

Educating Future Software Engineers for Industrial Robotics

Berit Schürrle1, Philipp Grimmeisen1, Jérôme Pfeiffer2, Thilo Zimmermann3, Andrey Morozov1, Andreas Wortmann2

1Institute of Industrial Automation and Software Engineering (IAS), University of Stuttgart, Germany
2Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW), University of Stuttgart, Germany
3InnovationCampus Future Mobility, Institut für Strahlwerkzeuge (IFSW), University of Stuttgart, Germany

{first}.{last}@{ias, isw, ifsw}.uni-stuttgart.de

Abstract

The industrial robotics landscape is drastically changing in recent years. New concepts, such as Industry 4.0, Industry 5.0,

Software-Defined Manufacturing, IoT, and rapid development of AI require the changes in the education of the future

engineers, especially IT specialist responsible for the software part of industrial robots. This paper presents two connected

robotics education factories aimed at teaching key concepts in robotics, artificial intelligence, human-robot interaction,

Internet of Things (IoT), digital twins, model-driven software engineering, and risk analysis. The factories serve as an

educational platform for students and professionals alike, enabling them to learn practical experience in designing,

developing, and testing robotics software engineering methods in a safe and controlled environment. The factories are

equipped with multiple sensors, actuators, and controllers that facilitate the integration of different technologies, enabling

learners to work on scenarios that simulate real-world industrial processes.

This paper introduces (i) seven educational goals that are crucial for modern and future robotic software engineers, (ii)

architectures of the model factories and their components, and (iii) the underlying pedagogical approach, highlighting the

importance of interdisciplinary collaboration. The paper concludes by discussing the potential of the factories to foster

innovation and drive economic growth by equipping learners with the skills and knowledge needed to succeed in the

digital economy.

1 Introduction

Modern production and manufacturing involve the

integration of advanced software technologies such as

Artificial Intelligence (AI), the Internet of Things (IoT),

and cloud computing to optimize and streamline

production processes. This helps to increase efficiency,

reduce waste, and improve quality control. However, it

also poses challenges such as the need for specialized skills

and the potential for job loss due to automation. The

implementation of the new industrial concepts is therefore

a significant development for businesses and societies,

requiring a collaborative effort from various domains, such

as mechanical engineering, electrical engineering,

robotics, software engineering, human-robot-interaction,

artificial intelligence, and many more. [1]

Robotics, in modern industry, provides the capability to

automate production processes and enable the creation of

new production models, such as flexible and scalable

production lines that can adapt to changing demands.

Software is a main driver of innovation for robotics

because it provides the intelligence, decision-making

capability, and integration that are necessary for advanced

robotics production. The individual robots rely on ever-

improving software algorithms. Software also provides the

capability for real-time monitoring, prediction, and

optimization of entire robotic systems, enabling them to

continuously improve and adapt to changing production

demands.

Contribution: The industry requires comprehensive

education in robotics software engineering and related

domains, such as IoT, digital twins, HRI, model-driven

development, and many more [2]. To address this demand,

we are setting up a distributed robotics software

engineering education laboratory at the IAS and ISW of

Stuttgart University. In this paper, we illustrate their

rationale, configuration, and teaching concepts. With this,

we aim to support improving the education of future

robotics software engineers.

2 Seven Educational Goals

We identified seven challenging topics (educational goals)

of networked factories and robotics, that are crucial for

robotics software engineers. This section outlines their

relevance and present the state-of-the-art technologies used

in these fields.

1. Robotics Software: Robotics provides the means to

automate repetitive tasks within the factory environment,

for instance, moving goods between conveyor belts,

punching iron, assembling parts, or drilling holes in a

certain kind of material [3]. Thus, software engineers need

to learn about sensor fusion, object detection, trajectory

planning, and advanced robot control. Today, Autonomous

Guided Vehicles (AGVs) [4] transport goods between

factory lines autonomously. Therefore, aspects such as

mapping and navigation within the factory, autonomously

fetch, carry, and offload items, and even collaboration with

other robots become relevant. For these aspects various

technologies are crucial to learn. One example is

Simultaneous Localization and Mapping (SLAM) [5] helps

the robot to detect how the environment looks like

(mapping) and where it is actually located (localization).

To learn such technologies the engineers should know

Robot Operating System (ROS and ROS21) – de facto

standard software development environment for robotic

applications.

