAs as well as their compound are depicted in

Fig. 11 .

They are defined by CBC 0 = ((I 0 , O 0) , S 0 , X 0 , ι0 , δ0) and CBC 1 =
((I 1 , O 1) , S 1 , X 1 , ι1 , δ1) with

• input channels I 0 = { i, r} and I 1 = { q 0 , r} where type (c) = { ε, �}
for all c ∈ I 0 ∪ I 1 ,

• output channels O 0 = { x 0 , q 0 } and O 1 = { q 1 , x 1 } where

type (c) = { ε, �} for all c ∈ O 0 ∪ O 1 ,
• internal channels X 0 = { state 0 } and X 1 = { state 1 } where

type (state 0) = type (state 1) = { 0 , 1 } ,
• states S 0 = { s 0 , s 1 } and S 1 = { t 0 , t 1 } where s i = { state 0 �→ i } and

t i = { state 1 �→ i } for all i ∈ {0, 1},
• initial states ι0 = s 0 and ι1 = t 0 ,
• transition relations as depicted in the top part of Fig. 11 where

the transition labels of CBC are defined as:
0
n 0
0

= { i �→ ε, r �→ ε, x 0 �→ ε, q 0 �→ ε} ,
n 0

1
= { i �→ ε, r �→ ε, x 0 �→ � , q 0 �→ ε} ,

i 0
0

= { i �→ � , r �→ ε, x 0 �→ � , q 0 �→ ε} ,
i 0
1

= { i �→ � , r �→ ε, x 0 �→ ε, q 0 �→ �} ,
r 0 = { θ ∈ (I 0 ∪ O 0)

→ | θ (r) = � ∧ θ (x 0) = ε ∧ θ (q 0) = ε} ,
and the transition labels of CBC 1 are defined as:

n 1 0 = { q 0 �→ ε, r �→ ε, x 1 �→ ε, q 1 �→ ε} ,
n 1

1
= { q 0 �→ ε, r �→ ε, x 1 �→ � , q 1 �→ ε} ,

i 1
0

= { q 0 �→ � , r �→ ε, x 1 �→ � , q 1 �→ ε} ,
i 1
1

= { q 0 �→ � , r �→ ε, x 1 �→ ε, q 1 �→ �} ,
r 1 = { θ ∈ (I 0 ∪ O 0)

→ | θ (r) = � ∧ θ (x 1) = ε ∧ θ (q 1) = ε} .
The TSCAs CBC 0 and CBC 1 are compatible because the channel

ignatures are compatible (O 0 ∩ O 1 = ∅) and the internal channels

re pairwise disjoint X 0 ∩ X 1 = { state 0 } ∩ { state 1 } = ∅ .
The composed TSCA CBC 0 � CBC 1 is depicted in the lower part

f Fig. 11 and is formally given by C BC 0 � C BC 1 = (�, X, S, ι, δ)

ith

• the channel signature � = �0 � �1 = ({ i, r} , { q 0 , x 0 , q 1 , x 1 }) ,
• internal channels X = {{ state 0 } , { state 1 }} ,
• states S = { s 00 , s 01 , s 10 , s 11 } , where

s 00 = {{ state 0 �→ 0 } , { state 1 �→ 0 }} ,
s 01 = {{ state 0 �→ 0 } , { state 1 �→ 1 }} ,
s 10 = {{ state 0 �→ 1 } , { state 1 �→ 0 }} , and

s 11 = {{ state 0 �→ 1 } , { state 1 �→ 1 }}
• the initial state ι = s 00 , and

• the transition relation as depicted in the bottom part

of Fig. 11 where the transition labels of CBC 0 � CBC 1 are de-

fined as:

i 0 = { i �→ � , r �→ ε, x 0 �→ � , q 0 �→ ε, x 1 �→ ε, q 1 �→ ε} ,
i 1 = { i �→ � , r �→ ε, x 0 �→ ε, q 0 �→ � , x 1 �→ � , q 1 �→ ε} ,
i 2 = { i �→ � , r �→ ε, x 0 �→ � , q 0 �→ ε, x 1 �→ � , q 1 �→ ε} ,
i 3 = { i �→ � , r �→ ε, x 0 �→ ε, q 0 �→ � , x 1 �→ ε, q 1 �→ �} ,
n 0 = { i �→ ε, r �→ ε, x 0 �→ ε, q 0 �→ ε, x 1 �→ ε, q 1 �→ ε} ,
n 1 = { i �→ ε, r �→ ε, x 0 �→ � , q 0 �→ ε, x 1 �→ ε, q 1 �→ ε} ,
n 2 = { i �→ ε, r �→ ε, x 0 �→ ε, q 0 �→ ε, x 1 �→ � , q 1 �→ ε} ,
n 3 = { i �→ ε, r �→ ε, x 0 �→ � , q 0 �→ ε, x 1 �→ � , q 1 �→ ε} ,
r = { θ | θ (r) = � ∧ θ (q 0) = θ (q 1) = θ (x 0) = θ (x 1) = ε} .
The result of this composition of two CBC components, i.e., two

od-2 counters, is a mod-4 counter. In this composed TSCA, all

our states are reachable.

Components can block each other if they simultaneously re-

uire an input emitted by the other component to produce the

ext output. Composing such components results in a TSCA that is

ot reactive and therefore no component. However, there is a suffi-

ient condition ensuring the resulting transition relation is reactive

nd the compound is a component.

efinition 17 (Composability of TSCAs) . Two components A and B

re called composable iff

• A and B are compatible and

• A is strongly causal with respect to (I A ∩ O B , I B ∩ O A) or B is

strongly causal with respect to (I B ∩ O A , I A ∩ O B).

xample 16 (Composability of TSCA CBC) . As shown in Example 15 ,

he TSCA 0 of pos0 and the TSCA 1 of pos1 are compatible. To show

omposability between these, it is to show that TSCA 0 is strongly

ausal modulo (I 0 ∩ O 1 , I 1 ∩ O 0). This holds because I 0 ∩ O 1 = ∅ and

 1 ∩ O 0 = { q 0 } : It is not possible that the messages emitted via an

utput channel of CBC 1 influence the behavior of CBC 0 because no

utput channel of CBC 1 is an input channel of CBC 0 .

The following theorem states that composing two composable

omponents always results in a well-formed component.

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 449

T

a

P

R

f

E

n

t

t

T

i

t

e

p

c

c

T

t

P

p

X

p

c

h

∅

a

d

E

h

b

i

t

t

D

T

{

s

M

t

I

T

n

P

∅

∅

t

s

s

a

N

N

s

w

T

t ⊗

a ⊗

B

i

T

c

T

f

t

s

a

d

A

I

O

heorem 5. If A and B are composable components, then the reach-

ble part of A � B is a component.

roof. Analogous to proof of Theorem 3 in Grosu and

umpe (1995) by replacing the set the function i is chosen

rom with I → . �

xample 17 (The composition of two TSCA CBC is a compo-

ent) . Example 16 shows that the TSCAs CBC 0 of pos0 and

he CBC 1 of pos1 are composable. Further, Example 10 proves

hat CBC 0 and CBC 1 are reactive, i.e., describe components. With

heorem 5 , the composition of TSCA 0 and TSCA 1 is a component as

t can be seen in Example 15 .

The composition operator further is commutative and associa-

ive. This guarantees the component resulting from composing sev-

ral components is independent of the order in which the com-

onents are composed. Section 5.4 defines a notion of system ar-

hitecture, which is well-defined because of the associativity and

ommutativity of the TSCA composition operator.

heorem 6. If A, B, and C are three pairwise compatible TSCAs, then

he following holds:

1. A � B and C are compatible,

2. A � B = B � A, and

3. (A � B) � C = A � (B � C) .

roof. Let A, B , and C be three pairwise compatible TPSAs.

A � B and C are compatible: As A, B , and C are pairwise com-

atible, it holds that X A ∩ X B = X A ∩ X C = X B ∩ X C = ∅ . Thus, X A � B ∩
 C = (X A ∪ X B) ∩ X C = (X A ∩ X C) ∪ (X B ∩ X C) = ∅ . As A, B , and C are

airwise compatible, it holds that �A , �B , and �C are pairwise

ompatible and therefore O A ∩ O B = O A ∩ O C = O B ∩ O C = ∅ . Thus, it

olds that O A � B ∩ O C = (O A ∪ O B) ∩ O C = (O A ∩ O C) ∪ (O B ∩ O C) =
 . As X A � B ∩ X C = O A � B ∩ O C = ∅ , A � B and C are compatible.

A � B = B � A : The set operations used in the definitions are

ll commutative. Commutativity for each part of the tuple follows

irectly by applying the sets’ definitions.

(A � B) � C = A � (B � C) : Let D = (A � B) � C and let

 = A � (B � C) . As A, B , and C are all pairwise compatible, it

olds by (1.) that A � B and C as well as A and B � C are compati-

le. The composition operator is therefore applicable for construct-

ng D and E . Applying the operator, we obtain:

• �D = �A � B � �C = ((I A \ O B) ∪ (I B \ O A) , O A ∪ B) � �C =
(((I A \ O B) ∪ (I B \ O A)) \ O C ∪ I C \ (O A ∪ O B) , O A ∪ O B ∪ O C)

= (I A \ (O B ∪ O C) ∪ I B \ (O A ∪ O C) ∪ I C \ (O A ∪ O B) , O A ∪ O B ∪ O C)

= (I A \ (O B ∪ O C) ∪ (I B \ O C ∪ I C \ O B) \ O A , O A ∪ O B ∪ O C)

= �A � ((I B \ O C) ∪ (I C \ O B) , O B ∪ O C) = �A � (�B � �C)

= �E ,

• X D = X A ∪ X B ∪ X C = X E ,
• S D = { s A ∪ s B ∪ s C | s A ∈ S A ∧ s B ∈ S B ∧ s C ∈ S C } = S E ,
• ιD = ιA ∪ ιB ∪ ιC = ιE ,

• δD = { (s, θ, t) | (s | S A �B
, θ | C(�A � B)

, t| S A � B
) ∈ δA �B ∧

(s | S C , θ | C(�C)
, t S C) ∈ δC } = { (s, θ, t) | (s | S A , θ | C(�A)

, t S A) ∈

δA ∧ (s | S B , θ | C(�B)
, t S B) ∈ δB ∧ (s | S C , θ | C(�C)

, t S C) ∈

δC } = { (s, θ, t) | (s | S B �C
, θ | C(�B � C)

, t| S B � C
) ∈ δB �C ∧

(s | S A , θ | C(�A)
, t S A) ∈ δA } = δE . �

There exists a “neutral element” with respect to the composi-

ion operator. We will use this TSCA to lift the composition opera-

or to arbitrary finite sets of TSCAs.

efinition 18 (Neutral TSCA) . The neutral TSCA is defined as the

SCA N where �N = (∅ , ∅) , X N = ∅ , S N = {∅} , ιN = ∅ , and δN =
 (∅ , ∅ , ∅) } . The neutral TSCA has no channels and no variables. Its

ole and initial state is the empty channel valuation v ∈ ∅ → = [∅ →
] = {∅} . It consists of one transition looping from the initial state

o itself with the empty channel valuation.
It is possible to compose the neutral TSCA with any other TSCA.

t is the neutral element with respect to composition.

heorem 7. Let A be an arbitrary TSCA. Then, the TSCA A and the

eutral TSCA N are compatible and A � N = A = N � A .

roof. Let A be an arbitrary TSCA. It holds that O A ∩ O N = O A ∩ ∅ =
 . Thus �A and �N are compatible. As further X A ∩ X N = X A ∩ ∅ =
 , we can conclude that A and N are compatible. The composi-

ion of A and N is A � N = (�, X, S, ι, δ) where � = ((I A \ ∅) ∪
(∅ \ O A) , O A ∪ ∅) = (I A , O A) , X = X A ∪ ∅ = X A , S = { s A ∪ s B | s A ∈ S A ∧
 B ∈ {∅}} = S A , ι = ιA ∪ ∅ = ιA , δ = { (s, θ, t) | s | S A

θ | C(�A) −−−−→ δA
t| S A ∧

 | {∅} θ | ∅ −−→ δN
t| {∅} } . As s | {∅} θ | ∅ −−→ δN

t| {∅} holds for each θ ∈ C (�) → , the

bove is equal to { (s, θ, t) | s | S A
θ | C(�A) −−−−→ δA

t | S A } = δA . Hence, A �

 = A . By commutativity of � (cf. Theorem 6), we obtain A =
 � A . �

Theorem 6 guarantees that the TSCA resulting from composing

everal pairwise compatible TSCAs is independent of the order in

hich the TSCAs are composed. Theorem 7 shows that the neutral

SCA is a neutral element with respect to TSCA composition. We

herefore lift the TSCA composition operator to the unique function

that takes a finite set of pairwise compatible TSCAs as input

nd outputs their composition under the operator � as usual, i.e.,

satisfies
⊗ ∅ = N and

⊗ { c} = c for all TSCAs c and

⊗

(A ∪ B) =
(
⊗

A) � (
⊗

B) for all all finite sets of TSCAs A and B such that A ∩
 = ∅ and the TSCAs in A ∪ B are pairwise compatible. The operator

s well-defined because of the properties stated in Theorem 6 and

heorem 7 .

