
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01255-0

SPEC IAL SECT ION PAPER

Digital twin and the asset administration shell

An Analysis of the Three Types of AASs and their Feasibility for Digital Twin Engineering

Jingxi Zhang1 · Carsten Ellwein1 ·Malte Heithoff2 · Judith Michael2 · Andreas Wortmann1

Received: 15 March 2024 / Revised: 25 November 2024 / Accepted: 29 November 2024
© The Author(s) 2024

Abstract
Engineering digital twins is a software and systems engineering challenge for which no systematic approach exists. The
Asset Administration Shell is becoming a popular foundation for digital twins in Industry 4.0 and it comes in different types
that support the engineering of different kinds and parts of digital twins. We investigate how it supports realizing common
requirements for digital twins. To this end, we investigate how each of the three Asset Administration Shell types can
contribute to the systematic engineering of specific components of digital twins. Therefore, we analyzed popular definitions
and conceptual models of digital twins and extracted requirements that at least two of them share. We compare the resulting
requirements with Asset Administration Shells of different types and conclude with open challenges in the implementation
of digital twins with this technology. This supports practitioners and researchers in identifying the most suitable type of Asset
Administration Shell for their specific digital twin engineering needs and identifies gaps worthy of future research toward a
systematic engineering of digital twins.

Keywords Asset administration shell · Digital twin · Requirements ·Manufacturing

1 Introduction

Digital twins [36, 53, 87] are becoming the technological
backbone for better understanding, engineering, operat-
ing, and managing (cyber-physical) systems [26, 67]. They
are investigated, created, and deployed in a variety of

Communicated by Javier Troya and Alfonso Pierantonio.

B Andreas Wortmann
wortmann@isw.uni-stuttgart.de

Jingxi Zhang
jingxi.zhang@isw.uni-stuttgart.de

Carsten Ellwein
carsten.ellwein@isw.uni-stuttgart.de

Malte Heithoff
heithoff@se-rwth.de

Judith Michael
michael@se-rwth.de

1 Institute for Control Engineering of Machine Tools and
Manufacturing Units (ISW), University of Stuttgart, Stuttgart,
Germany

2 Software Engineering, RWTH Aachen University, Aachen,
Germany

domains, including automated driving [23], biology [49],
medicine [54], wind energy [64], smart cities [15], civil struc-
tures [61], manufacturing [14], and many more [26]. The
various digital twins serve different purposes relative to the
twinned actual system (AS) [36], including analysis [74],
control [93], and behavior prediction [52]. Also, they are
used at different times relative to the AS, e.g., prior to its
existence to explore its design space [57] or at its runtime to
optimize its behavior [13].

A digital twin is a software system [70] that connects
to an AS, automatically receives data from it, performs
computations, and sends instructions back to it [53]. Such
digital twins can use different kinds of models, from
(1) engineering models of their twinned counterpart (e.g.,
AutomationML [83], IEC 61499 [98] models, or simula-
tion [41] models) to give meaning to its data (models of
the actual system used in the digital twin), they can be built
from (2) software models [69] or event logs [11] (models
for the digital twin used during development), and they can
use (3) models at runtime to support their configuration by
domain experts [55] (models for the digital twin used dur-
ing operation). Ultimately, digital twins employ thesemodels

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01255-0&domain=pdf


J. Zhang et al.

together with data observed from and about the AS [77] to
describe, predict, and prescribe its behavior [36].

Manufacturing is one of the most prominent domains
investigating the use of digital twins [26] and software
engineering has produced various technologies to facilitate
their engineering [42, 78]. An important implementation
technology for digital twins in manufacturing is the Asset
Administration Shell (AAS) [96], which is driven by the
International Digital Twin Association (IDTA).1 The AAS
is intended to be the single source of truth digital represen-
tation of any kind of asset throughout its lifecycle. To this
end, the AAS is defined as a hierarchy of data models called
submodels, each of which represents components or aspects
of the asset to be described. For instance, an AAS of a car
could feature submodels for the motor, the drive train, the
energy efficiency, and many more depending on the purpose
of the representation. Based on this idea, three types of AASs
have been identified:

– Type 1 AASs relate models of an asset (e.g., for a mobile
robot, this might include submodels representing the
base, sensors, actuators, installed software, task queue,
operation history, etc.).

– Type 2 AASs connect these models to live data from the
asset (for the robot example, this could entail updating
the pose information of its base model regularly).

– Type 3 AASs can control these assets and communicate to
other AASs (e.g., the robot AAS can communicate with a
manufacturing execution system AAS to update the task
queue model to support new kinds of tasks).

The AAS is considered to be the essential technology
for engineering digital twins by the IDTA, has been suc-
cessfully applied to predictive maintenance [81], automotive
device configuration [97], or model management [22], and
is subject to ongoing development. Hence, the AAS seems
to become an important foundation for systematically engi-
neering digital twins. Hence, understanding the support of
its different types for engineering digital twins is benefi-
cial to researchers and practitioners in software and systems
modeling. Therefore, we compare the requirements raised by
popular conceptual models of digital twins with the different
types of AASs. The contribution of this article, thus, is as
follows:

1. A summary of common requirements on digital twins
based on analyzing digital twin standards and white
papers of associations and consortia that foster the real-
ization of real-world digital twins in industry.

1 IDTA: https://industrialdigitaltwin.org.

2. An analysis of the different types of asset administra-
tion shells and their support for addressing the identified
requirements.

3. An outlook on future challenges to efficiently engineer
digital twins based on this analysis.

In the remainder, Sect. 2 illustrates the state-of-the-art on
digital twins and the AAS before Sect. 3 introduces an illus-
trative example of an AAS from manufacturing. Afterward,
Sect. 4 analyzes common requirements on digital twins and
Sect. 5 compares the capabilities of the different AAS types
with these requirements. Based on this, Sect. 6 outlines chal-
lenges and Sect. 7 discusses related work. Finally, Sect. 8
concludes.

2 Background

2.1 Digital twins

The understanding of digital twins differs widely in literature
(cf. 112 definitions of digital twins2).As of themain purposes
of a definition is to decide whether something is in the set
of defined things or outside of it, most of these definitions
fail at supporting to make this decision precisely. Instead,
the lowest common denominator seems to be that a digital
twin represents something (e.g., a system, a process, or a
workpiece), which is of little use for detailed discussions
about their functions, engineering, and operations.Moreover,
often these definitions are

– Ambiguous, by deferring to another undefined term, such
as a “virtual representation” [6], a “computable virtual
abstraction” [90], or a “a virtual projection of the indus-
trial facility into the cloud” [101];

– Narrow, by focusing on specific use cases, domains, or
technologies, such as a “digital model of the real network
environment” [33] or a ”virtual representation based on
AR technology” [74]; or

– Utopian, due to all-encompassing aspirations, such as
an “integrated virtual model of a real-world system con-
taining all of its physical information” [76], a “complete
digital representation” [59].

Ambiguous definitions would require a definition of their
fuzzy base terms (e.g., "virtual representation") to enable
deciding whether something is a digital twin or not, while
very narrow definitions (e.g., requiring the use of AR tech-
nology) prevent understanding digital twins more generally,
and utopian definitions would either logically or economi-
cally prevent building such digital twin (e.g., modeling the

2 Digital twin definitions: www.wortmann.ac/digital-twin-definitions.

123

https://industrialdigitaltwin.org
www.wortmann.ac/digital-twin-definitions


Digital twin and the asset administration shell

behavior of the atoms of the windshield wiper fluid of a car
usually is not considered required for a vehicle digital twin,
yet that would be necessary for the digital twin to contain all
physical information of the car).

Among the plethora of definitions, characterizations, and
reference models [38] of digital twins, few have been widely
accepted to be useful: either by being cited by vast numbers
of researchers in the field of digital twins [53, 88], by being
formalized into ISO standards [47], or by being accepted as
common ground by large industrial associations about digital
twins [31, 32]. Section4 discusses these in detail.

2.2 Asset administration shell

In the context of Industry 4.0 (I4.0) every element owned
by an organization having a value for the execution of the
process is defined as an asset [22]. Assets can be physical,
such as production resources, workpieces, and even the fac-
tory itself, but also non-physical, such as models used for
describing machine behavior, software, or licenses [40].

The IDTA is developing the AAS [10, 96] to provide
a technology for realizing digital twins [71]. This initia-
tive started within Platform Industry 4.0, an initiative of
the German Federal Ministry for Economic Affairs and Cli-
mate Protection and the Federal Ministry of Education and
Research together with German industry, academia, associa-
tions, and unions. This technology is now also being taken up
in Europe, as calls for EU Horizon start mentioning that pro-
posals should take any relevant international standards (such
as the AAS) into account.3 Alongside its political relevance,
theAAShas also achieved industrial relevance.There are cur-
rently 118 partners4 organized in the IDTA (as of July 2024),
including German (e.g., SAP, Siemens, and Volkswagen),
as well as international enterprises (e.g., HUAWEI, Phoenix
Contact, and Mitsubishi Electric).

The AAS is defined as the digital representation of the
asset containing all its relevant information throughout its
entire lifecycle [72] and is presented as the basis of inter-
operability: on the one hand, it holds information of various
types and on the other hand, it functions as the interface
for communication within the I4.0 network through which
information can be exchanged between assets [79]. Since the
AAS holds relevant information throughout the lifecycle of
the asset, it must be capable of representing different sorts
of information, such as properties, modeled functionalities,
parameters, a summary of included components, as well as
data that accrues during manufacturing or simulation and

3 Example call: https://ec.europa.eu/info/funding-tenders/
opportunities/portal/screen/opportunities/topic-details/horizon-cl4-
2023-twin-transition-01-04.
4 IDTA partners: https://industrialdigitaltwin.org/en/about-idta/
members-idta.

Fig. 1 Structure of the AAS according to the metamodel [35] based
on [22, 79]

also descriptions, such as their usage instructions and tech-
nical specifications. This presupposes the ability to store or
refer to heterogeneous data and models [22].

The structure of an AAS is specified in the form of a con-
ceptual metamodel using UML class diagram syntax [79].
Figure1 shows an excerpt of this metamodel focusing on
the AAS submodels and their relations. Essentially, the
AAS is organizing submodels hierarchically and is work-
ing on standardizing submodels and their templates. Each
individual submodel of an AAS is intended to represent
one content-related or functional aspect of the represented
asset. Submodels can be created individually applying the
previously introduced metamodel. To ensure consistency
and interoperability, the IDTA provides so-called submodel
templates. Submodel templates are also standardized and
publicly available in their content-hub,5 which currently
features 89 submodel templates. Each parameter in a sub-
model template is specified with an identifier, its semantic
meaning as well as a given example. The semantic mean-
ing is indicated in line with established dictionaries, such as
the ECLASS reference data standard for the unambiguous
description of products and services.6 and the IEC Common
Data Dictionary [45]. The scope of the perhaps best-known
IDTA submodel, "Digital Nameplate", for example, is to pro-
vide information about the manufacturer and serial number
of an asset. The other submodel templates cover use cases at
a similar level of abstraction.

The main concept is the Asset Administration
Shell, which represents the entire AAS of the asset.
It can consist of several submodels represented by the
class Submodel, which consists of abstract Submodel
Elements that either are of a specified subtype, such as
FileorProperty, or a composite of SubmodelElements
themselves.

5 ITDA AAS submodel content-hub: https://industrialdigitaltwin.org/
en/content-hub/submodels.
6 ECLASS website: https://eclass.eu/en/eclass-standard.

123

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2023-twin-transition-01-04
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2023-twin-transition-01-04
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2023-twin-transition-01-04
https://industrialdigitaltwin.org/en/about-idta/members-idta
https://industrialdigitaltwin.org/en/about-idta/members-idta
https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/submodels
https://eclass.eu/en/eclass-standard


J. Zhang et al.

The abstract class DataElement inherits from the class
SubModelElement from which further classes inherit.
The classesProperty,Range,File, andReferenceElement
represent attributes of the asset. In the class Property an
information pair consisting of one value and the value data
type are defined.ARange consists of two values and the data
type of the values. A File represents the type and location
of a file, whereas ReferenceElement defines a logical
reference either to another element of the AAS it is included
in, or to an element of another AAS.

The communication capability of AASs is differenti-
ated into passive, active, and I4.0-compliant communication
capability–a distinction originally started by the Association
of German Engineers (VDI) [91]. Passive AASs are also
referred to as Type 1 AAS. Exchanged on a file basis, these
Type 1 AAS contain static master data for an asset. Master
data could for example be a serial number, as in the "Digital
Nameplate" introduced previously, but also physical dimen-
sions, material properties, or electrical power consumption.
The Type 1 AAS, hence, consists of serialized files repre-
senting the asset and can be exchanged manually among
engineers. Its data model is defined by the AAS metamod-
els. Those metamodels are specified in different templates
which the IDTA provides to construct the AAS for different
purposes.7 These templates describe the structural composi-
tion of the submodels and the relationships between AASs.
This enables domain experts to provide their knowledge in
an ordered manner enabling expandability and modulariza-
tion. As a passive entity, the Type 1 AAS does not have any
automated data flow from or to its asset. Thus, the informa-
tion in the Type 1 AAS describes asset types and instances
as-designed without any real-time updates.