2. Artificial Intelligence: Due to the advancement of

Artificial Intelligence (AI) and Deep Learning methods,

the area of application is expanding rapidly throughout the

entire industrial sector. AI and machine learning

algorithms are gaining more and more relevance in

industrial automation and are critical for the development

1 https://www.ros.org/
2 https://www.tensorflow.org/

of advanced robotics systems that can observe their

environments, make decisions, and learn from experience.

[6]. As the methods and algorithms of AI applications are

quite versatile, they can be applied to various aspects of an

automated system, ranging from the camera-based obstacle

detection of an autonomous vehicle to predictive

maintenance of the machinery. AI is actively used in wide

range of industrial robotics tasks from object detection to

robot motion control. However, the development of AI

software is very different from the development of

traditional software. It is important for future engineers to

understand the approaches to AI software development,

including the data set preparation, selection of a suitable AI

architecture (MLP, CNN, LSTM, Transformers, Auto-

encoders, GAN etc.), as well as the strengths and

limitations of the neural networks. In addition to these

theoretical concepts, engineers should also learn the AI

development tools, such as TensorFlow2 and Keras 3.

3. Human-Robot Interaction: In order to ensure safe and

efficient collaboration, robotics software engineers need to

carefully consider the Human-Robot Interactions (HRI). In

the industrial production, there are several types of

interaction possible between humans and robots. A

common one is the teleoperation, where machinery or

robots are remotely controlled by personnel, sometimes

using VR. A more safety-critical one is the direct

collaboration between humans and machines. In order to

assist workers in their respective tasks, robots are often

used to physically support and interact with humans. More

advanced systems, however, go even further and offer a

broader scope of interactions between robots and workers.

Newer technologies include for example the use of

Augmented Reality (AR), speech interaction through voice

commands, gesture control or a visual interaction, where

robots use cameras to detect and interpret the human

behavior. As these technologies are gradually advancing

and more tasks become a shared responsibility between

human and robots, it is crucial for future robotic software

engineers to understand the HRI concepts, technologies,

and their limitations.

4. Internet-of-Things (IoT) [7] is a critical component of

Industry 4.0 [8]. IoT describes the concept of connecting

distributed, decentralized “things” to the internet or an

edge network. IoT becomes more and more relevant to

Industry since factory floors are often crowded with

different PLCs and embedded computers of robotic

manipulators, mobile robots, and other machines. To be

controlled and monitored effectively all these components

have to be connected via wired or wireless network. IoT

aims to provide interoperability through standards that are

critical to the seamless exchange of data between systems.

Future robotics software engineers should be familiar with

standards and protocols for connecting and integrating

robotics systems with IoT devices, for instance,

AutomationML [9], OPC-UA [10], or MQTT [11]. In our

3 https://keras.io/about/

Figure 1 The general concept of the connected factories.

The components of the production share their data via IoT-

technologies, allowing for the creation of a digital twin.

This digital replica helps to gain insights and knowledge

about the production process and suggest corrective

actions when needed.

Digital Twin

Physical Factory

https://www.ros.org/
https://www.tensorflow.org/
https://keras.io/about/

model factories we aim to teach OPC-UA and MQTT as

examples for such protocols.

5. Digital Twins: Through technologies like IoT, modern

production facilities have access to large amounts of data.

To turn this into valuable insights about the system(s), it

has to be analyzed and processed. This can be done through

the creation of a so-called digital twin. A digital twin is a

software system that uses data, models, and services to

purposefully represent and manipulate its (cyber-physical)

counterpart [12]. As the digital twin aims to be an accurate

representation of its physical twin for a specific purpose, it

can be used to simulate its behavior, analyze its

performance, and optimize its operation. As depicted in

Figure 1, the digital twin is a useful mean to turn process

data into knowledge about the factory and its parts, perform

predictive diagnostics experiment with alternative futures

via simulation and much more, thus, making it an essential

part of modern manufacturing [13]. Future robotic

software engineers need to be familiar with the concept and

implementation of digital twins and, data synchronization,

and understand how to retrieve valuable insights through

the analysis of digital twins.