Naively applying the construction given in Definition 16 may

ause the compound to consist of many unreachable states.

heorem 3 revealed that unreachable states can be safely removed

rom a TSCA without changing its behaviors. Unreachable states

hus do not contribute to a TSCA’s behavior. To defer a state explo-

ion that occurs when composing several TSCAs with each other,

dding unreachable states to TSCAs during a composition proce-

ure should be avoided. Algorithm 2 depicts an algorithm that

lgorithm 2 Joined composition and trimming of finite TSCAs.

nput: Two Finite and compatible TSCAs A and B

utput: Trimmed composition of A and B

define ι = ιA ∪ ιB as tuple /* initial state */

define δ ← ∅ as set /* transitions */

define R ← ∅ as set /* visited states */

define U ← ⊥ as empty stack /* states to visit */

push (ι, U)

while U � = ⊥ do

s ← top(U)

pop(U)

R ← R ∪ { s }
for all (u 1 , θ1 , v 1) ∈ { t ∈ δA | ∃ u : ∃ θ : (s | A , θ, u) = t} do

for all (u 2 , θ2 , v 2) ∈ { t ∈ δB | ∃ u : ∃ θ : (s | B , θ, u) = t} do

if θ1 | C (�1) ∩ C (�2)
= θ2 | C (�1) ∩ C (�2)

then

define θ ← θ1 + θ2 as channel valuation

δ ← δ ∪ { (s, θ, v 1 ∪ v 2) }
if (v 1 ∪ v 2) / ∈ R then

push (v 1 ∪ v 2 , U)

end if

end if

end for

end for

end while

return (�1 � �2 , R, ι, δ)

450 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

t

T

A

α

P

o

s

i

f

ι

c

e

e

θ

b

W

b

α

α

A

a

e

A

s

o

a

C

c

o

n

i

r

t

h

n

p

p

I

M

D

O

c

�

u

n

s

o

c

E

C

t

a
takes two finite and composable TSCAs as input and outputs the

trimmed TSCAs’ compound. The algorithm performs a breadth-first

search starting in the initial state of the compound. For each state

determined as reachable, the algorithm calculates all transitions

possible in the compound originating from the reachable state and

checks whether the transitions’ target has not been visited. In case

the latter is true, the algorithm adds the state not yet visited to

the set of states that are still to visit and proceeds as above.

Composition preserves I / O -determinism. This fact is important,

because the size of the compound from composing several TSCAs

is exponential in the number of the composed TSCAs. Thus, using

the fact greatly reduces the complexity of determining whether a

compound is I / O -deterministic if all the composition’s participants

are already I / O -deterministic. Section 5 describes the importance

of I / O -determinism in detail: I / O -deterministic TSCAs induce a spe-

cial structure when transforming them to Büchi automata, i.e., the

Büchi automata are always deterministic and weak, which enables

to apply a simple complementation procedure.

Theorem 8. If A and B are two I / O-deterministic and compatible

TSCAs, then A � B is an I / O-deterministic TSCA.

Proof. Let A and B be two I / O -deterministic and composable

TSCAs. Let A � B = (�, X, S, ι, δ) denote the composition of A

and B where � = �A � �B = (I, O) . We need to show that A �

B is I / O -deterministic. Suppose towards a contradiction that A �

B is not I / O -deterministic. Then there exists a state s ∈ S ⊆ X → =
(X A ∪ X B)

→ and a channel valuation θ ∈ C (�) → such that |{ t ∈
S | s

θ−→ δ t}| > 1 . This guarantees there exist t, t ′ ∈ S with t| X A ∈ S A

and t| X B ∈ S B and t ′ | X A ∈ S A and t ′ | X B ∈ S B such that t � = t ′ and s
θ−→ δ t

and s
θ−→ δ t ′ . By definition of composition for TSCAs we have that

the following holds:

s | X A
θ | C(�A) −−−−→ δA

t| X A and s | X A
θ | C(�A) −−−−→ δA

t ′ | X A and s | X B
θ | C(�B) −−−−→ δB

t| X B
and s | X B

θ | C(�B) −−−−→ δB
t ′ | X B . Since t � = t ′ , it holds that t | X A � = t ′ | X A or

 | X B � = t ′ | X B . The case t | X A � = t ′ | X A stands in contradiction to the as-

sumption that A is I / O -deterministic, as this would imply |{ t ∈
S A | s | X A

θ | C(�A) −−−−→ t}| ≥ 2 . Similarly, the case t| X B � = t ′ | X B stands in

contradiction to the assumption that B is I / O -deterministic. �

Example 18 (The composition of two TSCA CBC instances is I / O -

deterministic) . Theorem 8 guarantees that the composition of CBC 0
and CBC 1 as depicted in Example 15 is I / O -deterministic, because

CBC 0 and CBC 1 are I / O -deterministic and compatible. We will now

reconsider this according to the proof of Theorem 8 . If CBC 0 � CBC 1
was not I / O -deterministic, the composition would have to have two

transitions with the same channel valuation from a single state s

to at least two other states t and t ′ (with t � = t ′). The fact that t

and t ′ are different implies that the restrictions of t and t ′ to the

internal variables of CBC 0 are different or the restrictions to the

internal variables of CBC 1 are different. Therefore, in CBC 0 or CBC 1
there must be a transition from one source state to at least two

different tar get states that have the same channel valuation. This

is a contraction to the assumption that both CBC 0 and CBC 1 are

I / O -deterministic.

The behaviors of a compound A � B are all behaviors over

C (�A � B) that are possible in A when restricted to the chan-

nels of A and possible in B when restricted to the channels of B .

Section 5.4 later uses this fact in Theorem 18 to show that refine-

ment of TSCAs is compatible with composition. This is an impor-

tant property, which enables independent development of different

system parts. The following formalizes this property.
heorem 9. Let A and B be two compatible TSCAs and let C
def=

 � B . It holds that behs (C) = { α ∈ C(�C)
∞ | α| C(�A)

∈ behs (A) ∧
| C(�B)

∈ behs (B) } .
roof. Let A, B , and C be given as above.

⊆: Let α ∈ behs (C) and let σ = s 0 , θ1 , s 1 , θ2 , s 2 , ... be an execution

f C such that beh (σ) = α. By definition of execution its holds that

 j−1

θ j −→ δC
s j for all j > 0 and s 0 = ιC . By definition of composition

t holds that s j−1 | X A
θ j | C(�A) −−−−−→ δA

s j | C(�A)
and s j−1 | X B

θ j | C(�B) −−−−−→ δB
s j | C(�B)

or all j > 0.

Further it holds that s 0 | X A = ιC | X A = (ιA ∪ ιB) | X A = ιA and s 0 | X B =
C | X B = (ιA ∪ ιB) | X B = ιB because ιA and ιB are disjoint. We can con-

lude σA
def = s 0 | X A , θ1 | C(�A)

, s 1 | X A , θ2 | C(�A)
, s 0 | X A , ... ∈ execs (A) is an

xecution of A and σB
def = s 0 | X B , θ1 | C(�B)

, s 1 | X B , θ2 | C(�B)
, s 0 | X B , ... ∈

xecs (B) is an execution of B . This implies beh (σA) =
1 | C(�A)

, θ2 | C(�A)
, ... ∈ behs (A) is a behavior of A and

eh (σB) = θ1 | C(�B)
, θ2 | C(�B)

, ... ∈ behs (B) is a behavior of B .

e can observe that beh (σA) = beh (σ) | C(�A)
= α| C(�A)

and

eh (σB) = beh (σ) | C(�B)
= α| C(�B)

. Thus, α| C(�A)
∈ behs (A) and

| C(�B)
∈ behs (B) .

⊇: Let α = θ1 , θ2 , ... ∈ C(�C)
∞ such that α| C(�A)

∈ behs (A) and

| C(�B)
∈ behs (B) . Let σA = s A

0
, θA

1
, s A

1
, θA

2
, s A

2
, ... be an execution of

 such that beh (σA) = α| C(�A)
and let σB = s B

0
, θB

1
, s B

1
, θB

2
, s B

2
, ... be

n execution of B such that beh (σB) = α| C(�B)
. By definition of

xecution it holds that s A
j−1

θA
j −→ s A

j
and s B

j−1

θB
j −→ s B

j
for all j > 0.

s θA
i

= θi | C(�A)
and θB

i
= θi | C(�B)

for all j > 0, it holds that

A
j−1

θ j | C(�A) −−−−−→ s A
j

and s B
j−1

θ j | C(�B) −−−−−→ s B
j

for all j > 0. Using the definition

f TSCA composition, we obtain ((s A
j−1

∪ s B
j−1

) , θ j , (s A
j
∪ s B

j
)) ∈ δC for

ll j > 0. As additionally ιC = ιA ∪ ιB = s A
0

∪ s B
0
, it holds that σ

def=

(s A
0

∪ s B
0
) , θ1 , (s A

1
∪ s B

1
) , θ2 , (s A

2
∪ s B

2
) , ... ∈ execs (C) is an execution of

 . Observing that beh (σ) = α, we can conclude α ∈ behs (C). �

Hiding is an important concept to achieve modularity. The

hannels present in the compound resulting from the composition

f several other TSCAs is always the union of the output chan-

els of the composed TSCAs. For specifying software architectures,

t is often necessary to hide several output channels to the envi-

onment. This is, for example, useful to hide unnecessary informa-

ion not relevant to the architecture’s environment or to explicitly

ide “secret” information. Hidden channels become internal chan-

els of the compound. For example, the bottom architecture de-

icted in Fig. 3 illustrates this: the output channel q of component

os2 is not part of the interface of component Mod8Counter .
t is hidden from the environment, i.e., the TSCA representing the

od8Counter is restricted to the output channels x 0 , x 1 , and x 2 .

efinition 19 (TSCA Channel Restriction) . Let A be a TSCA and let

 ⊆ O A be a set of output channels of A . The restriction of A to the

hannels in O is defined as the TSCA A � O = (�, X A , S A , ιA , δ) where

= (I A , O) and δ = { (s, θ, t) ∈ S A × C(�) → × S A | ∃ (u, θ ′ , v) ∈ δA :

 = s ∧ v = t ∧ θ ′ | C(�) = θ} .
The set of output channels in A �O is restricted to the chan-

els in O. A �O has the same input channels, internal variables, and

tates as A . The TSCA A �O contains a transition for each transition

f A where the transition’s channel valuation is restricted to the

hannels present in A �O .

xample 19 (Restriction of CBC 0) . Example 15 describes the TSCA

BC 0 = ((I 0 , O 0) , S 0 , X 0 , ι0 , δ0) . The restriction CBC 0 �{ x 0 } of CBC 0 to

he set of its output channels { o } is depicted in Fig. 12 . It is defined

s CBC � { x } = (�, S , X , ι , δ) where � = ({ i, r} , { x }) with tran-
0 0 0 0 0 0

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 451

Fig. 12. Graphical representation of the TSCA CBC 0 �{ x 0 }.

s

l

4

a

a

a

u

D

�

i

E

�

c

p

t

t

h

α

w

f

i

m

T

f

P

R

∀

s

T

m

P

R

f

t

T

i

P

R

�

T

s

a

e

b

t

e

d

a

T

a

i

d

p

t

t

t

t

i

a

5

t

i

n

b

i

c

g

T

c

n

5

o

i

a

�

D

w

a

Q

t

B

a

r

i

j

m

�

d

i

B

b
ition relation δ as depicted in Fig. 12 . Each individual transition

abel is restricted to the channels of I 0 ∪ { x 0 } = { i, r} ∪ { x 0 } .