In addition to the serialized files of the Type 1 AAS, for
Type 2AASs anAPI is provided for the interactionwith other
components. Through this API, the Type 2 AAS can become
service-oriented and reactive, i.e.,it may consider any infor-
mation provided by the asset or any third-party software, e.g.,
runtime information such as containing static and dynamic
information about the asset. This establishes a mainly unidi-
rectional data flow, in which live data is added to the models
of the Type 1 AAS and where external methods, services, or
tools can represent and relate this data.

Mutual understanding seems to be that the Type 3 AAS is
an extension of Type 2AAS that enables theAASs to perform
I4.0-compliant communication according to the “Industrie
4.0 Language” [92] and therefore allows vertical integration
into other AAS instances, this is referred to as Type 3 AAS.
Moreover, the Type 3 AASs can feature algorithms to control
the represented asset (to some extent), as well as to analyze
the data andmanipulate its models. Type 3 AASs thus extend

7 IDTA AAS submodels list: https://industrialdigitaltwin.org/en/
content-hub/submodels.

Fig. 2 The three types of AAS according to Plattform Industrie 4.0 [80]

across all RAMI4.0 [44] layers (i.e., from the asset over com-
munication to the business layer and, therefore, are able to
implement business processes on their own. Unlike Type 1
AASs and Type 2 AASs, the Type 3 AAS has not yet been
fully specified but is subject to ongoing research [48, 84].

The admin-shell-io package8 by the IDTA can be consid-
ered as a reference implementation for managing adminis-
tration shells. The package consists of the AASX9 package
explorer, with which administration shells can be created,
edited, and visualized, but also includes the AASX server as
infrastructure for deployment. If the AAS is to be integrated
into a software project, the Eclipse BaSyx10 project provides
an open-source I4.0 middleware. BaSyx is available under
the MIT license and offers an SDK for implementing AASs
in Java, Python, and RUST.

3 Motivating example

To better illustrate how AASs are used to store information
about an asset, we provide an illustrative example for an
asset from the manufacturing domain and its representation
in an AAS. Consider the following asset: A 3-axis milling
machine (see Fig. 3), equipped with a Beckhoff TwinCAT
control system from previous research [51, 95], for preci-
sion cutting, drilling, and shaping of materials. Imagine a
block of aluminum positioned on the machine’s work table.
The operator programs the machine to create a complex part,
such as a gearbox component. The spindle, which holds the

8 admin-shell-io: https://github.com/admin-shell-io.
9 Eclipse AASX website: https://github.com/eclipse-aaspe/.
10 Eclipse BaSyx website: https://projects.eclipse.org/projects/dt.
basyx.

123

https://industrialdigitaltwin.org/en/content-hub/submodels
https://industrialdigitaltwin.org/en/content-hub/submodels
https://github.com/admin-shell-io
https://github.com/eclipse-aaspe/
https://projects.eclipse.org/projects/dt.basyx
https://projects.eclipse.org/projects/dt.basyx


Digital twin and the asset administration shell

Fig. 3 The 3-axis milling machine for education and demonstration,
known as OSACA (above) and its 3D model (below)

cutting tool, moves along the X-axis (front-to-back) and the
Y-axis (up-and-down), while the table moves from left to
right along the Z-axis, bringing the material into contact with
the tool. As the spindle rotates the cutting tool at high speeds,
it carves the aluminum to the specified dimensions and con-
tours into a precisely engineered part. The milling machine
contains hydraulicmotors to enablemovement along the axis,
an interface to control the motors, and adapters to connect
them physically to the milling machine. This setup further
contains components such as fuses, switches, and a cabinet
which are noted down in a bill of materials. For this machine,
3Dmodels and simulationmodels that describe amilling pro-
cess exist from its original engineering and the machine is
capable of providing data at runtime via OPC UA specifica-
tions [58]. These data include, e.g., the position of the tool
and the spindle speed.

We illustrate the AAS for this 3-axis milling machine in
Fig. 4. The AAS consists of a header with an AAS identifier
(ID), an asset ID, an asset description, and a body containing
further information, which commonly is captured in different
kinds of submodels, includes:

1. A "Hierarchical Structures enabling Bills of Material"
(BOM) submodel template (IDTA02011), which enables
a hierarchical structure to represent the components of
the milling machine. The BOM has relations to the
described parts of the milling machine, e.g., the rela-
tionship between the milling machine and the spindle.
Described parts are entities of hydraulic motors, the spin-

Fig. 4 Excerpt of the AAS of the 3-axis milling machine and its sub-
models

dle, the motor control, all screws, the showcase, and the
milling machine as an entity.

2. A "Digital Nameplate for Industrial Equipment" sub-
model template (IDTA specification 02006), which con-
tains an ID as well as the manufacturer’s name, a
description of the product, a serial number, and a year
of completion of the machine.

3. An "OPC UA Server Data Sheet" submodel template
(IDTA 02009), which contains an integration of the
description of OPC UA servers. The IDTA template
for this submodel is at the time of our research still in
progress.

4. An "Provision of 3D Models" submodel template (IDTA
02026), that is able to provide 3Dmodels of the machine.
This includes both a 3D model and a simulation model.

5. An "Provision of SimulationModels" submodel template
(IDTA 02005), that is able to provide simulation model
files of the machine. The simulation itself remains in its
specific exchange format and is linked in. The submodel
contains further information about the type of simulation,
on how to use the model and about the areas of applica-
tion.

Formalizing the description of assets throughwell-defined
submodels facilitates the automated processing of an AAS.
If, for example, the "OPC UA Server Data Sheet" is fully
specified and provided with assets, it allows reason about
the self-configuration capabilities of the asset in a flexible
factory. Moreover, being equipped with corresponding sub-
models, for instance, eases transferring assets fromone entity
to another: if the described machine is sold, the AAS could
be made available to the future operator. This way, the new

123



J. Zhang et al.

Fig. 5 Conceptualization of digital twins according to their data flows
to and from the actual system [53]

operators would have access to simulation models that were
created during engineering and could continue to use them,
for example during a conversion. This further use is made
possible in particular by the fact that (a) The uniform struc-
ture of the submodels means that all stakeholders are aware
that a simulation model exists and (b) Not only the model is
transferred, but also its original software and scope.

In order to provide a Type 1AAS for the examplemachine
the previously specified AAS is serialized including its sub-
models, static information such as relationships of the 3-axis
milling machine are depicted. The provision of the AAS via
Eclipse BaSyx, and therefore the provision via a functional
interface, turns the Type 1 AAS of the illustrative example in
Sect. 3 into a Type 2 AAS. The Type 2 AAS no longer solely
describes the static information of the example machine, but
also integrates sensor values via the OPC UA server. Static
and dynamic information of the 3-axis milling machine can
be accessed via the BaSyx Graphical User Interface (GUI).

4 Common requirements on digital twins

We introduce important conceptual models and frame-
works describing digital twins–in general or in the context of
manufacturing–fromwhichwe derive common requirements
on digital twins to compare these with the AAS (cf. Sect. 5).

4.1 Popular academic definitions

The most prominent qualitative definition of digital twins
distinguishes these from digital models and digital shad-
ows [19] based on the automated data flows between the
(cyber-)physical and digital object (cf. Fig. 5) [53]. Here, a
digital object is considered to be:

– A digital model, if the data flows between both
are manual, i.e., change on one side must be propagated
manually to the other side. As such, the Type 1 AAS
resembles the notion of digital models, as changes to the
represented assetmust be traced to themodels of theAAS
manually.

– A digital shadow, if the data flow from the physi-
cal object to the digital object is automated, i.e., changes
to the physical object lead to changes in the digital object
and in the opposite way, the data flow still is manual.
This resembles to the notion of a Type 2 AAS, which,
however, only requires that this unidirectional commu-
nication channel exists, but not that changes in the asset
are traced automatically into the AAS.

– A digital twin, if both data flows are automated,
i.e., if something changes in the digital object, this change
is propagated to the physical asset and vice versa. As this
only makes sense if there is some logic in the digital
objects that can entail changes to the physical object,
this conceptualization resembles Type 3 AASs to some
extent.

Also, the authors hide much of the complexity of digital
twins in the data flows: for instance, this definition already
demands that the digital object can receive data from its actual
(cyber-physical) system and send data back to it, i.e., it needs
to be a sufficiently complex software system that takes care of
communication, synchronization, and digital representation.
This also demands an interface to the actual system (e.g.,
through OPC UA [34] or MQTT [56]), means to analyze the
data, and user interfaces to control the behavior of the dig-
ital twin. Moreover, the model does not make explicit how
frequently the data between the actual system and its digi-
tal twin must be exchanged (which means the digital twin
might be asynchronous with the actual system for a long
time). Also, how human decision-making can be incorpo-
rated, which often is necessary in manufacturing and other
domains operating complex systems in reality, such as auto-
motive or avionics, is not explained.

The 5D digital twin model extends the model of based on
data flows [53] with the additional dimensions data, mod-
els, and services [88]. Here, a digital twin is a system that
comprises elements of 5 dimensions: (1) Tthe AS itself, (2)
Data from and about the AS, (3) Models of the AS as well
as models of the digital twin, (4) Services about the AS
(e.g., predictive maintenance, reporting), and (5) Connec-
tions between the elements of these dimensions (cf. Figure6).

This model assumes that all connections between all con-
stituents are bidirectional, i.e., services can directly read data
from the actual system and send commands to it as well. This
allows making changes to the actual system without inform-
ing the digital twin.Moreover, both the services and the actual
system can interact with data and models of the digital twin
independently, which allows for introducing inconsistencies
between the real-world system and its representation. More-
over, this model does not prescribe any minimally required
models, data, or services.

123



Digital twin and the asset administration shell

Services

Physical
Entities Data

Virtual
Models

Fig. 6 Conceptualization of digital twins according to their constituents
and data flows [88]

4.2 Popular Industrial Definitions

The Digital Twin Consortium (DTC) devised a list of poten-
tial capabilities of digital twins 11 according to six different
categories (cf. Fig. 7). According to this digital twin periodic
table, digital twins can provide (1) Data services, (2) Integra-
tion, (3) Intelligence, (4) User interaction, (5) Management
functions, and (6) Trustworthiness capabilities. Data services
(1) Contain data management processes, such as acquisition
and ingestion, data interpretation with ontologies, data man-
agement with a model repository, data management methods
such as pub/sub, batch processing, and data aggregation.
Integration (2) Contains integration methodologies, such
as platforms, APIs, and enterprise systems for both direc-
tions of abstraction more coarse, as well as more detailed
systems. Intelligence (3) Describes components and ser-
vices that encompass reasoning, planning, machine learning,
simulation, recommendation systems, and any other capa-
bilities being considered intelligent. User interaction (4)
Contains all features the system provides for the monitor-
ing, consisting of visualization of data, models, relationships
and interaction, consisting of gamification, BPM, workflow
and business intelligence methods without influencing the
machine. Management functions (5) Are mostly directed to
the manipulation of the system. Here for the device, the log-
ging of the system and the data methods are advised to be
used for interpretation and configuration of machines. Trust-
worthiness capabilities (6) Contain all features important for
the trustworthiness of the system.

Based on these observations, the DTC proposes an archi-
tectural framework of building blocks for creating digital
twins for different applications as depicted in Fig. 8 [32].
Its main components are a virtual representation on top of an
IT/OT platform and the service interfaces of this represen-

11 DTC capabilities table: https://www.digitaltwinconsortium.org/
initiatives/capabilities-periodic-table/.

tation. The virtual representation consists of data (“stored
representations”), models, and functions for their integra-
tion. Taken this to the illustrative example from Sect. 3: the
models of the milling machine can consist of multiple dif-
ferent models. These models could be designed by providing
SysML in addition to 3Dmodels in a 3Denvironment for sim-
ulation purposes. It provides interfaces (1) To synchronize
with the real world, (2) With external data sources, and (3)
To deploy services leveraging the virtual representation. The
IT/OT platform includes orchestrationmiddleware, network-
ing infrastructure, APIs that provide access to services, and
integration representation/functions for data storage and data
transformation. This middleware could be manufacturing-
specific management systems or even systems composed of
data management services such as a database, a network
interface such as OPCUA, or local platform-specific APIs
from cloud platforms such as Azure.

Another main part of the architectural framework are
services for privacy, physical and cyber-security, safety,
resilience, and reliability. For example, the milling machine
could provide safety measurements for its condition. In
milling processes, it is often not safe for a worker to open
the cabin in which a mill is located. Other metrics such as
resilience and reliability can be measured based on KPIs.
Finally, security and privacy are often addressed at a higher
level of abstraction. The network within a factory must
be secure from outside attacks to prevent malicious use of
machines within the factory.

TheDigitalTwinFramework forManufacturing as depicted
in Fig. 9 (ISO 23247) [47] defines a conceptual digital twin
framework for manufacturing. The framework consists of
three layers of components that provide functionality on top
of observable manufacturing elements (OMEs), which are
items providing observable properties (e.g., staff, a manu-
facturing plant, a robot) defined through existing standards
from the manufacturing domain. The device communication
entity’s bottom layer comprises functional elements (FEs) to
collect and process data fromOMEs, as well as to actuate and
control theOMEs.An example of such FEs could be a system
that uses cameras and distance sensors for monitoring. Such
a system could accurately determine the position and con-
dition of a workpiece under the mill. The digital twin entity
middle layer uses device communication to represent, man-
age, operate, simulate, andmaintain the devices observed and
controlled through the OMEs. For example, the distance and
camera inputs are collected, processed, and forwarded to the
digital twin entity. This entity contains models and analysis
methods based on simulation models of the mill to predict a
failure or malfunction. It could also provide an interface for
updating the models, such as the path the mill needs to move
along or the drilling speed and settings of the environment.