6. Model-driven Software Engineering: In Model-

Driven Engineering [14], models are the central

development artifacts. They bridge the gap between

domain-specific problem space and the technical solution

space of software, enabling domain experts to contribute

(parts of) software solutions without needing to become

software experts themselves. An important technology to

this end are domain-specific languages (DSLs), which use

concepts and terminology of a specific domain instead of

general-purpose programming language concepts. Such

DSLs include KUKA’s KRL [13], the various languages of

the Robotics DSL Zoo [13], and, recently, the application

of low-code development in manufacturing [15], which

relies on DSLs at the heart of every low-code development

platform. It is necessary to educate robotic software

engineers in these methods and extend them even to digital

twins of robots that can also be defined in a model-driven

way [16].

7. Risk analysis: Last but not least, systems are becoming

exponentially more complex, with increased demands for

interoperability and interconnectedness, integration of new

technologies such as AI and re-configurable production

systems. As a result of this complexity, the evaluation of

potential failure scenarios becomes extremely challenging.

This is especially true for safety-critical components and

systems. In literature [17], risk is defined as a tuple,

consisting of a failure scenario, the likelihood, and the

resulting consequences. With increasingly complex

systems, the search space for scenarios is increasing.

Experience with older systems may prove non-transferable

and therefore reliance on experience alone may prove

inadequate. Established methodologies for likelihood and

consequence estimation such as Event Tree Analysis

(ETA), [18] Fault Tree Analysis (FTA) [19], or Bayesian

Networks [20], may not be sufficient. Especially, when you

consider rapidly reconfigurable systems by software or

plug-and-play hardware modularization. In these cases, the

risk may need to be automatically evaluated on models or

digital twins prior to reconfiguration. The demand for

engineers is likely to increase, both in terms of quality and

quantity. It is essential that aspiring engineers are educated

on established risk methodologies and made aware of the

challenges mentioned above and the state-of-the-art

solutions.

Figure 2 Schematical representation of connected model factories and their components: (1) Production lines, (2)

Manufacturing Execution System, (3) Automated Guided Vehicles, (4) Maintenance Dashboard, (5) Augmented Reality,

(6) Cloud Connection, (7) Digital Twin.

3 Architectures of the Mini-

Factories

To ensure the state-of-the-art education of future robotic

software engineers, the Institute for industrial automation

and software engineering (IAS) and the Institute for

Control Engineering of Machine Tools and Manufacturing

Units (ISW), initiated a joined laboratory. The goal of this

laboratory is to equip students with the important methods

and skills addressing the beforementioned technologies

and strengthen the understanding by some practical

experience. For this reason, we created two miniature

factories, imitating a real production environment (see

Figure 2).

3.1 Production Lines

Each of our factories (see Figure 3) consist of up to 30

Fischertechnik4 stations distributed among four production

lines. These Fischertechnik stations are equipped with

various sensors, such as light barriers or color detectors, as

well as actuators like encoder motors and vacuum suction

cups. In general, the components can be grouped in four

categories: (i) Conveyor belts for the transportation

between the stations, (ii) different grippers for the picking

and placing of objects, (iii) processing station with various

functionalities, such as drilling or sorting and lastly (iv)

warehouses to store and retrieve products. For better

comparability and to allow replanning in case of an

unforeseen incident (fault tolerance), we designed some of

the factory lines redundant. In order to process the input

data from the sensors and trigger the respective actions of

the different actuators, each factory is controlled by a

programmable logic controller (PLC), in our case the

RevolutionPi5. These RevolutionPis are connected to a

central manufacturing execution system (MES) that plans

and initiates the entire production process, monitors the

stock and incoming orders from the web shop and manages

the automated transport robots.

4 https://www.fischertechnik.de/en/products/simulating/training-

models

3.2 Manufacturing Execution System

The Manufacturing Execution System (MES) of our model

factories can receive orders from a web shop, identify

which production line is capable of adding specific product

features, and plan a production process, i.e. define the steps

to produce a certain product, instruct and monitor the

factory stations and the AGVs, and manage the inventory

of production goods.