.3. TSSPF semantics of TSCAs

This section defines the semantics of TSCAs by sets of TSSPFs

nd reveals an important relation between the composition oper-

tors: the semantics of the syntactic composition of two TSCAs A

nd B is equal to the composition of the semantics of the individ-

al automata.

efinition 20 (TSSPF Semantics of a TSCA) . The TSSPF semantics

 A � of a TSCA A = (�, X, S, ι, δ) with channel signature � = (I, O)

s defined as follows:

� A �
def = { f ∈ [I �

wc −→ O

�] |
∀ i ∈ I � : ∃ α ∈ behs (A) : i = h α| I ∧ f (i) = h α| O }

xample 20 (TSSPF Semantics of CBC 0) . The TSSPF semantics

 CBC 0 � of the TSCA CBC 0 = ((I 0 , O 0) , S 0 , X 0 , ι0 , δ0) (cf. Example 15)

ontains a single function f because CBC 0 is a deterministic com-

onent. For example, the function f maps the input communica-

ion history h I ∈ I �0 that satisfies h (i) .t = h (r) .t = ε for all t ∈ N

o the output channel history h O ∈ O

�
0

that satisfies h O (x 0) .t =
 O (q 0) .t = ε for all i ∈ N . This holds because there exists a behavior

∈ behs (CBC 0) (with execution looping in the initial state forever),

hich satisfies α.t(i) = α.t(r) = α.t(x 0) = α.t(q 0) = ε for all t ∈ N .

For each behavior of a component, the semantics contain a

unction that maps inputs to outputs as encoded by the history

nduced by the behavior. Thus, no behavior is lost in the semantic

apping.

heorem 10. Let A be a component. For each α ∈ behs (A) there is a

unction f ∈ � A � such that f (h α| I) = h α| O .
roof. Analogous to proof of Theorem 11 in Grosu and

umpe (1995) by replacing the definition of maximality with

 i ∈ I � : i ∈ S| I . �

The semantics of components are well-formed, i.e., components

pecify component semantics describing sets of TSSPFs.

heorem 11. The semantics � A � of a component A is component se-

antics describing.

roof. Analogous to proof of Theorem 12 in Grosu and

umpe (1995) by replacing the set the function f is chosen

rom with [I �
wc −→ O

�] . �

The semantics of the composition of two components is equal

o the composition of their individual semantics:

heorem 12. For two composable components A and B with compat-

ble signatures the following holds: � A � B � = � A � � � B � .
roof. Analogous to proof of Theorem 13 in Grosu and

umpe (1995) by replacing the applications of � ·� for PAs and

for SPFs by applications of the corresponding definitions for

SCAs and TSSPFs. �

An important implication of the theorem is that we can first

yntactically compose the individual automata of an architecture

nd then perform analysis on the semantics of the automaton

ncoding the behavior of the whole system. This gives another

asis for analysis that does not necessarily require to compose

he semantics of the individual components of a system as, for

xample, done in Ringert et al. (2016) . The next sections intro-

uce a method for semantic differencing of TSCAs and addition-

lly shows that semantic differencing for finite I / O -deterministic

SCAs is possible in polynomial time. This paper further defines

 notion of system architecture based on TSCAs. Afterwards, we

ntroduce a method for mitigating the state explosion problem

uring semantic differencing of finite system architectures. In our

revious work (Butting et al., 2017), we only considered seman-

ic differencing for TSPAs in general and we did not introduce

he notion of I / O -determinism. It is straightforward to transfer

he results to TSCAs. The definition of system architecture as in-

roduced in this paper is not possible with TSPAs as introduced

n Butting et al. (2017) because TSPAs do not have a commutative

nd associative composition operator.

. Semantic differencing of component behavior: From TSCAs

o BAs

After introducing the notations for Büchi Automata (BAs) used

n this paper, this section presents a theorem stating that there is a

on-deterministic BA for each finite TSCA that accepts exactly the

ehaviors of the TSCA. Afterwards, we show that refinement check-

ng and semantic difference witness generation for finite TSCAs

an be reduced to language inclusion checking and counterexample

eneration for non-deterministic BAs. For finite I / O -deterministic

SCAs, semantic differencing can even be reduced to language in-

lusion checking for deterministic BAs, which is possible in poly-

omial time in the sizes of the automata.

.1. Büchi Automata

Büchi Automata (Abdulla et al., 2011; Büchi, 1962) are a variant

f finite automata that are acceptors for infinite words and thus

nduce languages consisting of infinite words. They are well known

nd much used in model checking. Infinite words over an alphabet

are infinite sequences of symbols in �.

efinition 21 (Büchi Automaton) . A BA is a tuple (�, Q, I, F, δ)

here � is a finite alphabet, Q is a finite set of states, I ⊆ Q is

 set of initial states, F ⊆ Q is a set of accepting states, and δ ⊆
 ×�× Q is the transition relation.

For convenience we again sometimes write s
σ−→ δ t instead of

 ∈ δ(s, σ) and simply s
σ−→ t if δ is clear from the context. Let

 = (�, Q, I, F , δ) be a BA. The size of B, denoted |B| is defined

s the number of states and transitions in B, i.e., |B| = | Q| + | δ| . A
un of B on a word w = σ1 , σ2 ... ∈ �∞ starting in a state q 0 ∈ Q

s an infinite sequence q 0 , q 1 , ... such that q j−1

σ j −→ δ q j for all

 > 0. A run q 0 , q 1 , ... is accepting if q 0 ∈ I and q i ∈ F for infinitely

any i > 0. The accepted language of B is defined as L (B)
def = { w ∈

∞ | there exists an accepting run for w in B } . The BA B is called

eterministic iff | I | ≤ 1 and ∀ q ∈ Q : ∀ σ ∈ � : |{ t ∈ S | s σ−→ t}| ≤ 1 . B
s called total iff | I| = 1 and ∀ q ∈ Q : ∀ σ ∈ � : | δ(q, σ) | = 1 . A BA

 = (�, Q, I, F , δ) is called weak iff for all pairs of states p, q ∈ Q

elonging to the same strongly connected component it holds that

452 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

Fig. 13. Two Büchi automata A and A . The automaton A accepts the complementary

language of A .

5

n

t

c

c

s

a

a

t

fi

b

o

b

T

P

t

a

d

s

a

θ

b

q

o

σ

E

(

s

t

B

s

e

o

T

d

P

a

T

d

T

E

t

T

T

a

i

T

t

i

T

e

s

T

p is accepting iff q is accepting. Deterministic weak BAs can be

minimized in polynomial time (Löding, 2001). This enables to ef-

ficiently minimize intermediate BA representations of an architec-

ture to mitigate a state explosion during composition. In the gen-

eral case, the minimization problem is PSPACE-complete for non-

deterministic BAs (Barth, 2016; Kozen, 1977) and NP-complete for

deterministic BAs (Schewe, 2010). Checking language inclusion be-

tween two arbitrary non-deterministic Büchi automata is PSPACE-

complete (Kupferman and Vardi, 1996), though decidable, in gen-

eral. Although the computational complexity is large, several ap-

proaches for checking language inclusion and counterexample (diff

witness) generation have been implemented and produce promis-

ing results in practice (Abdulla et al., 2011). Checking language in-

clusion L (A) ⊆ L (B) is typically done in three steps by proving that

there are no words in L (A) , which are not included in L (B) :

1. Construct a complementary automaton B of B that accepts ex-

actly the words not accepted by B, i.e., L (B) = �∞ \ B.

2. Construct a Büchi automaton C that accepts exactly the words

accepted by A and B , i.e., L (C) = L (A) ∩ L (B) .

3. Check whether L (C) = ∅ , which is possible by examining

whether C contains a reachable final state that is part of a cycle.

The computational hardness of checking language inclusion

arises from constructing the BA B that might be exponentially

larger than the BA B in the general case (Kupferman and Vardi,

2005; Safra, 1988). However, in case B is deterministic, the

BA B can be constructed in polynomial time in the size of

B (Kurshan, 1987).

Example 21 (Büchi Automata) . Fig. 13 depicts two BAs A and A .

The BA A is formally defined by A = (�, Q, I, F , δ) where

• � = { a, b, c, d, e } ,
• Q = { t 0 , t 1 , s } ,
• I = { t 0 } ,
• F = { t 0 , t 1 } , and

• δ = { (t 0 , a, t 0) , (t 0 , b, t 0) , (t 0 , c, t 1) ,

(t 1 , d, t 1), (t 1 , e, t 0), (t 1 , b, t 0)}.

The automaton A is defined analogously. The BA A accepts ex-

actly the complementary language of A, i.e., it holds that L (A) =
�∞ \ L (A) . Both automata are deterministic and weak.

In the next section, we present a translation from finite TSCAs

to BAs and thereby reduce semantic differencing and refinement

checking for finite TSCAs to the language inclusion problem for

Büchi automata. We show that the translation transforms a rather

large subclass of TSCAs to BAs that can be complemented in poly-

nomial time in the sizes of the resulting BAs. The subclass contains

all finite I / O -deterministic TSCAs.
.2. From TSCAs to BAs

In model-driven development, models are the primary engi-

eering artifacts, i.e., engineers (manually) create finite models

o describe parts of the system under development. Hence, we

onsider semantic differencing and refinement checking for ar-

hitectures where the individual components have a finite state

pace, communicate over finitely many communication channels,

nd where the types of messages emitted via component interfaces

re finite. There exists a non-deterministic BA for each finite TSCA

hat accepts exactly the TSCA’s behaviors.

The BA associated to a finite TSCA A = (�, X, S, ι, δ) with � =
(I, O) is defined as ba (A)

def = (C(�) → , S, { ι} , S, δ) . As the TSCA A is

nite, the sets S, I, O , and δ are finite. As therefore C (�) → is finite,

a (A) is a well-defined BA. The size of ba (A) is equal to the size

f A . The following theorem shows that the language accepted by

a (A) and the behaviors of A coincide.

heorem 13. For any finite TSCA A, it holds that behs (A) = L (ba (A)) .

roof. Let A = (�, X, S, ι, δ) be a finite TSCA with channel signa-

ure � = (I, O) . Further let ba (A) = (C(�) → , S, { ι} , S, δ) be the BA

ssociated to A .

⊆: Let s 0 , θ1 , s 1 , θ2 , s 2 , ... ∈ execs (A) be an execution of A . By

efinition of execution s j−1

θ j −→ s j for all j > 0 and s 0 = ι. Thus, s 0 ,

 1 , s 2 , ... is a run of B on the word θ1 , θ2 , Since all states s ∈ S

re accepting, the run is accepting. Thus, beh (s 0 , θ1 , s 1 , θ2 , s 2 , ...) =
1 , θ2 , ... ∈ L (B) .

⊇: Assume that σ = σ1 , σ2 , σ3 , ... ∈ L (B) and let q 0 , q 1 , q 2 , ...

e an accepting run of B on σ . By definition of run we have

 j−1

σ j −→ q j for all j > 0. Thus τ = q 0 , θ1 , q 1 , θ2 , ... is an execution

f A . Therefore, by definition of behavior we have that beh (τ) =
1 , σ2 , ... ∈ behs (A) is a behavior of A . �

xample 22. The BA ba (CBC 0) associated to the finite TSCA CBC 0
cf. Example 15) is equal to the BA A depicted in Fig. 13 when as-

uming a = n 0
0
, b = r 0 , c = i 0

0
, d = n 0

1
, e = i 0

1
.

The following reveals a sufficient condition that guarantees the

ranslation of a TSCA to its associated BA yields a deterministic

A. As language inclusion checking for deterministic BAs is pos-

ible in polynomial time (Kurshan, 1987), we obtain a method for

fficiently determining if the set of behaviors of a TSCA is a subset

f the behaviors of another I / O -deterministic TSCA.

heorem 14. The associated BA ba (A) of each finite and I / O-

eterministic TSCA A is deterministic.

roof. Let A = (�, X, S, ι, δ) be a finite and I / O -deterministic TSCA

nd let ba (A) = (C(�) → , S, { ι} , S, δ) be the BA associated to A .

he BA ba (A) has a unique initial state. As the TSCA A is I / O -

eterministic, it holds that ∀ s ∈ S : ∀ θ ∈ C (�) → : |{ t ∈ S | (s, θ , t)}| ≤ 1.

his implies that ba (A) is deterministic. �

xample 23 (The ba (TSCA CBC) is deterministic) . Example 10 shows

hat TSCA CBC is finite. Thus, the TSPAs state space S is also finite.