Through the user interface entity top layer, users and addi-
tional services can leverage the digital twin. For example, the

123

https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/
https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/


J. Zhang et al.

Data Services Integration Intelligence UX Management Trustworthiness

DS.AI
Data Acquisition

& Ingestion

DS.ST
Data

Streaming

DS.TR
Data

Transformation

DS.CX
Data

Contextualization

DS.BP
Batch Processing

DS.RT
Real-time Processing

DS.AS
Asynchronous
Integration

DS.AG
Data Aggregation

IR.ET
Enterprise System

Integration

IR.EG
Eng. System
Integration

IR.IO
OT/IoT System
Integration

IR.DT
Digital Twin
Integration

IR.CL
Collab Platform

Integration

IR.AS
API Services

IC.SR
Search

IC.CC
Command & Control

IC.OS
Orchestration

IC.AL
Alerts & Notifications

IC.RP
Reporting

IC.AA
Data Analysis
& Analytics

IC.PR
Prediction

IC.AI
Artificial Intelligence

IC.PS
Prescriptive

Recommendations

IC.FL
Federated Learning

IC.SM
Simulation

IC.MA
Mathematical

Analytics

UX.BV
Basic Visualization

UX.AV
Advanced

Visualization

UX.RM
Real-time Monitoring

UX.ER
Entity Relationship

Visualization

UX.XR
Extended Reality

(AV/VR/MR)

UX.GM
Gamification

UX.DB
Dashboards

UX.CI
Continuous
Intelligence

UX.BI
Business Intelligenc e

UX.BP
BPM &Workflow

UX.GE
Gaming Engine
Visualization

UX.3R
3D Rendering

IC.BR
Business Rules

IC.DL
Distributed Ledger
& Smart Contracts

IC.CS
Composition

TW.EC
Data Encryption

TW.DS
Device Security

TW.SC
Security

TW.PR
Privacy

TW.SF
Safety

TW.RL
Reliability

TW.RP
Responsibility

TW.RS
Resilience

MG.DM
Device Management

MG.SM
System Monitoring

MG.EL
Event Logging

MG.DG
Data Governance

DS.SG
Synthetic Data
Generation

DS.ON
Ontology

Management

DS.RP
Digital Twin (DT)
Model Repository

DS.IR
DT Instance
Repository

DS.DS
Domain Specific

Data Management

DS.SA
Data Storage

&Archive Services

DS.SR
Simulation Model

Repository

DS.AR
AI Model Repository

Fig. 7 Potential capabilities of digital twins according to the Digital Twin Consortium9

Fig. 8 The DTC platform stack architectural framework for digital
twins [32]

interpreted data andmodel of themachine could bevisualized
at run time for maintenance without stopping the machine
during milling. In this way, downtime for maintenance can
be reduced and the behavior of the mill can be optimized
under the supervision of a machine expert.

4.3 Common requirements on digital twins

We have analyzed the conceptual frameworks for digital
twins introduced above and identified capabilities that are
required by (1) At least one of the frameworks, (2) At least
two of the frameworks, and (3) All of the frameworks. Table
1 summarizes our findings, where each row represents an
identified capability. To this, the first column assigns an iden-

Device Communication

Digital Twin Entity
Operation and 
Management

Application
and Service 

Resource Access 
and Interchange

Simulation Reporting

Analytic 
Service

Application 
Support

Interoperability 
Support

Plug & Play 
Support

Access 
Control Peer Interface

Device ControlData Collection
Data 

Collecting
Data

Processing
Collection 

Identification Controlling Actuation Control 
Identification

Observable Manufacturing Elements

Resource-specific Functional Entities

User Entity

User Interface Functional Entity

Maintenance

Presentation Synchroni-
zation

Digital Re-
presentation

D
ig

ita
l T

w
in

 F
ra

m
ew

or
k

…

Fig. 9 Conceptual model of digital twins for manufacturing in ISO
23247 [47]

tifier to the capability, the second column briefly describes
the capability, the third column describes which framework
it was derived from, and the last column details its context.

From this analysis, it also follows that the commonalities
of the all investigated models, i.e., the essence of a dig-
ital twin based on its potential capabilities, consist of (1)
Retrieving data from its counterpart (R01), (2) Sending data
to its counterpart (R02), and (3) Digitally representing its
counterpart (R04). Additional commonalities between some
of the investigated models arise from considering require-
ments that at least two of them have in common: This, for
instance, includes having a user interface (R03) and, accord-
ing to [47, 53], the synchronization of properties between AS
and the digital twin (R05) and its manifestation (cf. [70]).

123



Digital twin and the asset administration shell

Table 1 Common Requirements for Digital Twins

Req. The digital twin… Sources Context

R01 (Asset Receiving) Can receive data from its twinned
counterpart

All This capability can have the form of automated data
flows from the twinned system to the digital
twin [53, 88], dedicated data collection
components [47], or data ingestion
functionalities [31]

R02 (Asset Sending) Can send data to its twinned counterpart All This capability also is foundational to all
investigated digital twin models

R03 (GUI) Has a user interface [31, 47] The form of the UI is generally underspecified [47]
but could range from basic visualizations to virtual
reality [31]

R04 (Representing) Can represent its counterpart digitally All Either through data or models. This does not entail
requiring a user interface (see R03)

R05 (Synchronizing) Can synchronize (selected) properties
with its counterpart

[47, 53] This is vital for the definition data-flow-based
definition of digital twins [53] and made explicit
by requiring a synchronization component
according to [47]

R06 (Reporting) Can report information to selected
recipients aside from the AAS, e.g., by
sending a message to the asset’s operator

[31, 47] Using unspecified reporting capabilities [31] or a
reporting component [47]

R07 (Twin Communication) Can communicate with other digital twins [31, 47] Either through unspecified integration means [31] or
a dedicated peer interface [47]

R08 (System Interaction) Can interact with third-party systems e.g.,
a manufacturing execution system or an
ERP system

[31, 47] This can have the form of dedicated interoperability
support components [47] or of interfaces to
external data source [31]

R09 (Added Value Services) Provides services to act on data and
models

[31, 47, 88] Much of the added value functionality of a digital
twin is very specific to the AS or the processes on
the AS, i.e., it can hardly be generalized. Instead,
[47] and [31] propose that digital twins yield
services that realize this added value functionality
specifically tailored to their use cases

R10 (Reasoning) Can reason about data from/about the
twinned counterpart as well as about
data obtained from other systems (cf.
R08, R09)

[31, 47] To enable various kinds of such reasoning, the
different frameworks propose specific analytics
services [31, 47]

Other commonalities (see [31, 47]) include different ways
of communication, including the need for reporting infor-
mation to selected recipients (R06), communication with
other digital twins (R07), and interaction possibilities with
third-party systems (R08). Even though R07 and R08 are
both requirements related to providing communication func-
tionality, we made this differentiation on purpose: It makes
a difference if we communicate with an application where
we know the structure of the software system and might
influence it (white-boy system), i.e., a digital twin created
with a similar technology or using AAS, or an application,
where we can only rely on the provided APIs of a third-party
system (black-boy system), i.e., Manufacturing Execution
Systems, or Enterprise-Resource-Planning Systems. More
requirements are related to the functionalities that digital
twins provide: this includes the need for different kinds of
services [31, 47, 88] (R09) to act on data and models (some
of them including detailed examples), as well as to explicitly

describe the need for reasoning and analytics on data [31, 47]
(R10). Clearly,R09 could be broken down intomore specific
categories of services, e.g., monitoring, optimization, predic-
tion, visualization (cf. the purposes of DTs in the systematic
mapping study on software engineering for DTs [26] or the
DT capabilities in Fig. 7), however, what services a specific
digital twin needs is strongly dependent on the purpose one
wants to create a digital twin for. Considering this require-
ment from a software architecture perspective, all services
require data and/or models as input, process this information
to gain new knowledge, and produce an output. Therefore,
we summarize them into one higher level requirement.

5 Engineering digital twins with the AAS

This section explores possible methodologies for deploying
each type of AAS and contrasts these approaches with find-

123



J. Zhang et al.

Fig. 10 Example XML instance of the milling machine

ings from earlier digital twin research. Our objective is to
assess how each AAS type relates to the requirements out-
lined in Sect. 4. We aim to pinpoint the present status of AAS
development and discover methodologies for constructing
digital twins with the AAS. This will not only shed light
on the practical applications of AAS in the engineering of
digital twins but also contribute to the broader discourse on
enhancing digital twin technology through the integration of
the AAS. The differences between the three types of AAS
from [79] are depicted in Fig. 2.

5.1 Type 1 asset administration shell

The need for Type 1 AAS is grounded in its file transfer
as defined by IDTA [80]. As such, Type 1 AASs exist as
serialized files, such as XML or JSON formats cf. Fig. 10).
Here we see the set of AASs beginning (ll. 2 ff) and the
definition of the milling machine (ll. 3-9), which contains
the attributes from the illustrative example of Sect. 3 (ll. 4-
7).

These serialized shells encapsulate static information and
can be shared among partners of different companies. This
file distribution follows a template,12 which outlines the
structural relations between the contained submodels.

Considering the illustrative example from Sect. 3, the
CAD model, the simulation models, and models of the
milling machine are represented as submodels in the AAS
as depicted in Fig. 4. Submodels can be identified by using
BaSyx [50] to iterate over the relations established between
the elements of the AAS and the linked submodels. How-
ever, BaSyx does not support parsing these submodels. For
instance, a CAD model can be identified through the bill of
materials, in which the relations and the instances are refer-
enced in our example in Fig. 4. Further, the bill of materials
also links the submodels of the spindle, the milling machine,
the frame, and the simulation models. Another aspect is the
connection to further AAS. These are also denoted in sub-
models which contain the relation as an ID, a description,
and a value that contains the concrete address of the server.
Comparing this with the digital twin requirements of the pre-
vious section, we notice that an explicit service component

12 https://industrialdigitaltwin.org/en/content-hub/submodels

is missing and that the physical entities are depicted as an
asset without concrete reference to the connection between
the AAS and its asset depicted in blue in Fig. 11. In general,
the Type 1 AAS can be used as a knowledge base, in which
a dedicated submodel may contain relations between sub-
models. Such relations can also be noted in descriptive files.
When implementing a connection between a digital twin and
Type 1 AAS, the necessary interface includes an implemen-
tation, e.g., BaSyx, to identify the submodels. Reasoning on
top of the submodels becomes a feature that the digital twin
provides. Now we look at Table 2 and compare Type 1 AAS
with the digital twin requirements from Table 1. First and
foremost, the Type 1 AAS are serialized files without an
active part. This leads toR01,R02, and R03 being answered
with a clear no. The Type 1 AAS cannot receive data from its
twinned counterpart without an interface (R01) e.g., BaSyx.
This also means that it cannot send data back to its twinned
counterpart (R02). There is also no explicit user interface
provided off-the-shelf (R03). The Type 1 AAS represents
its counterpart digitally (R04), e.g., the serialized files, the
relations, and documentation describe static properties of the
asset. It cannot synchronize properties with its counterpart,
as the data have to be managed manually (R05). This also
means that it cannot actively report information (R06), not
actively interact with other AAS (R08), provides no services
to act on data andmodels (R09), and cannot reason about data
(R10). The Type 1 AAS can be integrated with other AAS by
adding information on the relation with further shells in sub-
models. However an active behavior as communicating with
other AAS is not possible (R07). In conclusion, we observe
that Type 1 AAS can be used as a knowledge base, while the
digital twin has to provide means to analyze and reason on
the knowledge.

5.2 Type 2 asset administration shell

Type 2 AAS addresses a prevalent challenge in the cur-
rent Industry 4.0 landscape: inconsistency in communication
protocols between tools provided by various providers [37].
Thus, in contrast to pure file sharing, as with the Type 1
AAS, Type 2 AASs [9] are realized as an executable soft-
ware system e.g., on a server. To read and write AAS files
(and submodels), APIs are provided. Such Type 2 AASs can
be realized with e.g., Eclipse BaSyx or AASX as mentioned
in Sect. 2.

In our example, this implies utilizing the submodels
defined for a Type 1 AAS as the foundation for the Type
2 AAS’s repository as illustrated in Fig. 11. The reposi-
tory can for example be equipped with a REST API [37],
enabling access to a database. This database could facili-
tate the retrieval of information by providing shells on top of
assets. In a centralized database, it is crucial tomanage access
in an industrial setting to safeguard the confidentiality and

123

https://industrialdigitaltwin.org/en/content-hub/submodels


Digital twin and the asset administration shell

Database and Registry
API

Asset Asset

AAS AAS

Fig. 11 Instance for a Type 2 AAS with connection between a central-
ized database and AAS [37]

consistency of data and models across multiple submodels
and AASs. Thus leading to increased importance of data and
model consistency methods. However, another possible way
to implement this could be an interface that provides access
to Type 1 AAS. Typically, operations performed using these
shells include a name (the name is used as an unique identi-
fier for accessing the operation), a semantic reference (a link
to the metamodel of the operation - in general a link to a
submodel), an explanation (general information of the oper-
ation, e.g., a textual description of the functionality of the
operation), input and output parameters. In the illustrative
example, the application of a change to the PT, specifically
the spindle of the milling machine, will affect the submodels
of the spindle as well as all submodels which it is referenced
in.To further illustrate, consider the typeof the spindle,which
changes froma high precision spindle to a lowprecision, high
power spindle. Given the fact that the AAS is unable to detect
changes on its own, the change of a spindle of unknown ori-

gin and type implies the need for a manual configuration of
the submodel. Regarding the requirements on digital twins,
similar issues are observed as in the Type 1 AAS, with the
exception of improved connectivity due to its reactive nature.