We explicitly designed the MES to have multiple process

layers, to improve maintainability and portability to other

products with the help of two descriptions. The product

description contains its features, the production steps, and

a mapping to required skills, that have to be provided by a

factory station to manufacture a certain feature. For

instance, during the manufacturing step, a punching skill is

required to put lid on a cup. The description of the

capabilities of our factory stations then provides, that for

instance, punching machines can punch, grippers can move

and manipulate objects, etc.. Thus, from this, the MES can

produce a plan to manufacture a product with the given

stations of the model factory. This plan is then translated

into commands that are sent to the PLCs of the production

lines and the AGVs via MQTT topics The lines and AGVs

answer with status messages about the current state of

execution. Through this, the layers of our MES are loosely

coupled, i.e., the command layer that interacts with the

factory lines is independent from the product that is

produced on it, and we can change the product according

to our use case. For instance, for one exercise the factory

could produce cereals or yoghurt, in another exercise, the

factory could produce an automotive. Both use cases only

differ in their product description. For the communication

with the digital twin, our MES provides a REST interface.

5 https://revolutionpi.com/

Figure 3 Photos of the Fischertechnik model factories assembled at the ISW (left) and the IAS (right).

https://www.fischertechnik.de/en/products/simulating/training-models
https://www.fischertechnik.de/en/products/simulating/training-models
https://revolutionpi.com/

3.3 Automated Guided Vehicles

Automated Guided Vehicles (AGVs) are programmable

mobile robot vehicles, that are used for the autonomous

transportation of products and their parts. These vehicles

with electric motors use computer algorithms to navigate

across factories to transport items safely. We use small and

configurable Turtlebot3 Waffle Pi mobile robots, shown in

figure 5. They are capable of Simultaneous Localization

and Mapping (SLAM), navigation and manipulation of

objects. To create a map of the surroundings, a 360-degree

lidar sensor on top of the Turtlebot is used. Submaps are

built through lidar scanning, as the robot moves through

the area, adding to the overall global map. The robot’s

location is estimated using the Adaptive Monte Carlo

Localization (AMCL) method, see Cartographer SLAM

[5]. Additionally, the lidar sensors, wheel encoders, and

IMU sensors of the are used to navigate the robot. Adapted

A* algorithm is used for route planning. In order to pick

and place the transported items, we equipped the TurtleBot

with an OpenManipulator arm. Through the integration of

a camera and the implementation of object detection

algorithms for computer vision, the TurtleBot can identify

the requested object. The distance between the object and

the robot can then be determined by the lidar sensor.

Combining these sensor information’s will allow us to

issue instructions to the manipulator arm to pick or place

the object from the station. ROS provides several packages

for the control of the aforementioned tasks as an open and

widely used framework.

3.4 Maintenance Dashboard

The model factories have the maintenance dashboards.

Equipped with a Samsung tablets, students are able to

monitor and analyze the production process. The aim of the

dashboard is to provide the user a visual representation of

the most important information. Figure 4 shows the

dashboard interface. In the top-left corner, the

performances of the individual components of the factories

are displayed. These values allow to implement

maintenance measures if a component performance is low.

Next to it, the user can see the current amount of raw

materials, stored in the warehouses. In addition to the

current stock, it also displays the critical amount, which is

an indicator to reorder certain raw materials before the

production has to be paused. The pie chart in the top-right

corner illustrates the amount of finished products in stock.

In combination with the two bar charts representing the

number of incoming and produced orders, the user has a

clear understanding of the current warehouse stock.

The bottom part of the dashboard shows the state of the

factories on schematic layouts. The user can see the current

status of each component. Machines, that are running are

highlighted, while the ones, that are idle are shown as

passive. In addition, it displays disturbances and failures of

the components, so the user can directly see where the

problem is located. By clicking on an individual

component, important process parameters of the respective

component are shown.

3.5 Augmented Reality

Augmented Reality (AR) serves as an overlay for model

factories. The goal is to create a tool that can be used to

control and monitor the factory's operations, as well as

display general information and identify critical areas in

addition to the dashboard.

The second generation Hololens are used. It features a

variety of functions, including speech recognition and

gesture control, which allow users to operate the headset

without physical contact. Additionally, it is equipped with

a powerful processor and high-resolution camera, enabling

precise capturing of the environment. By leveraging AR

technology, the application allow users to view and interact

with the factory in real-time. The AR app enable users to

visualize the various components of the factory, including

the assembly lines, conveyor belts, and robotic grippers.

Moreover, the AR offers a range of features designed to

Figure 4 Graphical user interface of the maintenance

dashboard

Figure 5 Mobile transport robot (TurtleBot3) and it’s

technical components

simplify the factory's operation, including the ability to

control individual components, monitor performance, and

identify bottlenecks and other critical issues. For the

realization of the software, we use Unity, a popular 3D

engine that has become increasingly prevalent in the

development of AR applications.