SCA CBC is I / O -deterministic, i.e., there is at most one state that the

SCA can change to, from a given source state and a given channel

ssignment. This follows from the fact that the TSCA is determin-

stic, which has been shown in Example 10 and the application of

heorem 2 . According to the definition of BAs, a BA is determinis-

ic if it has at most one initial state and for each state and for each

nput word, there is at most one state that the BA can change to.

he BA ba (TSCA CBC) has a single initial state and for each input, i.e.,

ach channel assignment, there is only one transition from each

tate, because TSCA CBC is deterministic. With this (and the proof of

heorem 14), the constructed BA ba (TSCA) is deterministic.
CBC

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 453

B

e

B

f

m

w

t

T

P

a

e

s

s

5

E

t

a

m

p

g

f

I

t

o

o

a

r

p

o

n

n

t

D

T

t

F

i

c

E

w

a

T

f

e

q

c

δ

δ

o

h

T

a

w

p

c

t

o

T

�

h

w

P

w

a

t

t

h

t

∃
b

w

t

w

t

d

α

s

a

a

t

s

B

g

h

w

h

v

e

a

a

n

s

E

t

c

a

i

s

T

b

n

i

c

o

p

5

d

t

t

a

R

b
There exist non-deterministic BAs for which no deterministic

As exist that accepts the same language. On the other hand, for

ach non-deterministic weak BA, there exists a deterministic weak

A that accepts the same language (Löding, 2001). The translation

rom TSCAs to BAs always yields weak BAs, which can be deter-

inized and minimized. Further, each deterministic and complete

eak BA can be complemented in polynomial time by exchanging

he automaton’s sets of accepting and non-accepting states.

heorem 15. The associated BA ba (A) of each finite TSCA A is weak.

roof. Let A = (�, X, S, ι, δ) be a finite and I / O -deterministic TSCA

nd let ba (A) = (C(�) → , S, { ι} , S, δ) be the BA associated to A . As

very state in ba (A) is accepting, it especially holds that each

trongly connected component in ba (A) solely contains accepting

tates. This implies that ba (A) is weak. �

.3. Semantic differencing for component behavior

The semantics of components are defined as sets of TSSPFs.

ach function f ∈ � c� \ � c ′ � in the semantics of one component c

hat is no member of the semantics of another component c ′ is

 representative for the difference between the components’ se-

antics. However, such a representative defines an output for each

ossible component input, even if the semantic difference is only

iven by a single input/output pair. Thus, such a TSSPF does not ef-

ectively reveal the differences between the component semantics.

n contrast, the exact input/output pairs for which there is a func-

ion in the semantics of one component that maps the input to the

utput and for which there is no function in the semantics of the

ther component mapping the input to the output clearly reveals

 difference. If two components have different interfaces, i.e., they

ead and write from and to different channels, each input/output

air of the first component indicates a difference to the semantics

f the other component. However, if the components have chan-

els of the same types one can easily avoid this problem by chan-

el renaming and hiding (Broy, 2010). Thus, we define the seman-

ic difference for components having the same interfaces, only.

efinition 22 (Diff Witness) . Let F 1 , F 2 ⊆ [I �
wc −→ O

�] be two sets of

SSPFs. A diff witness distinguishing F 1 from F 2 is a communica-

ion history w ∈ (I ∪ O) � satisfying ∃ f 1 ∈ F 1 : f 1 (w | I) = w | O ∧ ∀ f 2 ∈
 2 : f 2 (w | I) � = w | O .

We denote by
(F 1 , F 2) the set of all diff witnesses distinguish-

ng F 1 from F 2 .

A set of diff witnesses may be finite but is typically infinite and

an thus not be completely enumerated.

xample 24 (Diff Witness) . This example presents a diff

itness between the T SCA CBC = (�CBC , X CBC , S CBC , ιCBC , δCBC)

nd a modified version of it. The modified version

 SCA mod = (�CBC , X CBC , S CBC , ιCBC , δmod) has the same inter-

ace as TSCA CBC and a similar behavior – the only differ-

nce is that it does not emit � on the outgoing channel

 if the state changes from b to a after an increase of the

ounted value. More technically, δmod = (δCBC \ δba) ∪ δba ′ , where

ba = { (b, θ, a) | θ (i) = � ∧ θ (r) = ε ∧ θ (v) = ε ∧ θ (q) = �} and

ba ′ = { (b, θ, a) | θ (i) = � ∧ θ (r) = ε ∧ θ (v) = ε ∧ θ (q) = ε}
Let in = { r �→ 〈 ε ∞ 〉 , i �→ 〈� , � , ε ∞ 〉} ∈ I � be an input history

ver the common interface of TSCA CBC and TSCA mod . The input

istory describes two increase steps that change the state of the

SCA from a to b , back to a , and then remains in state a . For

ll h ∈ TSCA CBC [in | { q }] and h ′ ∈ TSCA mod [in | { q }], it holds that h. 1 = � ,

hereas h ′ . 1 = ε. Therefore, for the given input history, the TSCAs

roduce different output histories.

We consider architectures where the whole system behavior

an be mapped to a TSCA. The following theorem reveals the rela-
ion between the differences of the behaviors and of the semantics

f TSCAs.

heorem 16. Let A 1 = (�, S 1 , ι1 , δ1) and A 2 = (�, S 2 , ι2 , δ2) with

= (I, O) be two TSCAs and let w ∈ (I ∪ O) � be a communication

istory. The following holds: w ∈
(� A 1 � , � A 2 �) ⇔ ∃ α ∈ behs (A 1) :

 = h α ∧ α / ∈ behs (A 2) .

roof. Let A 1 , A 2 , and w be given as above.

⇒ : Assume w ∈
(� A 1 � , � A 2 �) is a diff witness. By definition of

, we have that there is a function f 1 ∈ � A 1 � such that f 1 (w | I) =
 | O and f (w | I) � = w | O for all f ∈ � A 2 � . In the following let f 1 be such

 function that satisfies the above. By definition of � ·� we have

hat ∀ i ∈ I � : ∃ α ∈ behs (A 1) : i = h α| I ∧ f 1 (i) = h α| O . When substi-

uting w | I for i , we get that ∃ α ∈ behs (A 1) : w | I = h α| I ∧ f 1 (w | I) =
 α| O . Since f 1 (w | I) = w | O we can substitute w | O for f 1 (w | I) and ob-

ain ∃ α ∈ behs (A 1) : w | I = h α| I ∧ w | O = h α| O , which is equivalent to

 α ∈ behs (A 1) : w = h α . In the following, let such an α with w = h α
e given. It remains to show α �∈ behs (A 2). Towards a contradiction

e assume α ∈ behs (A 2). By Theorem 10 we get there is a func-

ion g ∈ � A 2 � such that g(h α| I) = h α| O . By definition of α we have

 = h α and thus g(w | I) = w | O . But since w ∈
(� A 1 � , � A 2 �) , it holds

hat ∀ f ∈ � A 2 � : f (w | I) � = w | O . Substituting g for f yields a contra-

iction.

⇐ : Assume there is an α ∈ behs (A 1) such that w = h α and

�∈ behs (A 2). Using Theorem 10 we get there is a function f ∈ � A 1 �

uch that f (h α| I) = h α| O . By definition of w we have that w = h α
nd thus obtain by substitution that f (w | I) = w | O . Thus there is

 function f ∈ � A 1 � such that f (w | I) = w | O . It remains to show

hat g (w | I) � = w | O for all g ∈ � A 2 � . Towards a contradiction we as-

ume that there is a function g ∈ � A 2 � such that g(w | I) = w | O .
y definition of � ·� we get that ∀ i ∈ I � : ∃ β ∈ behs (A 2) : i = h β | I ∧
(i) = h β | O . Substituting w | I for i we obtain ∃ β ∈ behs (A 2) : w | I =
 β | I ∧ g(w | I) = h β | O . Since by assumption w | I = h α| I and g(w | I) =
 | O by definition of g , this is equivalent to ∃ β ∈ behs (A 2) : h α| I =
 β | I ∧ w | O = h β | O . By assumption we have w = h α and thus obtain

ia substitution ∃ β ∈ behs (A 2) : h α| I = h β | I ∧ h α| O = h β | O , which is

quivalent to ∃ β ∈ behs (A 2) : h α = h β . Using the definitions of h α
nd h β , this is equivalent to ∃ β ∈ behs (A 2) : α = β, which is equiv-

lent to α ∈ behs (A 2) and contradicts the assumption. �

In the previous section, we presented a translation from fi-

ite TSCAs to BAs. Each word accepted by a BA resulting from

uch a translation corresponds to a behavior of the input TSCA.

xisting algorithms for checking language inclusion and coun-

erexample generation for BAs can thus be used for refinement

hecking and diff witness generation of architectures as defined

bove: Given two TSCAs A 1 and A 2 we use the translation defined

n Section 5.2 to obtain two Büchi automata ba (A 1) and ba (A 2)

uch that L (ba (A 1)) = behs (A 1) and L (ba (A 2)) = behs (A 2) . Using

heorem 16 and Theorem 13 we can transform a word accepted by

a (A 1) that is not accepted by ba (A 2) to a corresponding diff wit-

ess that semantically distinguishes the automata A 1 and A 2 . If A 2

s I / O -deterministic, the BA ba (A 2) is deterministic and weak and

an thus be easily complemented in polynomial time in the size

f B 2 , which is equal to the size of A 2 . Then, inclusion checking is

ossible in polynomial time in the sizes of ba (A 1) and ba (A 2).

.4. Mitigating the state explosion problem when applying semantic

ifferencing to system architectures

This section summarizes practical performance improvements

o mitigate a state explosion during semantic differencing of sys-

em architectures consisting of multiple TSCAs. We first define an

bstract notion of system architecture (SA) inspired by Philipps and

umpe (1997) . While (Philipps and Rumpe, 1997) considers a

lack-box view on SAs, in this paper we assume a white-box view

454 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

t

f

a

D

S

d

fi

fi

m

a

c

m

d

b

t

u

D

m

b

d

b

d

T

∅
P

t

i

p

c

E

t

d

t

w

l

S

t

i

s

t

a

T

t

b

t

T

p

P

L

b

b

t

a

C

where component implementations are available. A SA consists of

an interface observable by the system’s environment given by a

channel signature and of finitely many components represented by

TSCAs that are connected via their channels.

Definition 23 (System Architecture) . A system architecture is a tu-

ple S = (�, C) where:

• � = (I, O) is a channel signature,
• C is a finite non-empty set of pairwise compatible components,
• the channels of S exist in the composition of the TSCAs’ channel

signatures, i.e., I = J and O ⊆ P where (J, P) =

⊗

c∈ C �c denotes

the composition of the channel signatures of all TSCAs in C , and
• (

⊗

C) � O is a component.

S is called finite iff � is finite and each c ∈ C is finite.

The channel signature � defines the SA’s external interface. The

set C consists of the SA’s components. The channels encoded by

the channel signature � are required to exist in the compound re-

sulting from composing the SA’s components. The last condition

stating that (
⊗

C) � O must be a component is the most abstract

well-formedness rule guaranteeing the result from composing the

architecture’s components is a component itself. More restricting

well-formedness rules implying that (
⊗

C) � O is a component are

also possible to describe more restricted SA subclasses. One exam-

ple is to require each component c ∈ C to be strongly causal with

respect to all its channels. Another, more relaxed, example is to re-

quire each component c ∈ C to be composable with each possible

intermediate composition result
⊗

D for each D ⊆ C �{ c }. We omit

the proofs showing that these two examples imply that (
⊗

C) � O

is a component. Each individual TSCA participating in a SA is inter-

preted as an atomic component, i.e., is not considered to have any

subcomponents. As the TSCAs’ channel signatures must be pairwise

compatible, multiple components may read from the same channel

whereas only one component is permitted to write on a channel.

The input channels of a SA are equal to the input channels of the

TSCA resulting from the subcomponents’ composition. The set of

output channels must be a subset of the output of the TSCA result-

ing from the composition. With this, output channels not specified

by the architecture are hidden to the environment.