Comparing the Type 2 AAS, as defined by IDTA in the
specifications [46], with the requirements forDTs fromTable
1, we observe the following (cf. Table 3). There is a discrep-
ancy between the specified properties a Type 2 AAS has
and the actual implemented properties. In the table, the fully
filled circles represent the specified properties, the partly
filled circles represent properties which are not specified but
suggested by context, and the empty circle denote undefined
requirements. Section5.4 investigates the implementations
and their properties in greater detail. The core of the Type
2 AAS according to the specifications provides an API with
create, read, update and delete operations for managing sub-
models, so it can passively receive data from the asset (R01),
but it cannot actively send data back to the asset. This means
for R01, that it is fulfilled. It is possible to propagate values
to submodels to influence the system’s behavior, but actively
sending data is not possible (R02). In general, the specifica-
tion enables a user interface (R03), but it is not specified nor
suggested by IDTA. As the Type 1 AAS is part of Type 2
AAS, the actual system is represented digitally (R04).

The requirements (R05–R10) depend on the functionality
of the actual implementation of the specified API to realize
the reactive nature of the Type 2 AAS. We briefly discuss
these requirements and provide further insight in Sect. 5.4. A
Type 2 AAS, by its very nature, is unable to synchronize data

Table 2 Type 1 AAS comparison with digital twin requirements

Req. Eval. Explanation

R01 (Asset Receiving) The serialized files require an interface to write data on them. The Type 1 AAS is used
like a file system

R02 (Asset Sending) The Type 1 AAS collections of related serialized files without any behavior

R03 (GUI) There is no off-the-shelf GUI for Type 1 AASs

R04 (Representing) The information on the asset can be stored inside the serialized files with their relations

R05 (Synchronizing) Synchronization between AAS and asset is not included for Type 1 AASs

R06 (Reporting) There are templates supporting specifying recipients e.g., other AAS aside from itself, in
the Type 1 AAS, but no data exchange mechanism is implemented

R07 (Twin Communication) The recipient specification mechanism of R06 (Reporting)could be used as the base for
any twin to twin communication. However, there is not off-the-shelf support for such

R08 (System Interaction) There is no active behavior in Type 1 AAS

R09 (Added Value Services) The interface for interacting with the AAS is implemented in BaSyx, but the Type 1
AAS does not provide services by default

R10 (Reasoning) Since neither R08 nor R09 is fulfilled the AAS Type 1 cannot actively reason about data
from the twinned counterpart

The requirement is not required by IDTA
The requirement is suggested by IDTA
The requirement is defined by IDTA

123



J. Zhang et al.

Table 3 Type 2 AAS comparison with digital twin requirements

Req. Eval. Explanation

R01 (Asset Receiving) The Type 2 AAS is capable of passively receiving data from the Asset or multiple AAS
through an API

R02 (Asset Sending) The Type 2 AAS cannot actively send data to the twinned counterpart

R03 (GUI) The Type 2 AAS requires an implementation for the API. In relation to the
implementation the API may of may not be a full user interface, which is not specified
by the IDTA

R04 (Representing) The Type 2 AAS can represent its counterpart digitally through the submodels and their
relations

R05 (Synchronizing) The Type 2 AAS as specified by the IDTA comes with a possibility of defining a timer
for the update of data within the AAS. The active synchronization relies on
implementation

R06 (Reporting) The Type 2 AAS is also not capable of actively reporting information to selected
recipients, but through references between submodels it may propagate data to further
Type 2 AAS

R07 (Twin Communication) The Type 2 AAS can adjust relations between properties in submodels and refer to
further Type 2 AAS submodels. Thus it cannot perform data exchanges with other DTs

R08 (System Interaction) The Type 2 AAS can indirectly interact with other systems by defining references to
further submodels of other AAS. Overall the Type 2 AAS cannot interact with other
systems

R09 (Added Value Services) The Type 2 AAS provides an API for manipulating submodels. Whether these API are
sufficient enough to be a service is dependent on the actual implementation

R10 (Reasoning) The Type 2 AAS cannot actively reason about data from the twinned counterpart, but
e.g., there can be references defined inside submodels calculating metrics for
evaluating the throughput or performance. Further the IDTA defines an option with
regex queries to reason on data. This again depends on the actual implementation

The requirement is not required by IDTA
The requirement is suggested by IDTA
The requirement is defined by IDTA

between AASs. However, the IDTA specification suggests
a solution in which a timer can be defined for data update
intervals (R05). While the specification does not explicitly
address the communication and interaction between digital
twins, an integration with another Type 2 AAS is possible
and suggested, by referencing the submodels and APIs of
the AAS (R06). A reference could enable a communication
between DTs and the interaction with other systems (R07
and R08) by using the references a way of data access from
a shared repository, as shown in Fig. 11. Since these features
have to be active communication, where data is sent back
and forth between DTs, the R07 and R08 are not fulfilled.
In regard to the provided services, when deploying the API
as a REST-service it is possible to provide functionalities.
As specification for Type 2 AAS ends with the requirement
of an API. A service to access the API’s functionalities is
suggested by IDTA, but also (R09)dependent on the actual
implementation. Finally, the requirement for active reasoning
is suggested in the specification, where references between
submodels alongside regular expressions could be used for
drawing conclusions on data (R10).

5.3 Type 3 asset administration shell

As the Type 3 AAS is not yet fully specified and still under
ongoing research, we base our analysis on the research
concepts. The Type 3 Asset Administration Shell extends
the Type 2 AAS with additional features. It has an active
behavior in addition to the ability to communicate and
negotiate on its own [48, 80, 84]. This means it contains data-
transforming functions, can obtain and transform/abstract
data autonomously (e.g., for analyzing purposes), and is also
able to act upon the AS on its own. For this bidirectional
communication with the asset, the Type 3 AAS uses a well-
defined I4.0-Language [8].

Others discuss the reactive components of a Type 3 AAS
and describe a possible architecture of such a system [43].
This architecture comprises a passive and an active part of the
AAS. The passive part is already discussed for the Type 1 and
Type 2 AAS. The active part contains algorithms managed
by a component manager and scheduled by an interaction
manager. All these can interact with the environment via a
messenger component that communicates using the I4.0 lan-

123



Digital twin and the asset administration shell

Table 4 Type 3 AAS comparison with digital twin requirements

Req. Eval. Explanation

R01 (Asset Receiving) The Type 3 AAS has an active communication with its asset

R02 (Asset Sending) Via the I4.0 language, the Type 3 AAS can send data to its asset

R03 (GUI) With its active behavior, the Type 3 AAS could implement and host a graphical user
interface

R04 (Representing) The Type3 AAS can represent its counterpart digitally through the submodels and their
relations

R05 (Synchronizing) Via the I4.0 language, the Type 3 AAS can send synchronizing commands to its asset

R06 (Reporting) The Type 3 AAS comprises active components that could implement sending reporting
information via the I4.0 language

R07 (Twin Communication) The Type 3 AAS comprises active components and defined interfaces, so that it can
communicate with other DTs for specific submodel purposes

R08 (System Interaction) The Type 3 AAS comprises active components that could implement communicating
with other systems for specific submodel purposes

R09 (Added Value Services) Within its active behavior, the Type 3 AAS is supposed to (autonomously) compute data,
e.g., for analysis purposes. But the extent is not defined by the IDTA

R10 (Reasoning) Within its active behavior, the Type 3 AAS is supposed to (autonomously) compute data,
e.g., for analysis purposes. But the extent is not defined by the IDTA

The requirement is not required by IDTA
The requirement is suggested by IDTA
The requirement is defined by IDTA

Fig. 12 Active and passive part of the Type 3 AAS. Inspired from [43]

guage. In this section, we call the single algorithms together
with the interaction and component manager services. This
concept is then again refined byMediavilla et al. in [60]. They
describe a conceptual architecture for engineering change
management with a Type 3 AAS. Here, the AAS contains an
API and again active services.

Ultimately, a Type 3 AAS contains a passive part, already
present in a Type 1 AAS and a Type 2 AAS as well as an
active part (cf. Table 4), illustrated in Fig12. This active part
contains reactive and proactive services that implement the
autonomous behavior required by the IDTA.

With the Type 3 AAS extending the capabilities of the
Type 2 AAS with additional I4.0-compliant communica-
tion and active behavior, we take R01 (Asset Receiving)
and R04 (Representing) as been fulfilled by each Type 3
AAS. Therefore, we concentrate on the requirements which

were for the Type 2 AAS not fulfilled and for digital twins
required, namely requirementsR02,R03,R07, and R08 and
the already implemented digital twin requirementsR05,R06,
R09, R10. We refer to the reference architecture from [43],
to discuss which digital twin requirements must be fulfilled
by the Type 3 AAS and which are possible or likely to be
implemented. With the ability to autonomously send data to
its associated asset, an implementation of the Type 3 AAS
fulfills R02 (Asset Sending). This data comes in the format,
the asset is capable of processing. In most cases, this might
be control commands to an actual system. The AAS uses
the I4.0 language to communicate with the asset.R03 (GUI)
describes that a twin needs to have a user interface.According
to [89], a user interface is an “interface that enables infor-
mation to be passed between a human user and hardware
or software components of a computer system”. The Type
3 AAS offers an HTTP interface which can act as a remote
interface when logging in via a remote console. To this point,
theAASdoes not require to have a graphical user interface by
itself but can produce data that can be interpreted as graphical
elements. Although, referring to the definition given in [89],
the HTTP interface together with a remote machine, inter-
preting the communication, might act as an interface, the
Type3AASdoesnot comewith aGUIout-of-the-box.There-
fore,we state thatR03 is possible but not definedby the IDTA.
R05 (Synchronizing) asks for the capability to synchronize
(selected) properties with its counterpart. Those properties

123



J. Zhang et al.

therefore must be present in the asset and in the AAS. Syn-
chronization goes bidirectional. With its ability to receive
data from the asset, the AAS is already capable of mirror-
ing properties and property changes in the AAS, either by
being notified or by pulling the required information. The
Type 3 AAS is capable of bidirectional communication with
its asset. Therefore the AAS can send control commands to
the asset which alter the asset’s properties. A synchroniza-
tion service could detect all changes in the AAS properties
to be synchronized and send according to control commands
to its asset. However, the synchronization must be triggered,
either by some AAS functionality or by a user. Manual user
synchronization can be triggered via the user interface and
autonomous synchronization of asset properties can be done
by a monitoring service. With this, the Type 3 AAS does
not fulfill R05 out-of-the-box, but the implementation of it
is possible and very much likely to utilize its abilities. R06
(Reporting) describes the ability to report information. We
already described how a service could autonomously syn-
chronize data with its associated asset. In the same manner,
the Type 3 AAS can synchronize reporting information with
another party, either bidirectional or only from the AAS to
the reporting recipients. So, the Type 3 AAS again is not
out-of-the box capable of reporting information, but has all
components to implement such a behavior. A Type 3 AAS is
capable of an I4.0 language and at least some HTTP inter-
faces. Assuming the I4.0 language is processable by other
DTs, a Type 3 AAS can communicate with other digital
twins, fulfilling R07 (Twin Communication), the ability to
communicate with other digital twins. This communication
is processed in the AAS active services for specific submodel
purposes. Other 3rd party systems can communicate with the
AAS via the HTTP interface or the I4.0 language, respec-
tively, fulfillingR08System Interaction, the ability to interact
with other systems.R09 (AddedValue Services) requires ser-
vices to act on data and models, while R10 (Reasoning) also
requires services to reason about data from other systems.
The architecture for a Type 3 AAS defines an active behav-
ior and requires autonomous services. These act on asset data
and potentially models that are not limited to asset data and
models, but can also act and reason on data from other sys-
tems. The IDTA does not specify in which manner the active
behavior interacts with the asset data or models, but it is very
likely that the Type 3 AAS does act on asset data and reason
about it, as the main use case in industrial environments.

In summary, our understanding is that a Type 3 AAS
is capable of implementing all of the previously derived
requirements for a digital twin. With its active autonomous
behavior, it overcomes the shortcomings of the Type 2 AAS
regarding our derived digital twin requirements.

5.4 Common implementations of AAS

Nowwe look at some implementations ofAAS from industry
and from research to provide a broad overview of possi-
ble functionalities in-between the specified AAS types in
Table 5. A file transfer protocol, as i.e.,supported by FileZilla
server ,16 may be employed for the manipulation of Type 1
AAS. In its most basic form, the Type 1 AAS is a file stored
on a local drive (R04). This approach is compliant with the
Type 1 AAS as defined in the specification. However, as the
file is unable to manage data in its submodels, it is not capa-
ble of receiving data, thus not fulfilling the requirement of
being a Type 2 AAS.