3.6 Cloud Connection

Our model factories share the data and information across

both institutes via the cloud. Each factory streams the data

to its MES, which in turn enriches the process data with

further information about the entire system and transfers

this to the digital twin in the cloud as shown in Figure 2.

Through this process, the digital twin (further described in

the following chapter) becomes a virtual replica of physical

production. The MES can also retrieve information from

the digital twins in the cloud. Therfore, each MES also has

knowledge about the state of the other institute’s factory.

Through this shared knowledge, we support the

collaboration and exchange between both productions.

This can be especially relevant when, for example, one

production faces problems and components stop working.

In this case, the second factory can support and integrate

the order in its own production planning to compensate the

downtime. Another scenario is the delayed delivery of raw

materials. If one factory runs out of raw materials for the

production, the second one either produce the required

goods or send raw materials from their stock.

3.7 Digital Twin

The top-level entity of our factory architecture that

oversees the MES is the digital twin. Our architecture for

digital twins (see Figure 6) is developed using MontiArc

[21], a component & connector architecture description

language [22]. It allows to model architectures as a

hierarchy of interconnected components. The digital twin

comprises a Data Processor component connected to a Data

Lake to aggregate current Cyber-Physical Production

System (CPPS) state data. The Evaluator monitors the state

of the CPPS and verifies that the CPPS is operating as

intended. In the event that it detects any anomalies, it

creates goals that specify the intended state of the CPPS.

The Reasoner finds a solution to the current situation and

passes this solution to the Executor. The executor translates

the provided solution into concrete CPPS settings and

executes them on the CPPS. To specify the domain

knowledge and the behavior of the digital twin, domain

experts can use several modelling languages:

– UML/P class diagrams [23] for defining the domain

model with its elements and their relationships.

– A language for Case-Based Reasoning (CBR) [24],

which is a problem-solving paradigm. A case consists

of a description of the situation as conditions

properties of the domain model, its solution in terms

of actions to be performed, and the situation the

solution intends to produce.

– A communication specification language which

enables defining communication of data types from a

specified endpoint and with a defined protocol.

Currently, the architecture supports communication

via OPC-UA and MQTT.

4 Teaching concept

In Chapter 2 we have introduced seven goals for the

education of future robotic software engineers. This

chapter illustrates how we use our model factories (Chapter

3) to fulfil these goals and prepare our students for the real-

world application of the important technologies.

4.1 Robotic Software

Students will work with model factories to investigate the

capabilities of the production line and AGV software,

cloud software that implements DT functions, as well as

dashboard widgets. The AGV software is implemented in

ROS and C++. Students will learn how to leverage ROS to

realize mobile robotics tasks like guidance, navigation, and

control, and how to use the manipulator to transport items.

The production lines software is written in Python, which

is an easy to learn, high-level language. The AGV cameras

images will be used for teaching image recognition

algorithms, for instance, for QR-code reading. Gazebo and

RViz will be used for simulation and testing the students’

software before the deployment to the actual robots.

4.2 Artificial Intelligence

To familiarize the students with the topic of artificial

intelligence, we plan to take different approaches. The first

aspect we want teach is the AI used for the AGV

navigation. This not only includes smart path planning, but

also the processing of visual information for object

detection tasks in order to allow accurate pick and placing

with the manipulator. The second aspect we plan to cover

with our model factory is deep learning-based anomaly

detection and AI-powered risk analysis, see Section 4.7.

4.3 Human-Robot Interaction

As this model factory covers many aspects of a networked

production, students can learn about various interfaces for

the interaction between robots and humans. One of them is

Figure 6 Digital Twin Architecture

the augmented reality described in Section 3.4. In addition,

the dashboard also allows for a direct interaction and

control of the factory. The most safety-critical interaction,

however, happens between the self-driving transport robots

and their environment. Here we will cover the algorithms

and methods for collision avoidance between robots and

humans.

4.4 Internet-of-Things (IoT)

For teaching the protocols relevant for IoT, we plan a two-

step exercise for OPC-UA where the students first create

an OPC-UA server on one of the factory’s RevolutionPis

to represent the data available. In the second step, the

students replace the existing connection of the MES to the

RevPis with an OPC-UA client that can communicates

with the server created in the first step. The second exercise

is creating a MQTT-Publisher/Subscribe network between

the factory islands/production lines to enable decentral

communication independent of the MES.