Example 25 (System architecture of the Mod8Counter) . This exam-

ple presents the system architecture of the alternative representa-

tion of the Mod8Counter , depicted in Fig. 5 , as composition of

the TSCAs of its subcomponents pos0 , pos1 , and pos2 . The sys-

tem architecture is S Mod8 b = (�, C) with

• the channel signature �Mod8 = ({ inc, res } , { x 0 , x 1 , x 2 }) and

• the set of components

C = { T SCA pos 0 , T SCA pos 1 , T SCA pos 2 } .
The input channel set of S Mod 8 b is equal to the input channel set

of the composition of the three TSCAs. The output channel set of

S Mod 8 b is a subset of the output channel set of the composition of

the TSCAs in C . The output channel set of the composition of the

TSCAs in C is { x 0 , q 0 , x 1 , q 1 , x 2 , q 2 }. Channels included in the set of

output channels of the composition that are no elements of the set

of output channels of the system architecture S Mod 8 b are hidden.

The composition

⊗

C is a component, as shown in Example 17 . In-

tuitively, the restriction of this composition to the output channels

O is also a component, because the restriction of output channels

does not influence the TSCA’s reactiveness. The system architecture

is finite, because all c ∈ C are finite (cf. Example 10) and �Mod 8 is

finite.

A system architecture’s TSCA semantics is the result from re-

stricting the channels of the compound resulting from composing
he SA’s components to the channels specified by the SA’s inter-

ace. The behavior and TSSPF semantics are given by the behavior

nd TSSPF semantics of the TSCA semantics.

efinition 24 (TSCA, Behavior, and TSSPF Semantics of SAs) . Let

 = (�, C) with � = (I, O) be a SA. The TSCA semantics of S is

efined as tspa (S) = (
⊗

C) � O . The behavior semantics of S is de-

ned as behs (S)
def = behs (tspa (S)) . The TSSPF semantics of S is de-

ned as � tspa (S) � .

Composing SAs with each other is also possible as the TSCA se-

antics of a SA can be interpreted as a component, again.

In continuous architecting and especially in combination with

gile software development methodologies, requirements typically

hange during system development. In case additional require-

ents are added or existing requirements are strengthened, un-

erspecification in component behavior models typically needs to

e restricted to adapt the current specification or implementation

o match the additional requirements. The behavior of the system

nder development is said to be refined.

efinition 25 (Refinement) . A TSCA A is called (behavior) refine-

ent of a TSCA B , denoted A � B , iff �A = �B and behs (A) ⊆
ehs (B).

Refinement is lifted to SAs: A SA S is called refinement of a SA S ′ ,
enoted S � S ′ , iff tspa (S) � tspa (S ′). As a refinement exhibits less

ehaviors as the original system, there cannot exist a diff witness

istinguishing the refined system from the original one.

heorem 17. Let A and B be two TSCAs. If A � B, then
(� A � , � B �) =
 .

roof. Let A and B be two TSCAs such that A � B . Thus, it holds

hat behs (A) ⊆ behs (B). Suppose towards a contradiction there ex-

sts a diff witness w ∈
(� A � , � B �) � = ∅ . Using Theorem 16 , this im-

lies there exists α ∈ behs (A) such that w = h α and α �∈ behs (B). This

ontradicts behs (A) ⊆ behs (B). �

xample 26 (Refinement of the Mod8Counter system architec-

ure) . Consider the system architectures of the Mod8Counter as

epicted in Fig. 3 (a) with the TSCA specified in Appendix B and

he system architecture as depicted in Fig. 5 . In the following,

e will refer to the first as the system architecture S and to the

atter as the system architecture S ′ . First, we will investigate if

′ �S by showing that tspa (S ′) � tspa (S). Therefore, it must hold

hat �S ′ = �S and behs (tspa (S ′)) ⊆ behs (tspa (S)). The first is sat-

sfied, because both system architectures have the same channel

ignature �S ′ = �S = ({ inc, res } , { x 0 , x 1 , x 2 }) . Further, it holds that

spa (S ′) = (
⊗

C S ′) � O S ′ = (T SCA pos 0 � T SCA pos 1 � T SCA pos 2) � O S ′
nd tspa (S) = (

⊗

C S) � O S = T SCA Mod8 a . The result of TSCA pos 0 �

 SCA pos 1 � T SCA pos 1 has been explained in Example 25 . Due to

he channel restriction, we have tspa (S ′) = tspa (S) and therefore,

ehs (tspa (S ′)) = behs (tspa (S)) holds.

Behavior refinement is reflexive and transitive. More impor-

antly, it is compatible with composition:

heorem 18. Let A, B, and C be TSCAs such that A and C are com-

atible and B and C are compatible. If A � B, then A � C � B � C.

roof. Let A, B , and C be given as above such that A � B .

et α ∈ behs (A � C). Using Theorem 9 , this implies α| C(�A)
∈

ehs (A) and α| C(�C)
∈ behs (C) . As A � B , it holds that behs (A) ⊆

ehs (B). Thus, as α| C(�A)
∈ behs (A) and behs (A) ⊆ behs (B), we ob-

ain α| C(�A)
∈ behs (B) . In summary, it holds that α| C(�A)

∈ behs (B)

nd α| C(�C)
∈ behs (C) . Using Theorem 9 , this implies α ∈ behs (B �

). �

Refinement is also preserved by TSCA restriction.

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 455

T

A

P

d

O

t

c

s

s

s

g

d

a

T

b

σ

t

r

j

e

o

b

t

τ

h

r

a

c

c

p

s

n

n

e

i

o

T

i

p

S

P

f

a

S

 ⊗

s

n

⊆

i

t

o

c

c

p

t

s

t

S

C

(

b

C

C ⊗

a

S

d

p

w

l

s

T

t

c

d

w

h

h

a

u

E

A

m

I

O

c

s

o

w

t

a

p

r

Section 6.3 .
heorem 19. Let A and B be TSCAs and let O ⊆ O B . If A � B, then

 �O � B �O.

roof. Let A and B be TSCAs and let O ⊆ �B . Assume A � B . By

efinition A � B it holds that �A = �B . Let I
def = I A = I B .

Let A

′ def = A � O denote the restriction of A and let B ′ def = B �
 denote the restriction of B . As �A = �B , it especially holds

hat �A ′ = �B ′ . Let σ = s 0 , θ1 , s 1 , θ2 , s 2 , ... ∈ execs (A

′) be an exe-

ution of A . By definition of execution, it holds that s j−1

θ j −→ δ
A ′

 j for all j > 0. By definition of TSCA restriction, we have that

 j−1

θ j −→ δ
A ′ s j is equivalent to ∃ (s A

j−1
, θA

j
, s A

j
) ∈ δA : s

A
j−1

= s j−1 ∧ s A
j

=
 j ∧ θA

j
| I∪ O = θ j for each j > 0. Let such θA

j
with θA

j
| (I∪ O) = θ j be

iven for each j > 0. As s j−1

θA
j −→ δA

s j for each j > 0, it holds by

efinition of execution that σA
def = s 0 , θ

A
1
, s 1 , θ

A
2
, s 2 , ... ∈ execs (A) is

n execution of A . As A � B , it holds that beh (σ A) ∈ behs (B).

herefore, there exists an execution σ B ∈ execs (B) of B such that

eh (σB) = beh (σA) . Hence, there exist s B
0
, s B

1
, s B

2
... ∈ S B such that

B = s B
0
, θA

1
, s B

1
, θA

2
, s B

2
, ... ∈ execs (B) . This is by definition of execu-

ion equivalent to (s B
j−1

, θA
j
, s B

j
) ∈ δB for each j > 0. Using the TSCA

estriction definition, this implies (s B
j−1

, θA
j
| (I∪ O) , s B j) ∈ δB ′ for each

 > 0. Thus, τ
def = s B

0
, θA

1
| (I∪ O) , s B 1

, θA
2
| (I∪ O) , s B 2

, ... ∈ execs (B ′) is an ex-

cution of B ′ . As by definition θA
j
| (I∪ O) = θ j for each j > 0, we

btain beh (τ) = θ0 , θ1 , θ2 , ... ∈ behs (B ′) . Observing that τ = σ and

eh (τ) ∈ behs (B ′), we obtain beh (σ) ∈ behs (B ′). We can conclude

hat for each execution σ ∈ execs (A

′) there exists an execution

∈ execs (B ′) such that beh (σ) = beh (τ) . Hence by definition of be-

aviors, behs (A

′) ⊆ behs (B ′). �

Changing a SA to a successor version for adapting to evolved

equirements often only requires to adapt the implementations of

 proper subset of the SA’s components without changing the ar-

hitecture’s topology, i.e., the SA’s interface is left unchanged and

omponents neither need to be added nor removed but some com-

onent implementations are changed. In this case, it is often not

trictly necessary to check whether the TSCA corresponding to the

ew SA is a refinement of the TSCA corresponding to the origi-

al architecture. It suffices to show that the composition of the

volved sub-architecture with any common subsystem of the orig-

nal and the evolved SA is a refinement of the composition of the

riginal sub-architecture with the same common subsystem:

heorem 20. Let S A = (�, C A) and S B = (�, C B) be two SAs hav-

ng the same channel signature �. If there exists a set of com-

onents Sub ⊆(C A ∩ C B) such that
⊗

((C A \ C B) ∪ Sub) � ⊗

((C B \ C A) ∪
ub) , then S A � S B .

roof. Let S A = (�, C A) and S B = (�, C B) be two syntactically con-

orm SAs with channel signature � = (I, O) . Suppose there exists

 set of components Sub ⊆ C A ∩ C B such that
⊗

((C A \ C B) ∪ Sub) �
((C B \ C A) ∪ Sub) . Let C = ((C A \ C B) ∪ Sub) and let C ′ = ((C B \ C A) ∪
ub) .

In the following we show that (
⊗

C) and (
⊗

C A \ C) as well as

C ′ and

⊗

C B \ C ′ are compatible, which shows that the corre-

ponding compositions are well-defined: As S A is a SA, the compo-

ents in C A are all pairwise compatible. Thus, the components in C

C A and the components in C A �C ⊆ C A are also pairwise compat-

ble. Therefore, (
⊗

C) and (
⊗

C A \ C) are well-defined. As it holds

hat C A = C ∪ (C A \ C) and C ∩ (C A \ C) = ∅ , applying the first part

f Theorem 6 at most | C | times, we obtain that (
⊗

C) and c are

ompatible for each c ∈ C A �C . As all components in C A are pairwise

ompatible and each component c ∈ C A is compatible to (
⊗

C) , ap-

lying the first part of Theorem 6 at most | C �C | times, we ob-
A
ain that (
⊗

C) and (
⊗

C A \ C) are compatible. A similar argument

hows that
⊗

C ′ and

⊗

C B \ C ′ are compatible.

In the following we show that C A \ C = C B \ C ′ , which enables

o apply Theorem 18 : It holds that C A \ C = C A \ ((C A \ C B) ∪ Sub) =
(C A \ (C A \ C B)) \ Sub = ((C A \ C A) ∪ (C A ∩ C B)) \ Sub = (C A ∩ C B) \
ub. Using a similar argument, we obtain C B \ C ′ = C B \ ((C B \
 A) ∪ Sub) = (C B \ (C B \ C A)) \ Sub = ((C B \ C B) ∪ (C B ∩ C A)) \ Sub =
 C B ∩ C A) �Sub . We can conclude C A \ C = C B \ C ′ .