The IDTA provides sample projects17 and a server18 host-
ing them. These projects fulfill the requirement for the asset
to be represented digitally (R04) and are in accordance with
the Type 1 AAS. However, as the file server is also unable
to manage data in its submodels, the files are not capable of
receiving data on their own, thus not fulfilling the require-
ment of being a Type 2 AAS. Only in combination with the
server theminimal requirement of being a Type 2AASwould
be fulfilled. In conclusion, both the file transfer protocol and
the sample projects, provide no further features and thus do
not fulfill any other requirements.

The BaSyx framework provides an API to interact with
the Type 1 AAS through a component called registry. The
BaSyx framework further provides a database interface to
persist the state of the Type 1 AAS. The BaSyx framework
is conform to a Type 2 AAS. It is able to receive data from
the asset (R01) and represent the asset digitally (R04). Func-
tionalities such as sending data to the twinned counterpart
(R02), active reporting to a selected recipient (R06), com-
munication and interaction with other DTs (R07 and R08),
the provision of BaSyx as a service (R09) and the reason-
ing on data (R10) are open for future extensions. At this
time, two features have been incorporated into BaSyx, which
extend it from a Type 2 AAS. With the AAS Web UI pro-
vided by the BaSyx framework a user interface is added
(R03). A DataBridge component enables a timed synchro-
nization between the asset and the Type 1 AAS R05. Any
further functionality can be built on top of this basis. This
means that requirements for a Type 3 AAS are partly ful-
filled, while mandatory ones such as R07 and R08 are not
fulfilled. In research on the connection between Type 2 AAS
and a database [37] the connection between the AAS and
an API to automatically store data was researched (R05).
With the involvement of multiple Type 1 AAS, connected to
a single database backend a connection to selected recipients
is shown (R06). Since the backend is independent from the

16 Filezilla: https://filezilla-project.org/.
17 AAS samples: https://www.admin-shell-io.com/samples/.
18 Eclipse AAS package explorer: https://github.com/eclipse-aaspe.

123

https://filezilla-project.org/
https://www.admin-shell-io.com/samples/
https://github.com/eclipse-aaspe


Digital twin and the asset administration shell

Table 5 Implementations with regard to AAS specification conformness and requirement fulfillment

Reference Type 1 AAS Type 2 AAS Type 3 AAS Fulfills Requirements Explanation

File Transfer
Protocol (FTP)
supported by
FileZilla server

R04 A file transfer protocol can be treated as a
simplified Type 1 AAS. Any action has
to be done manually, thus meaning the
AAS is a passive system

IDTA samples 15

without AASX
server

R04 The submodel templates define the
internal structure of a submodel. This
also includes references across
submodels. Thus a connection to other
instances is also established

BaSyx R01, R03, R04, R05 The BaSyx framework is a prominent API
for managing Type 1 AAS. Thus
fulfilling the condition of being a Type 2
AAS

Research
implementation by
Evans et al. in
2022[37]

R01, R04, R05, R06, R08 This publication focuses on the
connection between AAS and a backend
to persistently store data of the system.
Thus automated data propagation and
synchronization was implemented on
top of the Type 2 AAS specifications

Eclipse Papyrus for
Manufacturing

R01, R04 Eclipse Papyrus4Manufacturing is a
modeling tool for Industry 4.0
applications, which provides an
integration with BaSyx. Depending on
the implementation and version of
BaSyx, this tooling also fulfills more or
less requirements

No requirements of the AAS type is fulfilled
Some requirements are fulfilled
The minimal requirements are fulfilled

Type 2 AAS an interaction between Type 2 AAS and a self-
developed system is shown (R08). With the representation
of the asset and the ability to receive data from the asset R01
andR04 are fulfilled. Since the focus does not cover the com-
munication between DTs, any value services or reasoning on
data the requirements R07, R09 and R10 are not fulfilled.
Overall this research is a Type 2 AAS as per definition and
adds features to it. In other research [7, 10, 22] the focus is
shifted toward the modeling of submodels inside of the AAS
with regard to the templates provided by the IDTA. While
the modeling is also an important aspect, it remains unclear
how aDT is supposed to interact with other DTs and systems.
Consequently, it is not possible to find an answer whether our
requirements are fulfilled. Eclipse Papyrus4Manufacturing19

is a graphical modeling tool for industry 4.0 and provides
integration with BaSyx. Thus also fulfilling the requirement
of being a Type 2 AAS. As this tooling is also reliant on the
implementation and specification of the user, fulfillment of
the requirements R05-R10 remain open.

19 EclipsePapyrus4Manufacturing: https://eclipse.dev/papyrus/compo
nents/manufacturing/.

6 Challenges and opportunities

We discuss challenges and opportunities for creating Digital
Twins using AAS and model-driven development methods.
Find more ideas on applicable methods within the Model-
Based Software Engineering Body of Knowledge [20] and
the Systems Engineering Body of Knowledge [85].

6.1 Efficient engineering of digital twins through
their reuse

Digital twins are complex software artifacts that combine
data, models, and services to provide better insights and
added value on top of the twinned system. Consequently,
their engineering is challenging and costly. With one of the
main reasons for the success of software being its reusability
(e.g., classes and libraries in-the-small, apps and contain-
ers in-the-large), digital twins should benefit from efficient
reuse mechanisms as well. Methods for the composition
of language-independent software through superimposition
[4] or the composition of event-specific context-dependent
behavior through language constructs [5] are commonly

123

https://eclipse.dev/papyrus/components/manufacturing/
https://eclipse.dev/papyrus/components/manufacturing/


J. Zhang et al.

practiced for software. For digital twins, this is not the case.
Although recent studies claim to compose digital twins, they
commonly limit themselves to a virtual representation [3,
28].

Wherever a digital twin of a larger system (e.g., a factory)
logically consists of digital twins of smaller systems (e.g.,
production machinery), reusing the smaller digital twin as
part of the larger one should be as easy as reusing existing
classes in another software [65]. Moreover, digital twins of
specific systems should be transferable to similar systems
easily, e.g., allowing for systematic reuse (parts of) the dig-
ital twin of a sports car of one brand with the sports car of
another brand. Through MDE methods a possibility opens
of leveraging existing models of a digital twin for a transfer
across the boundaries [17]. These methods focus on het-
erogeneous models, bidirectional synchronization, and the
development throughout the system lifecycle. While also
opening up new challenges such as the question for a mod-
eling language, an architectural framework, inconsistency,
model and datamanagement. Currently, neither formof reuse
is supported systematically, which is why creating digital
twins still demands tremendous handcrafting of software arti-
facts, which hampers the adoption of digital twins.

Reuse for AAS is a built-in property through the use of
AAS submodels. These define the underlying data structure
and thus promise modularity and reusability. Therefore, for
Type 1 and Type 2, different AASs of similar assets or even
similar domains are built similarly. However, since Type 1
and Type 2 AASs have little or no software engineering,
their development consists mainly of setting the right val-
ues. Type 3 AAS engineering consists of more sophisticated
software engineering that defines their active behavior. This
active behavior could be implemented, for example, by a
service that works on data consistent with the data models
of the submodels. This promises reuse of such services for
different Type 3 AASs, since the input data looks the same.
Composability of AASs from other smaller AASs may be
possible due to well-defined interfaces, but the number of
different submodels20 and possible combinations of them, as
well as their quality, make it difficult to predict the actual
engineering effort.

6.2 Low-code configuration for AAS

Digital twins will be largely operated and configured by
experts in the respective application domains. These rarely
have received formal software engineering training, which
limits the expressiveness of technologies that should be
applied to configuring digital twins. Using low-code devel-
opment platforms or low-code development approaches [30]
for digital twin engineering can enable domain experts to

20 https://industrialdigitaltwin.org/en/content-hub/submodels.

create, configure, and operate tailored digital twins for their
specific domain of interest [25] using their domain expertise,
concepts, and terminology.

Similar approaches could be applied to ease the use of
AAS to develop digital twins. This includes, e.g., (1) Low-
code interfaces to create, access, and reason over submodels,
(2) Libraries for submodels supporting easy reuse, (3) Sup-
port for automated deployment of digital twins based onAAS
technologies, and (4) Low-code modeling languages that
enable orchestrating the services used by the digital twins.
Moreover, if specific application domains select specific sets
of AAS submodels and services that might be relevant for
them, one could place a low-code configuration layer on top
that enables the tailoring for specific use cases on a higher
level of abstraction.

As these parts of AAS are technology dependent, the
low-code development platforms have to be tailored toward
specific technologies currently developed for AAS, e.g.,,
the BaSyx framework, and other frameworks to be devel-
oped in the future. Establishing standards and standardized
interfaces will help making low-code development platforms
more technology-independent.

In addition, the concrete application domainmay also have
different requirements for a low-code platform coming from
possible users, e.g., which level of abstraction has to be pro-
vided for the intended users when describing configuration
information. This covers the whole spectrum from (1) the
type of representation, e.g., text-based approaches, graphical
interfaces, or wizards, (2) different levels of knowledge, e.g.,
domain experts covering a broad spectrum of information
about an asset to niche knowledge for a particular part of the
asset, and (3) the depth of technology understanding, e.g.,
without software engineering skills up to software engineer-
ing experts. Thus, low-code development platforms have to
be tailored for their intended AAS user groups.

Such low-code development platforms could either be
developed as open-source, e.g., BESSER [2], or in-house
if companies create digital twins for themselves regularly or
sell them to customers. However, their core development will
be easier if more AAS aspects are standardized, especially
services to be used within Type 3 AASs and their communi-
cation interfaces within a digital twin implementation.

6.3 Derivation of AAS Digital Twins from
engineeringmodels

In manufacturing, a lot of information that would be inter-
esting for digital twin creation with AAS, is already created
during, e.g., the engineering process of productionmachines,
factory planning, and process planning (cf. “Representing
Systems with Models” in the Systems Engineering Body of
Knowledge [85]). With the SysML v2 release, it is also to
be expected that more systems engineering models will be

123

https://industrialdigitaltwin.org/en/content-hub/submodels


Digital twin and the asset administration shell

available in an interchangeable format within the next few
years. Reusing this information would be helpful for engi-
neering digital twins [21]. This requires extraction of the
information from these engineering models into information
needed in submodels. This transformation could be improved
by reusing the information alreadyprovided and standardized
in submodels, as they could parametrize this transformation.

Moreover, up to now, it is unclear how information during
runtime of an asset could be brought back to the devel-
opment process of the asset [24] using AAS technologies.
This requires adding a methodology and tools on top which
enable the analysis of information relevant to improving the
development. As the realization of Type 3 AAS is planned,
such mechanisms could be integrated in the active part as
algorithms. However, reuse of these functionalities is not
considered if they are to be realized newly for every AAS.

There exists a large MDE body of knowledge on mod-
els@runtime [12, 18] which is specifically of interest for
AAS Type 2 and Type 3. Models@runtime approaches can
support the bidirectional synchronization between digital
twins and their counterparts [16]. While different types of
runtime models [12], e.g., structure, behavior, quality, goal,
requirements models, could be of interest for digital twins
developed with AAS technologies, concrete examples, and
their implementations are missing.

6.4 Communication between AASs

When it comes to connections betweendifferent digital twins,
open challenges still remain [66], e.g., how digital twins on
different levels of details can be integrated or can exchange
information on different levels of granularity. It still requires
manual effort to map and integrate information between dif-
ferent levels. This problem arises in particular with AAS, as
they claim to represent an AS over its entire lifecycle, which
consequently results in integration challenges when owner-
ship of an AS is transferred from one party to another [39].

Semantic challenges, such as inconsistencies, could be
solved by using standardized submodels [37]. However, this
might not be possible in all cases, as this requires forcing a
certain view of the world on each application domain. Thus,
mechanisms for translating or linking information from dif-
ferent submodels might be a more sensible way to go.

The technical connection between the AASs for Type 2
AAS is, depending on the Type 2 interpretation, based on
established technologies, primarily REST via HTTP(S) and
Open Platform Communication Unified Architecture (OPC
UA) or is implemented in proprietary interfaces OPC UA is
used in particular to drive convergence between Information
Technology (IT) and Operational Technology (OT) systems
and to ensure interoperability in manufacturing [71]. Stan-
dardized, Industry 4.0-compliant communication is part of
Type 3 AAS [80], a specification is pending.

6.5 Non-functional requirements and the AAS

One limitation of our analysis of requirements is that it
is purely based on functional requirements. This is due
to two reasons: The existing approaches rarely mention
non-functional requirements (e.g., [32] mentions privacy,
security, safety, resilience, and reliability), and such require-
ments are strongly connected to the application domain, i.e.,
safety-critical domains require different aspects in their digi-
tal twins than other domains. This also includes the question
of how to handle inconsistency or similarity. When creating
digital twins for complex cyber-physical systems, we have
to cope with the inconsistent behavior of these assets. There
exist approaches for the explicit representation and treatment
of uncertainty [29], that require uncertainty-aware control-
ling components in the digital twin. Other approaches enable
us to measure the similarity between an asset and its digital
twin [68].