4.5 Digital Twins

Our digital twin architecture is configurable by a multitude

of modeling techniques that are easily comprehensible in

short time for students. For instance, UML class diagram

could be leveraged for modeling the data received from the

MES. For the scope of a student lab or smaller project, the

MontiArc architecture description language enables simple

exchange of single components in the architecture.

Students could exchange the current implementation of the

planner component for case-based reasoning with another

planning algorithm, e.g., AI-based, pddl [25]. By this, the

students will learn how to create and work with digital

twins and get to know their benefits in the industrial

environment.

4.6 Model-Driven Software Engineering

The implementation of the MES and loosely coupled MES

layers is already designed for model-driven engineering.

Students will introduce a new product, write a product

description model, and its manufacturing process via UML

Activity Diagrams or BPM [26]. The software

implementation of the MES performing the manufacturing

of this product then will be automatically generated. In the

future, low-code approaches [27] will be used to improve

the digital twin with new features.

4.7 Risk Analysis

For the teaching of risk modelling and analysis, the first

step for the students will be to identify the existing risks

and to create and draft a risk model of the factory using

event trees, fault trees, Markov chains, and possibly

Bayesian networks. Once this is done, this model is then

used to evaluate potential risks within the operation. Based

on these results, the students’ task will be to mitigate these

risks and develop a more resilient production system using

error detection and mitigation mechanisms and redundant

components [28]. The redundancy of the factory is

especially important, as it allows students to test and

compare different mitigation actions and approaches with

each other and compare the results.

5 Outlook

Industrial robotics is changing through the advancement

and integration of new concepts like Software Defined

Manufacturing, Internet of Things and Artificial

Intelligence. Since these developments mainly address the

software side of industrial systems, it is essential to prepare

the new generation of software engineers for these changes

and make them familiar with the seven technology fields

presented in this paper. For this, two connected mini

factories were developed. They provide the learning basis

for our students and combine the theoretical knowledge

with some hands-on experience.

Besides the integration of the factories in lectures such as

Model-based Software Engineering and Risk Analysis, we

continuously develop and improve the curriculum further.

One aspect we want to integrate in the future is the

collaboration with industry partners, to ensure that the

curriculum is relevant and tailored to the latest industry

needs. In addition, the extension of this learning concept to

universities around the world and hence generating a

network of connected factories covering various aspects of

modern industry would be a great asset for all participants

and the education of their students.

6 Literature

[1] Wortmann, A. et al. (2019) “Modeling languages in

Industry 4.0: an extended systematic mapping study,”

Software and Systems Modeling. Springer Science

and Business Media LLC.

[2] Butting, A. et al. (2018) “Teaching model-based

systems engineering for industry 4.0,” Proceedings of

the 21st ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems:

Companion Proceedings. MODELS ’18: ACM/IEEE

21th International Conference on Model Driven

Engineering Languages and Systems, ACM.

[3] Goel, R., & Gupta, P. (2020). Robotics and industry

4.0. A Roadmap to Industry 4.0: Smart Production,

Sharp Business and Sustainable Development, 157-

169.

[4] Ullrich, G. (2015). Automated guided vehicle

systems. Springer-Verlag Berlin Heidelberg. doi, 10,

978-3.

[5] Stachniss, C., Leonard, J. J., & Thrun, S. (2016).

Simultaneous localization and mapping. Springer

Handbook of Robotics, 1153-1176.

[6] Ian Goodfellow, Yoshua Bengio, & Aaron Courville

(2016). Deep Learning. MIT Press.

[7] Li, S., Xu, L. D., & Zhao, S. (2015). The internet of

things: a survey. Information systems frontiers, 17,

243-259.

[8] Sisinni, E., Saifullah, A., Han, S., Jennehag, U., &

Gidlund, M. (2018). Industrial internet of things:

Challenges, opportunities, and directions. IEEE

transactions on industrial informatics, 14(11), 4724-

4734.

[9] Drath, R., Luder, A., Peschke, J., & Hundigital twin,

L. (2008, September). AutomationML-the glue for

seamless automation engineering. In 2008 IEEE

International Conference on Emerging Technologies

and Factory Automation (pp. 616-623). IEEE.