Having shown the compatibility and C A \ C = C B \ C ′ and since

y assumption

⊗

C � ⊗

C ′ , Theorem 18 guarantees (
⊗

C) �

(
⊗

C A \ C) � (
⊗

C ′) � (
⊗

C B \ C ′) . It holds that C ∩ (C A \ C) = ∅ =

′ ∩ (C B \ C ′) and that all components in C ∪ (C A \ C) = C A and in

′ ∪ (C B \ C ′) = C B are pairwise compatible. Thus, by definition of

, the above is equivalent to
⊗

C A �
⊗

C B . Since Theorem 19 guar-

ntees that hiding preserves refinement, this implies (
⊗

C A) | O �
(
⊗

C B) | O . This is by definition of refinement equivalent to S A �
 B . �

Nevertheless, it might be the case that no such subsystem as

escribed in Theorem 20 exists. Thus, in the worst case, the com-

lete TSCAs for both architectures have to be considered. However,

e believe in practice this rarely occurs. The above leads to the fol-

owing algorithm for mitigating the state explosion problem during

emantic differencing of finite system architectures:

In case the if-condition in the for-loop is satisfied,

heorem 20 guarantees the refinement relation holds. In case

he condition is not satisfied for any S ⊆ C A ∩ C B , it has to be

hecked whether the complete SA S A refines the SA S B . The

ifference between comparing
⊗

C A with

⊗

C B and tspa (S A)

ith tspa (S B) is that the former comparison does not consider

iding of internal channels, while the latter does. For the be-

avior inclusion checks and diff witness generation, existing

lgorithms for language inclusion checking between BAs may be

sed (cf. Section 5.1 and Section 5.3).

xample 27 (Application of Algorithm 3) . Consider the system ar-

lgorithm 3 Mitigating the state explosion problem during refine-

ent checking of system architectures.

nput: Two finite SAs S A = (�A , C A) and S B = (�B , C B) .

utput: Yes, if S A � S B , and w ∈
(� S A � , � S B �) , otherwise.

define C =

⊗

(C A \ C B) as TSCA

define C ′ =

⊗

(C B \ C A) as TSCA

for all S ⊆ C A ∩ C B in increasing size do

if behs (S � C) ⊆ behs (S � C ′) then

return Yes /* Composition without hiding */

end if

end for

if behs (S A) ⊆ behs (S B) then

return Yes /* Composition with hiding */

else

return w ∈
(� S A � , � S B �)

end if

hitectures of the Mod8Counter as depicted in Fig. 3 (c) and the

ystem architecture as depicted in Fig. 5 . We denote to the first

ne as S A and to the second one as S B . The goal is to determine

hether S B � S A holds. Applying semantic differencing checking to

hese two system architectures reveals they refine each other. Both

lso refine the initial specification for the Mod8Counter as ex-

lained in Appendix B . More details on the evaluation regarding

efinement checking between the three architectures are given in

456 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

Fig. 14. Textual representation of the component Elevator .

6

t

o

e

p

T

p

t

t

t

A

p

T

m

2

c

c

n

n

n

t

u

t

p

g

p

c

d

u

b

6

M

i

8

p

a

f

i

m

t

w

o

v

c

t

p

(

t

n

p

g

t

e

p

f

o

n

t

1

p
6. Implementation and evaluation

This section recapitulates the MontiArcAutomaton ADL (Ringert

et al., 2015; 2014), presents the application of refinement checking

to its models and evaluates our approach.

6.1. The MontiArcAutomaton ADL

The MontiArcAutomaton ADL (Ringert et al., 2015; 2014) com-

prises the modeling elements common to many popular compo-

nent & connector ADLs (Medvidovic and Taylor, 20 0 0), i.e., hier-

archical components with interfaces of typed, directed ports and

unidirectional connectors (typed FIFO channels) exchanging mes-

sages between these ports. The components are black-boxes and

either atomic or composed: atomic components yield behavior

descriptions in form of embedded automata (following the I/O

ω

(Rumpe, 1996) paradigm) or in form of Java implementations. Such

automata and Java implementations are transformable to TSCAs

for semantic differencing. The behavior of composed components

solely emerges from the interaction of their subcomponents. Com-

posing the TSCAs belonging to a composed component’s subcom-

ponent implementations results in a TSCA modeling the composed

component’s behavior. With this, semantic differencing of com-

posed components is possible. Components are scheduled by a

global clock and perform cycles of

• reading all messages on incoming ports;
• computing behavior (which might entail invoking subcompo-

nents)
• producing a single message to each outgoing port.

Each computation consumes a time slice, i.e., the output for

messages received at the global clock’s i -th tick is processed at

its i + 1-th tick earliest. All MontiArcAutomaton components are

thereby strongly causal. The MontiArcAutomaton ADL also distin-

guishes between component types and their instances, supports

component type inheritance, generic type parameters for compo-

nents (e.g., to be used with generic port types), and constructor-

like configuration of these instances.

The MontiArcAutomaton ADL is a textual modeling language

implemented with the MontiCore (Krahn et al., 2008) language

workbench. The textual representation of the composed compo-

nent type Elevator is illustrated in Fig. 14 . It begins with the

keyword “component”, followed by the component type’s name

and a body delimited by curly brackets (l. 1). The body contains

an interface of typed ports (ll. 2-5), declares three subcomponents

(ll. 7-9), and multiple connectors (ll. 11-13). The subcomponent

declarations reference component types imported from artifacts

(such as Control).
.2. Semantic differencing of MontiArcAutomaton components

The implementation comprises a translation from MontiArcAu-

omaton architectures to semantically equivalent TSCAs. TSCAs are

nly handled internally as representatives for sets of TSSPFs mod-

ling component semantics and are not explicitly modeled by com-

onent developers. Each atomic component directly translates to a

SCA. The TSCA of a composed component is computed by com-

osing the TSCAs of its subcomponents according to the architec-

ural configuration defined by the composed component’s connec-

ors. A composed component’s TSCA is either constructed using

he composition operator’s definition (cf Definition 16) or using

lgorithm 2 to directly compute the trimmed TSCA of the com-

ound. The implementation further consists of a translation from

SCAs to BAs and generators that produce models in the “BA for-

at”, which is the input format of the tool RABIT (Abdulla et al.,

011). In case a BA does not refine another BA, RABIT provides a

ounterexample serving as a concrete disproof for refinement. The

ounterexamples are translated back to diff witnesses, which tech-

ically are finite prefixes of behaviors of one component that are

o behaviors of another component. An engineer can use the wit-

ess to either manually inspect the component implementation for

he syntactic reasons causing the semantic difference, or create a

nit test where the component is provided the input encoded by

he witness. When executing the unit test, the engineer may em-

loy the usual debugging techniques provided by all common inte-

rated development environments to identify the component im-

lementation’s elements causing the diff witness. Using the tool

hain described above enables automated refinement checking and

iff witness generation for MontiArcAutomaton architectures and

ltimately supports engineers in detected the semantic differences

etween component implementations.

.3. Semantic differencing evaluation

We evaluated the approach to semantic differencing with six

ontiArcAutomaton architectures previously used for evaluation

n Butting et al. (2017) ; Ringert et al. (2016) and the modulo-

 counter architectures used as running example throughout this

aper. We specifically chose the first six architectures for evalu-

tion since the approach presented in Ringert et al. (2016) failed

or some specifications, which we considered to be challeng-

ng, and to enable comparability. The architectures were slightly

odified for this evaluation to resolve technical MontiArcAu-

omaton version compatibility issues. The example models as

ell as the BAs resulting from the translations are available

nline MontiArcVerificationWeb . This paper extends the pre-

ious evaluation of Butting et al. (2017) with the modulo-8

ounter architecture that is used as running example. Further,

he previous evaluation (Butting et al., 2017) always naively com-

oses TSCAs using the definition of the composition operator

cf. Definition 16). This paper extends this evaluation by fur-

her applying the advanced composition method that simulta-

eous trims the compound while composing the composition’s

articipants (cf. Algorithm 2). We reused the completion strate-

ies (Ringert et al., 2016) for completing the automata implemen-

ations of the architectures’ atomic components.

The first architecture is given by an implementation of an el-

vator control system (ECS) (cf. Section 2). It comprises 3 com-

osed and 5 atomic components. The second example consists of

our variants of a mobile robot. We only report on the evaluation

f the most challenging variant. This variant comprises 4 compo-

ents in total whereof 3 components are atomic. Another archi-

ecture implements a pump station consisting of 3 composed and

0 atomic components. The modulo-8 counter specification is com-

letely defined in Fig. B.1 . The result from executing the refine-

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 457

Table 1

Time for refinement checking and diff witness calculation.

(� ·� , � ·�)
(� ·� , Chaos)
(Chaos, � ·�)
Naive Floors 62 ms 536 ms 885 ms

Elevator 83 ms 2510 ms 5927 ms

ECS 461 ms 7124 ms 15339 ms

SensorReading 62 ms 753 ms 1401 ms

Controller 12 ms 17 ms 19 ms

Pumpstation 120 ms 321 ms 570 ms

MobileRobot 61 ms 67 ms 85 ms

Mod8Counter 14 ms 17 ms 15 ms

Trim Floors 69 ms 560 ms 914 ms

Elevator 39 ms 2525 ms 5927 ms

ECS 94 ms 9263 ms 15850 ms

SensorReading 57 ms 787 ms 1390 ms

Controller 11 ms 13 ms 16 ms

Pumpstation 112 ms 326 ms 543 ms

MobileRobot 23 ms 57 ms 76 ms

Table 2

The numbers of states and transitions of the TSCAs translated from the architectures and of the

generated BAs.

time TSCA/BA BA AP Chaos

states # trans. # states # trans. # trans.

Naive Floors 25 ms 32 1024 32 1024 23328

Elevator 460 ms 34 10206 1 729 236196

ECS 3465 ms 746 98496 8 1728 472392

SensorReading 1296 69984

Controller 1 ms 1 9 1 9 108

Pumpstation 19 ms 6 3888 4 2592 17496

MobileRobot 4 ms 150 2700 12 216 1152

Mod8Counter 0 ms 8 32 8 32 32

Trim Floors 267 ms 32 1024 32 1024 23328

Elevator 10 ms 1 729 1 729 236196

ECS 2829 ms 8 1728 8 1728 472392

SensorReading 118 ms 2 1296 2 1296 69984

Controller 1 ms 1 9 1 9 108

Pumpstation 3482 ms 6 3888 4 2592 17496

MobileRobot 10 ms 12 216 12 216 1152

m

p

t

t

e

t

i

o

c

h

a

m

c

1

a

B

B

n

s

fi

d

i

s

a

s

t

T

a

B

F

a

b

m

p

t

M

e

u

a

t

o

t

m

s

i

s

a

p

p

n

m

o

b
ent checks presents in this paper slightly differ from the results

resented in Butting et al. (2017) because we repeated the evalua-

ion of the pre-existing examples to enable comparability between

he two different composition method variants. We conducted the

valuations of both composition variants on the same computer at

he same date.

In Ringert et al. (2016) , for each of the architectures, three spec-

fication checks are executed: it is checked whether the semantics

f a component is equal to itself, whether a component refines a

omponent with the same interfaces that implements arbitrary be-

avior, i.e., all possible behaviors, and whether the semantics of

 component are equal to the semantics of a component imple-

enting arbitrary behavior. We performed the same checks on a

omputer with 3.0 GHz Intel Core i7 CPU, 16 GB Ram, Windows

0, and RABIT 2.4 using our translation from MontiArcAutomaton

rchitectures to BAs and the language inclusion checking tool RA-

IT (Abdulla et al., 2011) (cf Section 6.2).

Table 1 summarizes the computation times of RABIT given the

As resulting from the transformation as input. For the compo-

ent ECS constructed using the naive composition method, for in-

tance, checking whether it refines itself took 461ms, checking re-

nement with arbitrary behavior took 7124ms, and calculating a

iff witness distinguishing the component from arbitrary behav-

or took 15339ms. Table 2 depicts the sizes of the automata re-

ulting from the translations and the time required to construct

 TSCA from its subcomponents’ TSCAs using the denoted compo-

ition method. For component ECS, for instance, it took 3465ms

o construct the TSCA using the naive composition method. The
SCA and the BA resulting from the transformation have 746 states

nd 98496 transitions. RABIT reported the tool has reduced the

A to 8 states and 1728 transitions after internal preprocessing.

or every component we modeled arbitrary behavior (Chaos) with

 TSCA consisting of one state and a transition for every possi-

le component input/output combination. The TSCA and the BA

odeling arbitrary behavior for component ECS, for instance, com-

rise 472392 transitions (cf. Table 2). In contrast to the transla-

ion from MontiArcAutomaton architectures to the model checker

ona (Ringert et al., 2016), our implementation succeeded for all

xample architectures. The longest computation time of our eval-

ation (15850ms, cf. Table 1) resulted from semantic differencing

rbitrary behavior with the ECS component. We additionally used

he implementation to automatically verify semantic equivalence

f the three architectures depicted in Fig. 3 . We checked whether

he specifications are semantically equivalent by checking refine-

ent in both directions. Proving equivalence between the initial

pecification and the first structural refinement took 41ms. Check-

ng equivalence between the initial specification and the second

tructural refinement took 47ms. The same check between the first

nd the second structural refinements was possible in 46ms.

The composition method that includes trimming the com-

ounds yields a smaller composition duration in case the com-

ound is smaller than the compound obtained from using the

aive composition method (cf. Table 2). In case both composition

ethods yield the same compound, the naive composition method

utperforms the method that includes trimming. This is plausible

ecause of the overhead caused by trimming the TSCA. We con-

458 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

a

o

p

o

c

W

a

o

8

d

s

p

t

u

p

c

i

a

i

t

p

i

F

d

S

c

c

n

A

v

e

o

f

a

o

w

fi

i

m

fi

o

a

t

t

a

t

m

o

t

R

m

a

I

R

R

l

m

a

w

W

t

fi
clude that our translation provides promising results. Nevertheless,

the evaluation was only performed on a few specific architectures.