MDE tackles some of these non-functional require-
ments [17], e.g., uncertainty modeling integrated in the
digital twin development to explicitly cover it in the design
phase, or the ability to integrate evolved asset information in
the form of models. With the various submodels 21 regarding
different non-functional requirements likeFunctional Safety,
Security Engineering, Reliability, Maintenance, or ecologi-
cal Carbon Footprint, the AAS covers the means to support
storing information needed for fulfilling some of the non-
functional requirements stated. However, how this data is
used and played back to the actual system in an, e.g., Type
3 AAS, remains to be defined and is up to the developer for
now.

6.6 Evolvement of the actual system and the AAS

Engineering models, models@runtime and the asset we are
creating a digital twin for could evolve. Thus, approaches
for digital twin evolution need to be developed [27, 63] and
adapted for digital twins we are creating with AASs. Cur-
rently, new submodel templates are developed which are a
conservative extension of existingAAS submodels. Thus, for
Type 1 AAS rather values in submodels are changing based
on the changing reality. For Type 2 and Type 3, it could also
affect the connection to the actual systemand its control inter-
faces. If the Type 3 AAS autonomously computes data, e.g.,
for analysis purposes, depending on the requirements for this
analysis the need for data might also change over time.

There exists a variety of MDE approaches to support
system evolvement, e.g., for (meta-)model evolution, soft-
ware migration, software reuse, and to check correctness
and consistency during and after model evolution. How-
ever, approaches for the co-evolution of AAS across multiple

21 https://industrialdigitaltwin.org/en/content-hub/submodels.

123

https://industrialdigitaltwin.org/en/content-hub/submodels


J. Zhang et al.

meta-levels including its submodels, models, and data are
to be researched. Here, collaborating with researchers from
data and process modeling [62] would be helpful to integrate
MDEmethodswithmethods fromdata and process engineer-
ing. In addition, the evolution of AAS services with models,
and their data is a challenging open research aspect.

7 Related work

Asystematic literature reviewanalyzing the characteristics of
current implementations of AAS includes papers published
in English on Scopus between 2017 and 2021 identifies spe-
cific implementations of the AAS in 29 of the 45 analyzed
publications [1]. The authors compare the usage of the terms
AAS and digital twin in these 29 papers and found that 19 of
the papers did not contain any statements on this. Out of the
remaining 10 papers, 5 consider AAS and digital twin being
synonymous terms, 3 publications consider theAASas a con-
crete implementation of a digital, and 2 publications consider
the AAS as the information model of a digital twin. A more
detailed resolution, i.e., based on criteria, is not provided.
Others investigate howdata-driven approaches, e.g.,machine
and deep learning models, can be used for predictive mainte-
nance in the industry, especially the automotive domain, and
how they can be integrated into a digital twin represented
using the AAS [81]. The study focuses on a medium-duty
hydrogen truck, where six submodels are defined to sup-
port the predictive maintenance pipeline and four services
use them, namely feature extraction, training, prediction, and
maintenance.

Other research compares the expressiveness of a digital
twin description framework with the expressiveness of the
AAS [73]. The description framework describes digital twins
through their usages, enablers, andmodels, wheremodels are
the information that enablers use to support certain usages.
The description framework distinguishes 12 characteristics,
including support for representing the system-under-study,
the data to be transmitted, timing information, fidelity of the
digital twin, lifecycle information, and more. For each char-
acteristic, the authors investigate how Type 1 AASs enable
their respective representation out-of-the-box. From this, the
authors conclude that the AAS supports four characteristics
fully, four partially, four implicitly, and two not at all (e.g.,
"fidelity considerations" are unsupported). However, as the
AAS generally is a container that can be populated with dif-
ferent submodels (cf. Sect. 3), the expressiveness of an AAS
depends on the submodels used. For instance, if a submodel
capturing fidelity information becomes available, the corre-
sponding characteristics of the description framework might
become expressible with an AAS. Consequently, that study
must be understood as a snapshot of the expressiveness of
AASs relative to available submodels at the time of the anal-

ysis. Another study compares the ease of implementation of
Type 2 AASs using BaSyx [50] and Eclipse AASX. Based
on their qualitative, anecdotal, observations, they conclude
that the technologies are sufficiently accessible and mature
enough to facilitate the implementation of Type 2AASs [99].
Others compare the communication in theAASXandEclipse
BaSyx server implementation and show challenges related
to the pulling of information [37]. The analysis proposes the
realization of Type 2 AASs with an event-based server to
enable seamless orchestration and deployment.

A systematic literature review [1] considers and analyzes
the research on AASs in relation to manufacturing systems.
The result is an evaluation of the emerging practical uses
of AAS implementations within production systems. This
review noticed the overlapping definitions between AASs
anddigital twinswith a relationship that is not clearly defined.
Further gaps emerge for AASs for simulation models and
AAS for bidirectional data exchange between AAS and its
asset. Other researchers employType 1AASs as a knowledge
base of implementations of digital twins [100], which is an
obvious use of AASs for digital twins.

Further research [75] discusses the virtual representation
of assets in an AASs using smart factory technology as an
example. Their contribution consists of the distinction of four
requirements for an asset for virtual representations. These
requirements are

1. Provision of efficient information for creating a DT auto-
matically with a library containing the configuration.

2. Vertical integration, which represents the characteristic
that the DT can be operated and integrated based on one
virtual representation from the asset layer at the bottom
to the enterprise layer at the top.

3. Horizontal coordination represents the coordination
between the DT and engineering applications i.e., ser-
vices.

4. The DT should derive performance indicators repeatedly
with simulation, which is the core technical functionality
of the DT.

The study includes applications to industrial vehicle pro-
duction lines and a smart factory for producing samples and
small-sized components using additive manufacturing. Here,
the digital twin is treated in the form of a virtual factory
technology with simulation as its core technical functional-
ity. This limits their research into creating a definition of an
asset without going into detail on the surrounding system
and how the data is transferred between AAS and machine
or simulation.

Others propose a high-level structured framework of eight
steps for creating AASs in production environments [82]
and evaluate this on the production of distributed high-
rate electrolyzer. These steps include deriving requirements,

123



Digital twin and the asset administration shell

Fig. 13 The different types of asset administration shells cover different parts of digital twins (the DT representation is based on the 5D model
by [88])

selecting assets, and creating the AAS with properties cho-
sen according to existing standards. The goal is to guide the
development of digital twins by constructing an AAS. In this
work, the digital twin (technologies) are used to structure the
digital representation of a distributedmanufacturing systems,
i.e., they do not require any active behavior. In particular, the
developed then AAS follows a Type 1 classification, empha-
sizing basic digital representations without active behavior.

Further research investigates using the concepts of AAS
on the example of the lifecycle of a plant [94]. The authors do
not provide a concrete implementation, but some high-level
suggestions for device manufacturers, system integrators,
plant owners, and Industry 4.0 architects, e.g., which parts
they have to realize themselves and which parts are provided
by the AAS. The authors also discuss the conceptual overlap
between digital twins and AAS. They follow a definition of
digital twinmainly based on the one given byNASAas a sim-
ulation of a physical system enriched with sensor data [86].
They find the overlap of digital twins and AASs in similar
concepts around semantic specifications of the physical sys-
tem. Thus, the authors state that a fully developed digital
twin in the future can be used synonymously for an AAS.
The described AAS follows a Type 1 classification without
active behavior.

8 Conclusion

Both, the Asset Administration Shell and digital twins are
concepts aiming to foster the digital transformation. Where
the digital twin is understood wildly differently in general,
the most prominent definitions and novel standards seem to
suggest them being complex software systems that monitor a
twinned system, reason about this, and send back commands.
As such, implementations of digital twins could be AASs.

We examined the question of whether and to which extent
the AAS meets the requirements of digital twins based on
popular definitions, standards, andmodels.We found no sim-
ple answer to this question as it is much more dependent

on the assumed AAS type, as illustrated in Fig. 13: There
is only a slight congruence between the Type 1 AAS and
digital twins, which lies in understanding the AAS as the
knowledge base of the digital twin, covering virtual models
and data about, but not from the actual system. Type 2 AASs
extend that to resemble an infrastructure for digital shadows
over static models of the actual system. Type 2 AASs, cover
not only virtual models, but also data from and about the
actual system. Literature and reference implementations on
the Type 3 AAS indicate that a Type 3 AAS, which shall be
able to send commands back to a connected system, could
indeed be nearly complete implementation technology for
digital twins in the sense of the requirements identified in
this paper. Type 3 AASs extend the Type 2 AASs to include
services about the actual system. However, with the specifi-
cation of Type 3 AAS still ongoing, future work has to revisit
this assumption.

Acknowledgements Partly funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation)—Model-Based
DevOps—505496753. Website: https://mbdo.github.io/ Partly funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy–EXC 2023 Inter-
net of Production–390621612. Website: https://www.iop.rwth-aachen.
de Partly funded by the joint project SDM4FZI, supported by the
Bundesministerium für Wirtschaft und Klimaschutz (BMWK, Fed-
eral Ministry for Economic Affairs and Climate Action) as part of
the "Future Investments in the Automotive Industry" funding program.
Website: https://www.sdm4fzi.de/.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

123

https://mbdo.github.io/
https://www.iop.rwth-aachen.de
https://www.iop.rwth-aachen.de
https://www.sdm4fzi.de/


J. Zhang et al.

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdel-Aty, T.A., Negri, E., Galparoli, S.: Asset administration
shell in manufacturing: applications and relationship with digital
twin. IFAC-PapersOnLine 55(10), 2533–2538 (2022)

2. Alfonso, I., Conrardy, A., Sulejmani, A., Nirumand, A., Ul Haq,
F., Gomez-Vazquez,M., Sottet, J.S., Cabot, J.: Building besser: an
open-source low-code platform. In: Enterprise, Business-Process
and Information Systems Modeling, pp. 203–212. Springer
Nature Switzerland (2024)

3. Andryushkevich, S.K., Kovalyov, S.P., Nefedov, E.: Composition
and application of power systemdigital twins based on ontological
modeling. In: 2019 IEEE 17th International Conference on Indus-
trial Informatics (INDIN), vol. 1, pp. 1536–1542. IEEE (2019)

4. Apel, S., Kastner, C., Lengauer, C.: Featurehouse: language-
independent, automated software composition. In: 2009 IEEE
31st International Conference on Software Engineering, pp. 221–
231. IEEE (2009)

5. Appeltauer, M., Hirschfeld, R., Masuhara, H., Haupt, M.,
Kawauchi, K.: Event-specific software composition in context-
oriented programming. In: Software Composition: 9th Interna-
tional Conference, SC 2010, Malaga, Spain, July 1-2, 2010.
Proceedings 9, pp. 50–65. Springer (2010)

6. Ardanza, A., Moreno, A., Segura, Á., de la Cruz, M., Aguinaga,
D.: Sustainable and flexible industrial human machine interfaces
to support adaptable applications in the Industry 4.0 paradigm.
Int. J. Prod. Res. 57, 4045–4059 (2019)

7. Arm, J., Benesl, T., Marcon, P., Bradac, Z., Schröder, T., Belyaev,
A., Werner, T., Braun, V., Kamensky, P., Zezulka, F., et al.: Auto-
mated design and integration of asset administration shells in
components of industry 4.0. Sensors 21(6), 2004 (2021)

8. Bader, S., Barnstedt, E., Bedenbender, H., Berres, B., Billmann,
M., Ristin, M.: Details of the asset administration shell-part 1: the
exchange of information between partners in the value chain of
industrie 4.0 (2022)

9. Bader, S., Berres, B., Boss, B., Gatterburg, A., Hoffmeister, M.,
Kogan, Y., Köpke, A., Lieske, M., Miny, T., Neidig, J., Orzelski,
A., Pollmeier, S., Sauer, M., Schel, D., Schröder, T., Thron, M.,
Usländer, T., Vialkowitsch, J., Vollmar, F., Ziesche, C.: Details of
the asset administration shell. part 2 -interoperability at runtime-
exchanging information via application programming interfaces
(version 1.0rc01) (2020)

10. Bader, S.R., Maleshkova, M.: The semantic asset administration
shell. In: Semantic Systems. The Power of AI and Knowledge
Graphs: 15th International Conference, SEMANTiCS 2019, pp.
159–174. Springer (2019)

11. Bano, D., Michael, J., Rumpe, B., Varga, S., Weske, M.: Process-
aware digital twin cockpit synthesis from event logs. J. Comput.
Lang. 70, 101121 (2022)

12. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided
tour of the state of the art and research challenges. Softw. Syst.
Model. 18(5), 3049–3082 (2019)

13. Biesinger, F.,Meike, D., Kraß, B.,Weyrich,M.: A case study for a
digital twin of body-in-white production systems general concept
for automated updating of planning projects in the digital factory.
In: 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA) (2018)

14. Bolender, T., Bürvenich, G., Dalibor, M., Rumpe, B., Wortmann,
A.: Self-adaptivemanufacturingwith digital twins. In: 2021 Inter-
national Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS). SEAMS ’21, pp. 1–4. Asso-
ciation for Computing Machinery, New York, NY, USA (2021)

15. Bonetti, F., Bucchiarone, A., Michael, J., Cicchetti, A., Mar-
coni, A., Rumpe, B.: Digital twins of socio-technical ecosys-
tems to drive societal change. In: International Conference on
Model Driven Engineering Languages and Systems Companion
(MODELS-C). ACM/IEEE (2024)