[10] Leitner, S. H., & Mahnke, W. (2006). OPC UA–

service-oriented architecture for industrial

applications. ABB Corporate Research Center, 48(61-

66), 22.

[11] Soni, D., & Makwana, A. (2017, April). A survey on

mqtt: a protocol of internet of things (iot). In

International conference on telecommunication,

power analysis and computing techniques

(ICTPACT-2017) (Vol. 20, pp. 173-177).

[12] Kritzinger, W. et al. (2018) “Digital Twin in

manufacturing: A categorical literature review and

classification,” IFAC-PapersOnLine. Elsevier BV.

[13] Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D.,

Wachtmeister, L., Wimmer, M., & Wortmann, A.

(2022). A cross-domain systematic mapping study on

software engineering for Digital Twins. Journal of

Systems and Software, 111361.

[14] Beydeda, S., & Book, M. (2005). Model-driven

software development (Vol. 15). V. Gruhn (Ed.).

Heidelberg: Springer.
[15] Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R.

(2019). Low-code as enabler of digital transformation

in manufacturing industry. Applied Sciences, 10(1),

12.

[16] Bibow, P., Dalibor, M., Hopmann, C., Mainz, B.,

Rumpe, B., Schmalzing, D., ... & Wortmann, A.

(2020, June). Model-driven development of a digital

twin for injection molding. In Advanced Information

Systems Engineering: 32nd International Conference,

CAiSE 2020, Grenoble, France, June 8–12, 2020,

Proceedings (pp. 85-100). Cham: Springer

International Publishing.

[17] Kaplan, S. and Garrick, B.J. (1981) “On The

Quantitative Definition of Risk,” Risk Analysis.

Wiley

[18] Clemens, P. (2002) Event tree analysis. JE Jacobs

Sverdrup 13.

[19] Ruijters, E. and Stoelinga, M. (2015) “Fault tree

analysis: A survey of the state-of-the-art in modeling,

analysis and tools,” Computer Science Review.

Elsevier BV.

[20] Pearl, J. (2011). Bayesian networks. UCLA:

Department of Statistics, UCLA.

[21] Butting, A., Haber, A., Hermerschmidigital twin, L.,

Kautz, O., Rumpe, B., & Wortmann, A. (2017).

Systematic language extension mechanisms for the

MontiArc architecture description language. In

Modelling Foundations and Applications: 13th

European Conference, ECMFA 2017, Held as Part of

STAF 2017, Marburg, Germany, July 19-20, 2017,

Proceedings 13 (pp. 53-70). Springer International

Publishing.

[22] Malavolta, I., Lago, P., Muccini, H., Pelliccione, P.,

& Tang, A. (2012). What industry needs from

architectural languages: A survey. IEEE Transactions

on Software Engineering, 39(6), 869-891

[23] B. Rumpe, Modeling with UML: Language,

Concepts, Methods. Springer International, July 2016.

[Online]. Available: http://www.se-rwth.de/mbse/

(1) Analog Devices: Analog Design Seminar,

Munich: Analog Devices GmbH, 1989

[24] Bolender, T., Bürvenich, G., Dalibor, M., Rumpe, B.,

& Wortmann, A. (2021, May). Self-adaptive

manufacturing with digital twins. In 2021 International

Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS) (pp. 156-166). IEEE.

[25] Aeronautiques, C., Howe, A., Knoblock, C.,

McDermott, I. D., Ram, A., Veloso, M., ... & Sun, Y.

(1998). Pddl| the planning domain definition

language. Technical Report, Tech. Rep.

[26] Becker, J., Rosemann, M., & Von Uthmann, C.

(2002). Guidelines of business process modeling. In

Business Process Management: Models, Techniques,

and Empirical Studies (pp. 30-49). Berlin,

Heidelberg: Springer Berlin Heidelberg.

[27] Dalibor, M., Heithoff, M., Michael, J., Netz, L.,

Pfeiffer, J., Rumpe, B., ... & Wortmann, A. (2022).

Generating customized low-code development

platforms for digital twins. Journal of Computer

Languages, 70, 101117.

[28] K. Ding, A. Morozov and K. Janschek, "Classification

of Hierarchical Fault-Tolerant Design Patterns," 2017

IEEE 15th Intl Conf on Dependable, Autonomic and

Secure Computing, 2017, pp. 612-619.

http://www.se-rwth.de/mbse/