Thus, the results are not generalizable to all possible architectures:

the time needed by our tool may vary strongly from system to sys-

tem.

7. Discussion

If the semantics domain of an ADL is overly general, unde-

cidability of the underlying mathematical problems renders auto-

mated formal verification impossible. Then, architecture properties

have to be proven manually, which is too expensive to be car-

ried out in continuous architecture modeling and thus hinders em-

ploying agile development in architecture modeling projects: little

changes to requirements or implementations can entail changing

many manually performed proofs. In contrast, where automated

formal verification is possible, sound and complete proofs can be

generated automatically, supporting agile implementation evolu-

tion.

Focus is a comprehensive framework that supports specifying

the observable input/output behavior of interactive systems. Its

complexity requires carrying out proofs for system behavior veri-

fication manually. Focus provides various constructs for describing

the semantics of distributed systems (Ringert and Rumpe, 2011).

Examples are relations, set-based functions, sets of functions, as-

sumption/guarantee predicates, or state-based representations. As

identified in Ringert and Rumpe (2011) , the most fine-grained do-

main for describing the semantics of distributed systems using Fo-

cus are sets of SPFs. Independent of the style, specifications can

describe timed or untimed behavior. Untimed behavior only con-

siders the causality regarding the order of inputs and outputs.

Timed specifications additionally concern causality regarding the

passage of time. Many requirements are not only concerned with

the order of messages but also state requirements with respect to

passage of time. Thus, we employ a variant of the timed subset of

Focus and thereby use sets of TSSPFs as semantics domain (Ringert

and Rumpe, 2011; Rumpe, 1996).

Our approach is limited to systems where the data types’ do-

mains are finite and is restricted to the time-synchronous model of

computation. However, our system model fits well into the kinds

of systems developed for embedded systems such as automotive

or robotics applications. Thus, our results enable fully automated

tool support for many systems in such domains. Emphasizing that

our approach cannot be generalized to the timed model of Focus

as, for example, used in Grosu and Rumpe (1995) , is important:

Timed SPFs (cf. Grosu and Rumpe, 1995; Ringert and Rumpe, 2011;

Rumpe, 1996), for instance, are too general to be applicable to our

approach. A timed SPF processes infinite sequences of finite se-

quences (of arbitrary lengths) of messages. Each of the finite se-

quences represents a finite stream of messages received or sent by

a component in a single time unit. In contrast, TSSPFs only process

single messages per time unit. The set of finite streams of mes-

sages over a non-empty finite data type is already infinite. Thus,

for each time unit, a timed SPF needs to define a possible behav-

ior for infinitely many tuples of input streams, whereas a TSSPF

needs to define a reaction for all possible tuples of input messages,

which are finitely many if the messages’ data types are finite. From

a practical viewpoint it is rarely required to specify the reaction

in a time unit in response to the receipt of an arbitrary number

of messages. Usually it either requires to handle single messages

(TSSPFs) or sequences of messages where the length of the se-

quence is bounded by an arbitrary but fixed natural number. The

latter can be reduced to the former by introducing lists of fixed

length as message types.

The underlying theoretical problem for semantic differencing

used in our approach is language inclusion checking between Büchi
utomata. Its complexity can be considered as another limitation of

ur approach. However, our main focus is not verifying a system’s

roperties (e.g., refinement or semantic differencing) within sec-

nds, which is most often already rendered impossible due to the

omplex nature of the safety critical system under development.

e believe that nonetheless the possibility to apply formal fully

utomated verification (e.g., over night) greatly facilitates continu-

us architecture modeling.

. Related work

Studies on the verification techniques of ADLs have been con-

ucted, e.g., in Tsai and Xu (20 0 0) and Zhang et al. (2010) . The

tudy in Zhang et al. (2010) surveys verification techniques sup-

orted by ADLs with formal semantics, the translation of architec-

ures to inputs for model checkers, and tool support as well as

sability, scalability, and expressiveness. As supported by our ap-

roach, the study states that architecture verification for practi-

al applications requires tool-support and automation. The study

n Tsai and Xu (20 0 0) compares different verification tools and

pplies them to various ADLs. All architectures are transformed

nto intermediate labeled transition systems before the verification

ools are applied, hampering the direct comparison with our ap-

roach.

The following surveys concrete approaches for formally analyz-

ng hierarchical architecture descriptions. AutoFOCUS 3 (Hölzl and

eilkas, 2007) is a tool for the development of reactive embed-

ed systems that also bases its semantics on FOCUS (Broy and

tølen, 2001). Although AutoFOCUS 3 supports model checking ar-

hitectures against LTL and CTL formulas that specify properties

oncerning component behavior (Campetelli et al., 2011), we are

ot aware of a fully automated refinement checking method for

utoFOCUS 3. The π-ADL supports statistical model checking for

erifying dynamic software architectures against DynBLTL prop-

rties (Cavalcante et al., 2016). To this effect, a statistical model

f finite system executions is built and the probability of satis-

ying a property within a confidential bound is calculated. This

pproach is particularly tailored to dynamic architectures and is

nly concerned with finite traces. In contrast, our approach deals

ith infinite traces, static architectures, and full certainty. Re-

nement of architectures specified with timed I/O is described

n Kaynar et al. (2003) . Similar to behaviors of TSCAs, the se-

antics of a timed automaton is given by a set of traces. Re-

nement between timed I/O automata is defined similar as in

ur approach by trace inclusion. However, timed I/O automata

re only marked with one message per transition and composi-

ion is defined differently. Further, the timing concept of I/O au-

omata is more powerful and complicated than the one of our

pproach (Grosu and Rumpe, 1995). A game-based extension of

he timed I/O automaton model enabling tool supported refine-

ent checking has been proposed in David et al. (2010) . An-

ther approach to automated refinement checking based on the

ime-synchronous frame of FOCUS is described in Ringert (2014) ;

ingert et al. (2016) . This approach is based on a relational se-

antics domain where the semantics of a component is given as

 relation between the component’s possible inputs and outputs.

n contrast, our approach uses a more fine grained (Ringert and

umpe, 2011) semantics domain consisting of sets of functions.

efinement checking in Ringert (2014) ; Ringert et al. (2016) re-

ies on translating component semantics into WS1S and is imple-

ented using the model checker Mona (Elgaard et al., 1998). The

pproach suffers from the tool’s high computational complexity,

hich is grounded in the non-elementary complexity of solving

1S1 problems. In contrast, we define a translation to Büchi au-

omata and thereby obtain a PSPACE-complete complexity for re-

nement checking. While the relational approach is based on an-

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 459

a

c

t

t

9

m

t

e

w

c

i

p

c

s

fi

f

s

B

e

t

p

d

W

w

t

g

m

t

a

e

a

A

(

t

p

p

t

p

W

F

c

t

t

t

f

F

A

o

F

w

t

r

v

t

lyzing the result from composing the semantics of the individual

omponents of a system, our approach first syntactically composes

he individual components and bases analysis on the semantics of

he compound.

. Conclusion

We have presented an implementation of stepwise refine-

ent for C&C ADLs using a subset of the Focus semantics for

ime-synchronous, distributed, interactive systems that is powerful

nough to model complex and realistic systems. Based on previous

ork (Butting et al., 2017), we describe an approach to transform

omponent models into time-synchronous channel automata that

s based on an associative, commutative, and semantically com-

ositional, syntactic composition operator for time-synchronous

hannel automata. Using this operator, the automata are composed

yntactically and translated into Büchi automata, where their re-

nement can be checked through language inclusion. To this ef-

ect, we proved that the operational semantics of a finite time-

ynchronous channel automaton and the language accepted by the

üchi automaton resulting from the transformation coincide. This

nables fully automated refinement checking for software architec-

ure models in reasonable time.

We extended the previous approach (Butting et al., 2017) to im-

rove its performance through technical enhancements of the un-

erlying formal system model and extended previous evaluations.

e further defined a notion of system architecture based on a

hite-box view where component implementations are assumed

o be available. For such system architectures, we presented an al-

orithm leading to practical performance improvements for refine-

ent checking.

This form of stepwise refinement supports continuous archi-

ecting through ensuring evolved components adhere to properties

lready proven for their predecessors. This ultimately reduces the

ffort for component evolution and, hence, facilitates continuous

rchitecting.

ppendix A. Mod8Counter component in FOCUS

In MontiArcAutomaton, there is an explicit language construct

the connector) to indicate that two ports are connected. Besides

his, MontiArcAutomaton distinguishes component types and com-

onent instances. Therefore, MontiArcAutomaton obtains unique

ort names by the fully qualified name of component instance and

he port name. On the contrary, FOCUS has no notion of com-

onent type and has no explicit construct to indicate connectors.

ith this, MontiArcAutomaton is better suited for praxis, whereas
Fig. A.1. FOCUS architecture of the mod8Counter .

OCUS abstracts from implementation details to avoid notational

lutter and improve formal representation. Thus, a MontiArcAu-

omaton architecture is conceptually transformed to a FOCUS archi-

ecture by omitting component types and by renaming ports such

hat they have identical names iff they are connected. A trans-

ormed version of the component mod8Counter as depicted in

ig. 3 is depicted in Fig. A.1 .

ppendix B. TSCA of the Mod8Counter component

This section explains the TSCA of the initial specification

f the Mod8Counter component as presented in Fig. 3 (a).

ig. B.1 demonstrates the TSCA in its graphical representation,

here abbreviations for states and transitions are used. Transitions

hat increase the counted value start with the letter i , those that

eset the value start with r , and those that do not alter the counted

alue start with an n . The textual representation of the TSCA and

he abbreviations are explained in the following.

The TSCA depicted in Fig. B.1 is a tuple T SCA Mod8 a =
(�, X, S, ι, δ) , where

• � = ({ res,inc } , { x 0 , x 1 , x 2 }) ,
• the internal channels are X = { lv } with type (lv) = { 0 , .., 7 } ,
• the set of states is defined by the set of all functions S = X → =

{ θ ∈ [{ lv } → M] | θ (lv) ∈ N ∧ 0 ≤ θ (lv) ≤ 7 } , where for nota-

tional simplicity, we denote by s i = { lv �→ i } ,
• the initial state is ι = { s 0 } ,
• the transition relation δ = I ∪ R ∪ N comprises the sets of in-

creasing transitions I =

⋃

k =0 ,.., 8 i k , resetting transitions R =⋃

k =0 ,.., 16 r k , and state conserving transitions N =

⋃

k =0 ,.., 8 n k ,

where

– i 0 = { (s 0 , θ, s 1) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
� ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– i 1 = { (s 1 , θ, s 2) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
ε ∧ θ (x 1) = � ∧ θ (x 2) = ε }

– i 2 = { (s 2 , θ, s 3) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
� ∧ θ (x 1) = � ∧ θ (x 2) = ε }

– i 3 = { (s 3 , θ, s 4) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = � }

– i 4 = { (s 4 , θ, s 5) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
� ∧ θ (x 1) = ε ∧ θ (x 2) = � }

– i 5 = { (s 5 , θ, s 6) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
ε ∧ θ (x 1) = � ∧ θ (x 2) = � }

– i 6 = { (s 6 , θ, s 7) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
� ∧ θ (x 1) = � ∧ θ (x 2) = � }

– i 7 = { (s 7 , θ, s 0) | θ (res) = ε ∧ θ (inc) = � ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 0 = { (s 0 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 1 = { (s 1 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 2 = { (s 2 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 3 = { (s 3 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 4 = { (s 4 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 5 = { (s 5 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 6 = { (s 6 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 7 = { (s 7 , θ, s 0) | θ (res) = � ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 8 = { (s 0 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) =
ε ∧ θ (x) = ε ∧ θ (x) = ε }
1 2

460 A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461

Fig. B.1. TSCA of a modulo 8 counter.