16. Bordeleau, F., Combemale, B., Eramo, R., van den Brand, M.,
Wimmer,M.: Towardsmodel-driven digital twin engineering: cur-
rent opportunities and future challenges. In: Systems Modelling
and Management, pp. 43–54. Springer International Publishing,
Cham (2020)

17. Bordeleau, F., Combemale, B., Eramo, R., van den Brand, M.,
Wimmer, M.: Towards model-driven digital twin engineering:
Current opportunities and future challenges. In: Babur, Ö., Denil,
J., Vogel-Heuser, B. (eds.) Systems Modelling and Management,
pp. 43–54. Springer International Publishing, Cham (2020)

18. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software
engineering in practice: second edition. Synth. Lectures Softw.
Eng. 3(1), 1–207 (2017)

19. Brecher, C., Dalibor,M., Rumpe, B., Schilling, K.,Wortmann, A.:
An ecosystem for digital shadows in manufacturing. Proc. CIRP
104, 833–838 (2021)

20. Burgueño, L., Ciccozzi, F., Famelis, M., Kappel, G., Lambers,
L., Mosser, S., Paige, R.F., Pierantonio, A., Rensink, A., Salay,
R., Taentzer, G., Vallecillo, A., Wimmer, M.: Contents for a
model-based software engineering body of knowledge. Softw.
Syst. Model. 18(6), 3193–3205 (2019)

21. Caesar, B., Jansen, N., Weigand, M., Ramonat, M., Gundlach,
C.S., Fay, A., Rumpe, B.: Extracting functional machine knowl-
edge from STEP files for digital twins. In: 2022 IEEE 27th
International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE (2022)

22. Cavalieri, S., Salafia, M.G.: Asset administration shell for PLC
representation based on IEC 61131–3. IEEE Access 8, 142,606-
142,621 (2020)

23. Chen, X., Kang, E., Shiraishi, S., Preciado, V.M., Jiang, Z.: Dig-
ital behavioral twins for safe connected cars. In: Proceedings of
the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (2018)

24. Combemale, B., Jansen, N., Jézéquel, J.M., Michael, J., Perez,
Q., Rademacher, F., Rumpe, B., Vojtisek, D., Wortmann, A.,
Zhang, J.: Model-based DevOps: foundations and challenges. In:
Di Ruscio, D., Lambers, L. (eds.) International Conference on
Model Driven Engineering Languages and Systems Companion
(MODELS-C), pp. 429–433. IEEE, ACM/IEEE (2023)

25. Dalibor, M., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J.,
Rumpe, B., Varga, S.,Wortmann, A.: Generating customized low-
code development platforms for digital twins. J. Comput. Lang.
70, 101117 (2022)

26. Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeis-
ter, L., Wimmer, M., Wortmann, A.: A cross-domain systematic
mapping study on software engineering for Digital Twins. J. Syst.
Softw. 193, 111361 (2022)

27. David, I., Bork, D.: Towards a taxonomy of digital twin evo-
lution for technical sustainability. In: ACM/IEEE International
Conference on Model Driven Engineering Languages and Sys-
tems Companion. IEEE (2023)

28. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.:
Digital twin composition in smartmanufacturingviaMarkovdeci-
sion processes. Comput. Ind. 149, 103,916 (2023)

29. Deantoni, J., Muñoz, P., Gomes, C., Verbrugge, C., Mittal, R.,
Heinrich, R., Bellis, S., Vallecillo, A.: Quantifying and combining
uncertainty for improving the behavior of digital twin systems
(2024)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Digital twin and the asset administration shell

30. Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi,
M.,Wimmer,M.: Low-code development andmodel-driven engi-
neering: two sides of the same coin? Softw. Syst. Model. 21(2),
437–446 (2022)

31. Digital Twin consortium: capabilities periodic table (2022).
https://www.digitaltwinconsortium.org/initiatives/capabilities-
periodic-table/. Last accessed: 2024-03-12

32. Digital Twin consortium: platform stack architectural
framework: an introductory guide (2023). https://www.
digitaltwinconsortium.org/wp-content/uploads/sites/3/2023/
07/Platform-Stack-Architectural-Framework-2023-07-11.pdf.
Last accessed: 2024-03-01

33. Dong, R., She, C., Hardjawana, W., Li, Y., Vucetic, B.: Deep
learning for hybrid 5G services in mobile edge computing sys-
tems: learn from a Digital Twin. IEEE Trans. Wireless Commun.
18, 4692–4707 (2019)

34. Drath, R., Mosch, C., Hoppe, S., Faath, A., Barnstedt, E.,
Fiebiger, B., Schlögl, W.: Diskussionspapier–Interoperabilität
mit der Verwaltungsschale, OPC UA und AutomationML
Zielbild und Handlungsempfehlungen für industrielle Interoper-
abilität. Dokumentversion 5.3 (2023). https://opcfoundation.org/
wp-content/uploads/2023/04/Diskussionspapier-Zielbild-und-
Handlungsempfehlungen-fur-industrielle-Interoperabilitat-5.3-
protected.pdf. Last accessed: 2024-03-12

35. Ellwein, C., Neumann, R., Verl, A.: Software-defined manufac-
turing: data representation. Proc. CIRP 118, 360–365 (2023)

36. Eramo, R., Bordeleau, F., Combemale, B., van Den Brand, M.,
Wimmer, M.,Wortmann, A.: Conceptualizing digital twins. IEEE
Software (2021)

37. Evans,B.,Braun, S.,Ulmer, J.,Wollert, J.:AAS implementations–
current problems and solutions. In: 2022 20th International
Conference on Mechatronics - Mechatronika (ME) (2022)

38. Ferko, E., Bucaioni, A., Behnam, M.: Architecting digital twins.
IEEE Access 10, 50335–50350 (2022)

39. Frick, F., Ellwein, C., Lechler, A., Neubauer, M., Verl, A.:
Software-definedmanufacturing:Reference architecture. In: 2024
International SymposiumonPower Electronics, ElectricalDrives,
Automation and Motion (SPEEDAM), pp. 1289–1295 (2024)

40. Frysak, J., Kaar, C., Stary, C.: Benefits and pitfalls applying
RAMI4.0. In: 2018 IEEE Industrial Cyber-Physical Systems
(ICPS), pp. 32–37 (2018)

41. Fur, S., Ajdinović, S., Lechler, A., Verl, A.: Towards an imple-
mentation of simulation based digital twins in cyber-physical
production systems environments. In: 2023 IEEE 28th Inter-
national Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–4 (2023)

42. Fur, S., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J., Rumpe,
B., Wortmann, A.: Sustainable digital twin engineering for the
internet of production. In:Digital TwinDriven Intelligent Systems
and Emerging Metaverse, pp. 101–121. Springer (2023).

43. Grüner, S., Hoernicke, M., Stark, K., Schoch, N., Eskandani, N.,
Pretlove, J.: Towards asset administration shell-based continuous
engineering in process industries. At-Automatisierungstechnik
71(8), 689–708 (2023)

44. Hankel,M., Rexroth, B.: The reference architectural model indus-
trie 4.0 (rami 4.0). Zvei 2(2), 4–9 (2015)

45. IEC Central Secretary: Common data dictionary. Standard
IEC 61360-4, International Electrotechnical Commission (IEC),
Geneva, CH (2005). https://cdd.iec.ch/cdd/iec61360/iec61360.
nsf/TreeFrameset

46. Industrial Digital Twin Association: Details of the asset admin-
istration shell - part 2 (2021). https://www.plattform-i40.
de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_
Asset_Administration_Shell_Part2_V1.html. Last accessed:
2024-08-09

47. ISO/DIS: ISO/DIS 23247 automation systems and integration-
digital twin framework for manufacturing. Tech. rep., Interna-
tional Standardization Organization (ISO) (2020)

48. Jacoby, M., Volz, F., Weißenbacher, C., Müller, J.: FA 3 ST
Service–An open source implementation of the reactive asset
administration shell. In: 2022 IEEE27th International Conference
on Emerging Technologies and Factory Automation (ETFA), pp.
1–8. IEEE (2022)

49. Joordens, M., Jamshidi, M.: On the development of robot fish
swarms in virtual reality with digital twins. In: 13th Annual Con-
ference on System of Systems Engineering (SoSE) (2018)

50. Kannoth, S., Hermann, J., Damm,M., Rübel, P., Rusin, D., Jacobi,
M., Mittelsdorf, B., Kuhn, T., Antonino, P.O.: Enabling SMeS
to industry 4.0 using the BaSyx middleware: a case study. In:
Software Architecture: 15th European Conference, ECSA 2021,
Virtual Event, Sweden, September 13-17, 2021, Proceedings, pp.
277–294. Springer (2021)

51. Klingel, L., Heine, A., Acher, S., Dausend, N., Verl, A.:
Simulation-based predictive real-time collision avoidance for
automated production systems. In: 2023 IEEE 19th International
Conference on Automation Science and Engineering (CASE), pp.
1–6 (2023)

52. Knapp, G., Mukherjee, T., Zuback, J., Wei, H., Palmer, T., De,
A., DebRoy, T.: Building blocks for a digital twin of additive
manufacturing. Acta Mater. 135, 390–399 (2017)

53. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital
Twin in manufacturing: a categorical literature review and classi-
fication. Ifac-PapersOnline 51(11), 1016–1022 (2018)

54. Lauzeral, N., Borzacchiello, D., Kugler,M., George, D., Rémond,
Y., Hostettler, A., Chinesta, F.: A model order reduction approach
to create patient-specific mechanical models of human liver in
computational medicine applications. Comput. Methods Pro-
grams Biomed. 170, 95–106 (2019)

55. Lehner, D., Pfeiffer, J., Tinsel, E.F., Strljic, M.M., Sint, S., Vier-
hauser, M., Wortmann, A., Wimmer, M.: Digital twin platforms:
requirements, capabilities, and future prospects. IEEE Softw.
39(2), 53–61 (2022)

56. Lou, P., Liu, S., Hu, J., Li, R., Xiao, Z., Yan, J.: Intelligentmachine
tool based on edge-cloud collaboration. IEEE Access 8, 139,953-
139,965 (2020)

57. Lutters, E.: Pilot production environments driven by digital twins.
S. Afr. J. Ind. Eng. 29, 40–53 (2018)

58. Majumder, M., Wiesmayr, B., Zoitl, A.: Extending the OPC UA
companion specification for an IEC 61499-based control system.
In: 2023 IEEE 28th International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pp. 1–4 (2023)

59. Mandolla, C., Petruzzelli, A.M., Percoco, G., Urbinati, A.: Build-
ing a digital twin for additive manufacturing through the exploita-
tion of blockchain: a case analysis of the aircraft industry. Comput.
Ind. 109, 134–152 (2019)

60. Mediavilla, M.A., Lagnese, M., Pomp, A., Meisen, T.: Asset
administration shell-based engineering change management pro-
cess: challenges and ways forward. Proc. CIRP 120, 1010–1015
(2023)

61. Michael, J., Blankenbach, J., Derksen, J., Finklenburg, B.,
Fuentes, R., Gries, T., Hendiani, S., Herlé, S., Hesseler, S., Kimm,
M., Kirchhof, J.C., Rumpe, B., Schüttrumpf, H.,Walther, G.: Inte-
grating models of civil structures in digital twins: state-of-the-Art
and challenges. J. Infrastruct. Intell. Resil. 3(3), 100100 (2024)

62. Michael, J., Bork, D., Wimmer, M., Mayr, H.: Quo Vadis Mod-
eling? findings of a community survey, an Ad-hoc bibliometric
analysis, and expert interviews on data, process, and software
modeling. J. Softw. Syst. Model. (SoSyM) 23(1), 7–28 (2024)

63. Michael, J., David, I., Bork, D.: Digital Twin evolution for
sustainable smart ecosystems. In: International Conference on

123

https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/
https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/
https://www.digitaltwinconsortium.org/wp-content/uploads/sites/3/2023/07/Platform-Stack-Architectural-Framework-2023-07-11.pdf
https://www.digitaltwinconsortium.org/wp-content/uploads/sites/3/2023/07/Platform-Stack-Architectural-Framework-2023-07-11.pdf
https://www.digitaltwinconsortium.org/wp-content/uploads/sites/3/2023/07/Platform-Stack-Architectural-Framework-2023-07-11.pdf
https://opcfoundation.org/wp-content/uploads/2023/04/ Diskussionspapier-Zielbild-und-Handlungsempfehlungen- fur-industrielle-Interoperabilitat-5.3-protected.pdf
https://opcfoundation.org/wp-content/uploads/2023/04/ Diskussionspapier-Zielbild-und-Handlungsempfehlungen- fur-industrielle-Interoperabilitat-5.3-protected.pdf
https://opcfoundation.org/wp-content/uploads/2023/04/ Diskussionspapier-Zielbild-und-Handlungsempfehlungen- fur-industrielle-Interoperabilitat-5.3-protected.pdf
https://opcfoundation.org/wp-content/uploads/2023/04/ Diskussionspapier-Zielbild-und-Handlungsempfehlungen- fur-industrielle-Interoperabilitat-5.3-protected.pdf
https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset
https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html


J. Zhang et al.

Model Driven Engineering Languages and Systems Companion
(MODELS-C). ACM/IEEE (2024)

64. Michael, J., Nachmann, I., Netz, L., Rumpe, B., Stüber, S.: Gen-
erating Digital Twin cockpits for parameter management in the
engineering of wind turbines. In: Modellierung 2022, LNI, pp.
33–48. GI (2022)

65. Michael, J., Pfeiffer, J., Rumpe, B., Wortmann, A.: Integra-
tion challenges for digital twin systems-of-systems. In: 2022
IEEE/ACM 10th International Workshop on Software Engineer-
ing for Systems-of-Systems and Software Ecosystems (SESoS),
pp. 9–12. IEEE (2022).