C

D

F

J

K

K

K

K

K

L

L

M

N

O

O

P

R

R

R

– r 9 = { (s 1 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– r 10 = { (s 2 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) = ε ∧
θ (x 1) = ε ∧ θ (x 2) = ε }

– r 11 = { (s 3 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) = ε ∧
θ (x 1) = ε ∧ θ (x 2) = ε }

– r 12 = { (s 4 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) = ε ∧
θ (x 1) = ε ∧ θ (x 2) = ε }

– r 13 = { (s 5 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) = ε ∧
θ (x 1) = ε ∧ θ (x 2) = ε }

– r 14 = { (s 6 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) = ε ∧
θ (x 1) = ε ∧ θ (x 2) = ε }

– r 15 = { (s 7 , θ, s 0) | θ (res) = � ∧ θ (inc) = � ∧ θ (x 0) = ε ∧
θ (x 1) = ε ∧ θ (x 2) = ε }

– n 0 = { (s 0 , θ, s 0) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– n 1 = { (s 1 , θ, s 1) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
� ∧ θ (x 1) = ε ∧ θ (x 2) = ε }

– n 2 = { (s 2 , θ, s 2) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = � ∧ θ (x 2) = ε }

– n 3 = { (s 3 , θ, s 3) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
� ∧ θ (x 1) = � ∧ θ (x 2) = ε }

– n 4 = { (s 4 , θ, s 4) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = ε ∧ θ (x 2) = � }

– n 5 = { (s 5 , θ, s 5) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
� ∧ θ (x 1) = ε ∧ θ (x 2) = � }

– n 6 = { (s 6 , θ, s 6) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
ε ∧ θ (x 1) = � ∧ θ (x 2) = � }

– n 7 = { (s 7 , θ, s 7) | θ (res) = ε ∧ θ (inc) = ε ∧ θ (x 0) =
� ∧ θ (x 1) = � ∧ θ (x 2) = � }

References

Abdulla, P.A. , Chen, Y.-F. , Clemente, L. , Holík, L. , Hong, C.-D. , Mayr, R. , Vojnar, T. ,
2011. Advanced Ramsey-based Büchi automata inclusion testing. In: Interna-

tional Conference on Concurrency Theory, CONCUR 2011 .
Barth, S. , 2016. Deciding monadic second order logic over ω-words by specialized

finite automata. In: Integrated Formal Methods: 12th International Conference,
IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings .

Broy, M. , 2010. A logical basis for component-oriented software and systems engi-

neering. Comput. J .
Broy, M. , Fuchs, M. , 1992. The Design of Distributed Systems - An Introduction to

FOCUS. Technical Report. TU Munich .
Broy, M. , Stølen, K. , 2001. Specification and Development of Interactive Systems. Fo-

cus on Streams, Interfaces and Refinement. Springer Verlag Heidelberg .
Büchi, J.R. , 1962. On a decision method in restricted second order arithmetic. Logic,

Methodology and Philosophy of Science. Proceeding of the 1960 International
Congress. Stanford University Press .

Butting, A. , Kautz, O. , Rumpe, B. , Wortmann, A. , 2017. Semantic differencing for mes-

sage-driven component & connector architectures. In: International Conference
on Software Architecture (ICSA’17). IEEE, p. 145-154 .

Campetelli, A. , Hölzl, F. , Neubeck, P. , 2011. User-friendly model checking integration
in model-based development. In: International Conference on Computer Appli-

cations in Industry and Engineering .
avalcante, E. , Quilbeuf, J. , Traonouez, L.-M. , Oquendo, F. , Batista, T. , Legay, A. , 2016.

Statistical model checking of dynamic software architectures. In: European Con-
ference on Software Architecture .

avid, A. , Larsen, K.G. , Legay, A. , Nyman, U. , Wasowski, A. , 2010. Timed I/O au-
tomata: A complete specification theory for real-time systems. In: ACM Inter-

national Conference on Hybrid Systems: Computation and Control .

Elgaard, J. , Klarlund, N. , Møller, A. , 1998. MONA 1.x: New techniques for WS1S and
WS2S. Computer-Aided Verification .

France, R. , Rumpe, B. , 2007. Model-driven development of complex software: A re-
search roadmap. Future of Software Engineering 2007 at ICSE .

uchs, M. , 1995. Formal Design of a Modulo-N Counter. Technical Report TUM-I9512.
Technische Univerität München .

Grosu, R. , Rumpe, B. , 1995. Concurrent Timed Port Automata. Technical Report. TU

Munich .
Grosu, R. , Stølen, K. , Broy, M. , 1997. A denotational model for mobile point-to-point

data-flow networks with channel sharing. Technical Report. TU Munich .
Hölzl, F. , Feilkas, M. , 2007. AutoFocus 3 - A scientific tool prototype for model-based

development of component-based, reactive, distributed systems. Model-Based
Engineering of Embedded Real-Time Systems .

onsson, B. , 1994. A fully abstract trace model for dataflow and asynchronous net-

works. Distributed Computing 7 (4), 197–212 .
Kaynar, D.K. , Lynch, N.A. , Segala, R. , Vaandrager, F.W. , 2003. Timed I/O Automata:

A mathematical framework for modeling and analyzing real-time systems. IEEE
Real-Time Systems Symposium (RTSS 2003) .

ozen, D. , 1977. Lower bounds for natural proof systems. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science .

rahn, H. , Rumpe, B. , Völkel, S. , 2008. MontiCore: Modular development of textual

domain specific languages. In: Proceedings of Tools Europe .
upferman, O. , Vardi, M.Y. , 1996. Verification of fair transition systems. In: Interna-

tional Conference on Computer Aided Verification .
upferman, O. , Vardi, M.Y. , 2005. Complementation constructions for nondetermin-

istic automata on infinite words. In: Tools and Algorithms for the Construction
and Analysis of Systems: 11th International Conference, TACAS 2005 .

urshan, R.P. , 1987. Complementing Deterministic Büchi Automata in Polynomial
Time. J. Comput. Syst. Sci .

ee, E.A. , 2010. CPS Foundations. In: Proceedings of the 47th Design Automation

Conference. ACM, p. 737-742 .
öding, C. , 2001. Efficient minimization of deterministic weak ω-automata. Inf. Pro-

cess. Lett. .
anna, Z. , Pnueli, A. , 1993. Verifying Hybrid Systems. In: Hybrid Systems. Springer,

p. 4-35 .
Medvidovic, N. , Taylor, R. , 20 0 0. A classification and comparison framework for soft-

ware architecture description languages. IEEE Trans. Softw. Eng .

MontiArcAutomaton Models. http://www.monticore.de/robotics/verification/ , [On-
line; accessed 2018-05-24].

aur, P. , Randell, B. , 1969. Software Engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,

Scientific Affairs Division, NATO .
bject Management Group, 2003. MDA Guide Version 1.0.1. http://www.omg.

org/news/meetings/workshops/UML _ 2003 _ Manual/00-2 _ MDA _ Guide _ v1.0.1.pdf

[Online; accessed 2015-12-17].
bject Management Group, 2010. OMG Unified Modeling Language (OMG

UML), Superstructure Version 2.3 (10-05-05). http://www.omg.org/spec/UML/2.
3/Superstructure/PDF/ [accessed 2017-01-13].

hilipps, J. , Rumpe, B. , 1997. Refinement of information flow architectures. In: Pro-
ceedings of the 1st International Conference on Formal Engineering Methods

(ICFEM’97). IEEE Computer Society .

ABIT Tool Homepage, 2016. http://www.languageinclusion.org/ [accessed 2016-12-
31].

ingert, J.O. , 2014. Analysis and Synthesis of Interactive Component and Connector
Systems. Shaker Verlag .

ingert, J.O. , Roth, A. , Rumpe, B. , Wortmann, A. , 2015. Language and code generator
composition for model-driven engineering of robotics component & connector

systems. J. Softw. Eng. Robotics (JOSER) .

http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0016a
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0016a
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0016a
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0016a
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0026
http://www.monticore.de/robotics/verification/
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0027
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0028
http://www.languageinclusion.org/
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0030

A. Butting, O. Kautz and B. Rumpe et al. / The Journal of Systems and Software 149 (2019) 437–461 461

R

R

R

R

S

S

S

T

V

Z

i

S

ingert, J.O. , Rumpe, B. , 2011. A little synopsis on streams, stream processing func-
tions, and state-based stream processing. Int. J. Softw. Inf .

ingert, J.O. , Rumpe, B. , Wortmann, A. , 2014. Architecture and Behavior Modeling of
Cyber-Physical Systems with MontiArcAutomaton. Shaker Verlag .

ingert, J.O. , Rumpe, B. , Wortmann, A. , 2016. Model-based specification of compo-
nent behavior with controlled underspecification. Modellbasierte Entwicklung

eingebetteter Systeme (MBEES’16) .
umpe, B. , 1996. Formale Methodik des Entwurfs verteilter objektorientierter Sys-

teme. TU Munich Doktorarbeit .

afra, S. , 1988. On the complexity of omega -automata. In: Proceedings of the 29th
Annual Symposium on Foundations of Computer Science .

chewe, S. , 2010. Minimisation of Deterministic Parity and Buchi Automata and
Relative Minimisation of Deterministic Finite Automata. Computing Research

Repository - CORR .
trobl, F. , Wisspeintner, A. , 1999. Specification of an Elevator Control System. Tech-

nical Report. TU Munich .

sai, J.J. , Xu, K. , 20 0 0. A comparative study of formal verification techniques for soft-
ware architecture specifications. Ann. Softw. Eng .

ölter, M. , Stahl, T. , Bettin, J. , Haase, A. , Helsen, S. , Czarnecki, K. , 2013. Model-Driven
Software Development: Technology, Engineering, Management. Wiley .

hang, P. , Muccini, H. , Li, B. , 2010. A classification and comparison of model check-
ing software architecture techniques. J. Syst. Softw .

Arvid Butting received his B. Sc. and M. Sc. degrees in
computer science from the RWTH Aachen University, in

2014 and 2016. Currently, he is a research assistant and
Ph.D. candidate at the Department of Software Engineer-

ing at RWTH Aachen University. His research interests

cover software language engineering, software architec-
tures, and model-driven development.

Oliver Kautz received his B. Sc. and M. Sc. degrees in

computer science from the RWTH Aachen University, in
2014 and 2016. Currently, he is a research assistant and

Ph.D. candidate at the Department of Software Engineer-
ing at RWTH Aachen University. His research interests

cover software engineering, software language engineer-

ing, software architectures, model-driven software devel-
opment, and modeling language semantics.
Bernhard Rumpe is chair of the Department for Soft-

ware Engineering at the RWTH Aachen University, Ger-
many. His main interests are software development meth-

ods and techniques that benefit from both rigorous and
practical approaches. This includes the impact of new

technologies such as model-engineering based on UML-

like notations and domain-specific languages and evolu-
tionary, test-based methods, software architecture as well

as the methodical and technical implications of their use
in industry. He has furthermore contributed to the com-

munities of formal methods and UML. Since 2009 he
started combining modeling techniques and cloud com-

puting. He is author and editor of eight books and editor-

n- chief of the Springer International Journal on Software and Systems Modeling.
ee http://www.se-rwth.de/topics/ for more.

Andreas Wortmann received his Ph.D. from RWTH

Aachen University in 2016. Currently, he is a tenured
researcher at the Department for Software Engineer-

ing at RWTH Aachen University. His research interests

cover software engineering, software language engineer-
ing, model-driven development, and robotics. He is a

member of IEEE and its Technical Committee on Software
Engineering for Robotics and Automation.

http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30276-0/sbref0040
http://www.se-rwth.de/topics/

	Continuously analyzing finite, message-driven, time-synchronous component & connector systems during architecture evolution
	1 Introduction
	1.1 Paper structure and overview

	2 Examples
	2.1 An elevator control system
	2.2 A Modulo-8 counter

	3 A semantics domain for components
	3.1 Streams, messages, types, and communication histories
	3.2 Time-synchronous stream processing functions
	3.2.1 Composition of TSSPFs

	4 Time-Synchronous Channel Automata
	4.1 Execution and Behavior Semantics of TSCAs
	4.2 Composition of TSCAs
	4.3 TSSPF semantics of TSCAs

	5 Semantic differencing of component behavior: From TSCAs to BAs
	5.1 Büchi Automata
	5.2 From TSCAs to BAs
	5.3 Semantic differencing for component behavior
	5.4 Mitigating the state explosion problem when applying semantic differencing to system architectures

	6 Implementation and evaluation
	6.1 The MontiArcAutomaton ADL
	6.2 Semantic differencing of MontiArcAutomaton components
	6.3 Semantic differencing evaluation

	7 Discussion
	8 Related work
	9 Conclusion
	Appendix A Mod8Counter component in FOCUS
	Appendix B TSCA of the Mod8Counter component
	References