66. Michael, J., Pfeiffer, J., Rumpe, B., Wortmann, A.: Integra-
tion challenges for Digital Twin systems-of-systems. In: 10th
IEEE/ACM International Workshop on Software Engineering for
Systems-of-Systems and Software Ecosystems, pp. 9–12. ACM
(2022)

67. Michael, J., Schwammberger, M., Wortmann, A.: Explaining
cyberphysical system behavior with Digital Twins. IEEE Softw.
41(1), 55–63 (2024)

68. Muñoz, P., Wimmer, M., Troya, J., Vallecillo, A.: Using trace
alignments for measuring the similarity between a physical and
its digital twin. In: Proceedings of the 25th International Con-
ference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS ’22, pp. 503–510. Associa-
tion for Computing Machinery, New York, NY, USA (2022)

69. Muñoz, P., Troya, J., Vallecillo, A.: Using UML and OCLmodels
to realize high-level digital twins. In: 2021 ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), pp. 212–220. IEEE (2021)

70. MuñozAriza, P., Troya-Castilla, J., Vallecillo-Moreno,A.J., et al.:
A conceptual architecture for building digital twins. In: STAF
Workshops (2023)

71. Neubauer, M., Steinle, L., Reiff, C., Ajdinovic, S., Klingel, L.,
Lechler, A., Verl, A.: Architecture for manufacturing-x: bringing
asset administration shell, eclipse dataspace connector and OPC
UA together. Manuf. Letter. 37, 1–6 (2023)

72. für Normung, D.D.I.: Reference architecture model industrie 4.0
(rami4. 0) (2016)

73. Oakes, B.J., Parsai, A., Meyers, B., David, I., Mierlo, S.V.,
Demeyer, S., Denil, J., Meulenaere, P.D., Vangheluwe, H.: A dig-
ital twin description framework and its mapping to asset admin-
istration shell. In: International Conference on Model-Driven
Engineering and Software Development, pp. 1–24. Springer
(2021)

74. Pargmann, H., Euhausen, D., Faber, R.: Intelligent big data
processing for wind farmmonitoring and analysis based on cloud-
technologies and digital twins: a quantitative approach. In: 2018
IEEE 3rd International Conference on Cloud Computing and Big
Data Analysis (ICCCBDA) (2018)

75. Park, K., Yang, J., Noh, S.D.: Vredi: Virtual representation for a
digital twin application in awork-center-level asset administration
shell. Journal of Intelligent Manufacturing (2021)

76. Park, K.T., Nam, Y.W., Lee, H.S., Im, S.J., Noh, S.D., Son, J.Y.,
Kim, H.: Design and implementation of a digital twin application
for a connectedmicro smart factory. Int. J. Comput. Integr.Manuf.
32, 596–614 (2019)

77. Pérez-Porras, D.,Muñoz, P., Troya, J., Vallecillo, A.:Key-value vs
graph-based data lakes for realizing digital twin systems (poster).
In: STAF Workshops (2022)

78. Pfeiffer, J., Lehner, D., Wortmann, A., Wimmer, M.: Modeling
capabilities of Digital Twin platforms–Old wine in new bottles?
J. Object Technol. 21(3), 1–14 (2022)

79. Plattform Industrie 4.0: Details of the Asset Administration
Shell (2019). https://www.plattform-i40.de/IP/Redaktion/EN/
Downloads/Publikation/Details_of_the_Asset_Administration_
Shell_Part1_V2.html. Last accessed: 2024-02-28

80. Plattform Industrie 4.0: Asset administration shell reading
guide (2022). https://www.plattform-i40.de/IP/Redaktion/DE/
Downloads/Publikation/AAS-ReadingGuide_202201.pdf?__
blob=publicationFile&v=1. Last accessed: 2024-03-12

81. Rahal, J.R., Schwarz,A., Sahelices, B.,Weis, R., Antón, S.D.: The
asset administration shell as enabler for predictive maintenance:
a review. J. Intell. Manuf. 8, 1–15 (2023)

82. Risling, M., Himmelstoss, H., Brandstetter, A., Shi, D., Bauern-
hansl, T.: Bridging the gap: a framework for structuring the asset
administration shell in digital twin implementation for industry
4.0. ESSN: 2701-6277 pp. 760–770 (2023)

83. Schroeder, G.N., Steinmetz, C., Pereira, C.E., Espindola, D.B.:
Digital twin data modeling with automationml and a communica-
tionmethodology for data exchange. IFAC-PapersOnLine 49(30),
12–17 (2016)

84. Schäfer, S., Schöttke, D., Kämpfe, T., Denkov, V., Zielstorff, A.:
Component test – test strategies with asset administration shells.
In: 2023 IEEE 32nd International Symposium on Industrial Elec-
tronics (ISIE), pp. 1–7 (2023)

85. SEBoK Editorial Board: Guide to the systems engineering body
of knowledge (sebok) (2024). https://sebokwiki.org/w/images/
sebokwiki-farm!w/d/db/Guide_to_the_Systems_Engineering_
Body_of_Knowledge_v2.10.pdf

86. Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C.,
LeMoigne, J., Wang, L.: Draft modeling, simulation, informa-
tion technology & processing roadmap. Technol. Area 11, 1–32
(2010)

87. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital
twin-driven product design, manufacturing and service with big
data. Int. J. Adv. Manuf. Technol. 94, 3563–3576 (2018)

88. Tao, F., Liu, W., Zhang, M., Hu, Tl., Qi, Q., Zhang, H., Sui, F.,
Wang, T., Xu, H., Huang, Z., et al.: Five-dimension digital twin
model and its ten applications.Comput. Integr.Manuf. Syst.25(1),
1–18 (2019)

89. The Institute of Electrical and Electronics Engineers: IEEE Stan-
dard Glossary of Software Engineering Terminology. IEEE Std
610(12–1990), pp. 1–84 (1990)

90. Ullah, A.S.: Modeling and simulation of complex manufacturing
phenomena using sensor signals from the perspective of Industry
4.0. Adv. Eng. Inform. 39, 1–13 (2019)

91. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik
(GMA): VDI-Statusreport Industrie 4.0 - Gegenstände, Entitäten,
Komponenten (2014)

92. Verein Deutscher Ingeneure, Verband der Elektotechnik Elek-
tronik Informationstechnik: Sprache für I4.0-Komponenten
(2020)

93. Verner, I., Cuperman, D., Fang, A., Reitman, M., Romm, T.,
Balikin, G.: Robot online learning through Digital Twin exper-
iments: a weightlifting project. In: Online Engineering & Internet
of Things: Proceedings of the 14th International Conference on
Remote Engineering and Virtual Instrumentation REV 2017, held
15-17 March 2017, Columbia University, New York, USA, pp.
307–314. Springer (2018)

94. Wagner, C., Grothoff, J., Epple, U., Drath, R., Malakuti, S.,
Grüner, S., Hoffmeister,M., Zimermann, P.: The role of the indus-
try 4.0 asset administration shell and the digital twin during the
life cycle of a plant. In: 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pp. 1–8
(2017)

95. Walker, M., Klingel, L., Oechsle, S., Neubauer, M., Lechler, A.,
Verl, A.: Safeguarded continuous deployment of control contain-
ers through real-time simulation. In: 2023 IEEE28th International
Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 1–8 (2023)

96. Wei, K., Sun, J., Liu, R.: A review of asset administration shell.
In: 2019 IEEE International Conference on Industrial Engineer-

123

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/AAS-ReadingGuide_202201.pdf?__blob=publicationFile&v=1
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/AAS-ReadingGuide_202201.pdf?__blob=publicationFile&v=1
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/AAS-ReadingGuide_202201.pdf?__blob=publicationFile&v=1
https://sebokwiki.org/w/images/sebokwiki-farm!w/d/db/Guide_to_the_Systems_Engineering_Body_of_Knowledge_v2.10.pdf
https://sebokwiki.org/w/images/sebokwiki-farm!w/d/db/Guide_to_the_Systems_Engineering_Body_of_Knowledge_v2.10.pdf
https://sebokwiki.org/w/images/sebokwiki-farm!w/d/db/Guide_to_the_Systems_Engineering_Body_of_Knowledge_v2.10.pdf


Digital twin and the asset administration shell

ing and Engineering Management (IEEM), pp. 1460–1465. IEEE
(2019)

97. Wenger, M., Zoitl, A., Müller, T.: Connecting PLCs with their
asset administration shell for automatic device configuration. In:
2018 IEEE 16th International Conference on Industrial Informat-
ics (INDIN), pp. 74–79. IEEE (2018)

98. Wiesmayr, B., Zoitl, A., Prenzel, L., Steinhorst, S.: Supporting
a model-driven development process for distributed control soft-
ware. In: 2022 IEEE 27th International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–8 (2022)

99. Yallic, F., Albayrak, Ö., Ünal, P.: Asset administration shell gener-
ation and usage for digital twins: a case study for non-destructive
testing. In: IN4PL, pp. 299–306 (2022)

100. Ye, X., Xu, W., Liu, J., Zhong, Y., Liu, Q., Zhou, Z., Song, W.S.,
Hong, S.H.: Implementing digital twin and asset administration
shell models for a simulated sorting production system. IFAC-
PapersOnLine 56(2), 11880–11887 (2023)

101. Yusupbekov, N., Abdurasulov, F., Adilov, F., Ivanyan, A.: Appli-
cation of cloud technologies for optimization of complex pro-
cesses of industrial enterprises. In: International Conference on
Theory and Applications of Fuzzy Systems and Soft Computing
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Jingxi Zhang is a Research assis-
tant currently prusuing Ph.D. at
Institut for Machine Tools and Man-
ufacturing Units (ISW) of the Uni-
versity of Stuttgart in the field of
digital twins. He has received B.Sc.
and M.Sc. in Software Engineer-
ing at the University of Stuttgart
in 2021 and 2023 respectively. His
research interests are systems engi-
neering, digital twins and artificial
intelligence.

Carsten Ellwein born 1989, studied
Software Engineering and Manage-
ment at Heilbronn University of
Applied Sciences. He joined the
Institute for Control Engineering
of Machine Tools and Manufactur-
ing Units (ISW) at the University
of Stuttgart in 2016 and became
the head of the Software and Engi-
neering Methods group in 2018.

Malte Heithoff completed his Mas-
ter’s degree in Computer Science
at RWTH Aachen University and
has been pursuing his Ph.D. at
the Chair of Software Engineer-
ing under the supervision of Prof.
Dr. Bernhard Rumpe since 2021.
His research focuses on the model-
driven engineering of information
systems and digital twins, partic-
ularly in the production domain.
For more information, please visit
https://www.se-rwth.de/staff/Malte.
Heithoff/.

Judith Michael is PostDoc and
team leader at the Software Engi-
neering Chair of RWTH Aachen
University, Germany, and the spea
ker of the modeling community
(QFAM) within the German Infor-
matics Society (GI). Her research
focuses on model-driven software
engineering, the engineering of dig-
ital twins, and software language
engineering. Her Ph.D. thesis at
Alpen-Adria-Universität Klagenfurt
was about cognitive modeling for
assistive systems and her habilita-
tion at RWTH Aachen University

was about model-driven engineering of digital twins with informative
and assistive services. For more information, please visit http://judith-
michael.at

Andreas Wortmann is a full pro-
fessor at the Institute for Machine
Tools and Manufacturing Units
(ISW) of the University of Stuttgart.
His main research interests are mod
el-driven software and systems engi-
neering, software language engi-
neering, and digital twins. On these
topics, he co-authored over 150
peer-reviewed international publi-
cations. Moreover, he serves on the
editorial boards of SoSyM and JoT
in the program committees of vari-
ous international conferences. Find
out more at http://www.wortmann.

ac.

123

https://www.se-rwth.de/staff/Malte.Heithoff/
https://www.se-rwth.de/staff/Malte.Heithoff/
http://judith-michael.at
http://judith-michael.at
http://www.wortmann.ac
http://www.wortmann.ac

	Digital twin and the asset administration shell
	An Analysis of the Three Types of AASs and their Feasibility for Digital Twin Engineering
	Abstract
	1 Introduction
	2 Background
	2.1 Digital twins
	2.2 Asset administration shell

	3 Motivating example
	4 Common requirements on digital twins
	4.1 Popular academic definitions
	4.2 Popular Industrial Definitions
	4.3 Common requirements on digital twins

	5 Engineering digital twins with the AAS
	5.1 Type 1 asset administration shell
	5.2 Type 2 asset administration shell
	5.3 Type 3 asset administration shell
	5.4 Common implementations of AAS

	6 Challenges and opportunities
	6.1 Efficient engineering of digital twins through their reuse
	6.2 Low-code configuration for AAS
	6.3 Derivation of AAS Digital Twins from engineering models
	6.4 Communication between AASs
	6.5 Non-functional requirements and the AAS
	6.6 Evolvement of the actual system and the AAS

	7 Related work
	8 Conclusion
	Acknowledgements
	References



