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Abstract  

The industrial robotics landscape is drastically changing in recent years. New concepts, such as Industry 4.0, Industry 5.0, 

Software-Defined Manufacturing, IoT, and rapid development of AI require the changes in the education of the future 

engineers, especially IT specialist responsible for the software part of industrial robots. This paper presents two connected 

robotics education factories aimed at teaching key concepts in robotics, artificial intelligence, human-robot interaction, 

Internet of Things (IoT), digital twins, model-driven software engineering, and risk analysis. The factories serve as an 

educational platform for students and professionals alike, enabling them to learn practical experience in designing, 

developing, and testing robotics software engineering methods in a safe and controlled environment. The factories are 

equipped with multiple sensors, actuators, and controllers that facilitate the integration of different technologies, enabling 

learners to work on scenarios that simulate real-world industrial processes.  

This paper introduces (i) seven educational goals that are crucial for modern and future robotic software engineers, (ii) 

architectures of the model factories and their components, and (iii) the underlying pedagogical approach, highlighting the 

importance of interdisciplinary collaboration. The paper concludes by discussing the potential of the factories to foster 

innovation and drive economic growth by equipping learners with the skills and knowledge needed to succeed in the 

digital economy. 

 

1 Introduction 

Modern production and manufacturing involve the 

integration of advanced software technologies such as 

Artificial Intelligence (AI), the Internet of Things (IoT), 

and cloud computing to optimize and streamline 

production processes. This helps to increase efficiency, 

reduce waste, and improve quality control. However, it 

also poses challenges such as the need for specialized skills 

and the potential for job loss due to automation. The 

implementation of the new industrial concepts is therefore 

a significant development for businesses and societies, 

requiring a collaborative effort from various domains, such 

as mechanical engineering, electrical engineering, 

robotics, software engineering, human-robot-interaction, 

artificial intelligence, and many more. [1] 

Robotics, in modern industry, provides the capability to 

automate production processes and enable the creation of 

new production models, such as flexible and scalable 

production lines that can adapt to changing demands. 

Software is a main driver of innovation for robotics 

because it provides the intelligence, decision-making 

capability, and integration that are necessary for advanced 

robotics production. The individual robots rely on ever-

improving software algorithms. Software also provides the 

capability for real-time monitoring, prediction, and 

optimization of entire robotic systems, enabling them to 

continuously improve and adapt to changing production 

demands.  

Contribution: The industry requires comprehensive 

education in robotics software engineering and related 

domains, such as IoT, digital twins, HRI, model-driven 

development, and many more [2]. To address this demand, 

we are setting up a distributed robotics software 

engineering education laboratory at the IAS and ISW of 

Stuttgart University. In this paper, we illustrate their 

rationale, configuration, and teaching concepts. With this, 

we aim to support improving the education of future 

robotics software engineers.  

2 Seven Educational Goals 

We identified seven challenging topics (educational goals) 

of networked factories and robotics, that are crucial for 

robotics software engineers.  This section outlines their 

relevance and present the state-of-the-art technologies used 

in these fields. 

1. Robotics Software: Robotics provides the means to 

automate repetitive tasks within the factory environment, 

for instance, moving goods between conveyor belts, 

punching iron, assembling parts, or drilling holes in a 

certain kind of material [3]. Thus, software engineers need 

to learn about sensor fusion, object detection, trajectory 

planning, and advanced robot control. Today, Autonomous 

Guided Vehicles (AGVs) [4] transport goods between 

factory lines autonomously. Therefore, aspects such as 

mapping and navigation within the factory, autonomously 

fetch, carry, and offload items, and even collaboration with 



 

other robots become relevant. For these aspects various 

technologies are crucial to learn. One example is 

Simultaneous Localization and Mapping (SLAM) [5] helps 

the robot to detect how the environment looks like 

(mapping) and where it is actually located (localization). 

To learn such technologies the engineers should know 

Robot Operating System (ROS and ROS21) – de facto 

standard software development environment for robotic 

applications. 

2. Artificial Intelligence: Due to the advancement of 

Artificial Intelligence (AI) and Deep Learning methods, 

the area of application is expanding rapidly throughout the 

entire industrial sector. AI and machine learning 

algorithms are gaining more and more relevance in 

industrial automation and are critical for the development 

 
1 https://www.ros.org/ 
2 https://www.tensorflow.org/  

of advanced robotics systems that can observe their 

environments, make decisions, and learn from experience. 

[6]. As the methods and algorithms of AI applications are 

quite versatile, they can be applied to various aspects of an 

automated system, ranging from the camera-based obstacle 

detection of an autonomous vehicle to predictive 

maintenance of the machinery. AI is actively used in wide 

range of industrial robotics tasks from object detection to 

robot motion control. However, the development of AI 

software is very different from the development of 

traditional software. It is important for future engineers to 

understand the approaches to AI software development, 

including the data set preparation, selection of a suitable AI 

architecture (MLP, CNN, LSTM, Transformers, Auto-

encoders, GAN etc.), as well as the strengths and 

limitations of the neural networks. In addition to these 

theoretical concepts, engineers should also learn the AI 

development tools, such as TensorFlow2 and Keras 3. 

3. Human-Robot Interaction: In order to ensure safe and 

efficient collaboration, robotics software engineers need to 

carefully consider the Human-Robot Interactions (HRI). In 

the industrial production, there are several types of 

interaction possible between humans and robots. A 

common one is the teleoperation, where machinery or 

robots are remotely controlled by personnel, sometimes 

using VR. A more safety-critical one is the direct 

collaboration between humans and machines. In order to 

assist workers in their respective tasks, robots are often 

used to physically support and interact with humans. More 

advanced systems, however, go even further and offer a 

broader scope of interactions between robots and workers. 

Newer technologies include for example the use of 

Augmented Reality (AR), speech interaction through voice 

commands, gesture control or a visual interaction, where 

robots use cameras to detect and interpret the human 

behavior. As these technologies are gradually advancing 

and more tasks become a shared responsibility between 

human and robots, it is crucial for future robotic software 

engineers to understand the HRI concepts, technologies, 

and their limitations.  

4. Internet-of-Things (IoT) [7] is a critical component of 

Industry 4.0 [8]. IoT describes the concept of connecting 

distributed, decentralized “things” to the internet or an 

edge network. IoT becomes more and more relevant to 

Industry since factory floors are often crowded with 

different PLCs and embedded computers of robotic 

manipulators, mobile robots, and other machines. To be 

controlled and monitored effectively all these components 

have to be connected via wired or wireless network. IoT 

aims to provide interoperability through standards that are 

critical to the seamless exchange of data between systems. 

Future robotics software engineers should be familiar with 

standards and protocols for connecting and integrating 

robotics systems with IoT devices, for instance, 

AutomationML [9], OPC-UA [10], or MQTT [11]. In our 

3 https://keras.io/about/  

Figure 1 The general concept of the connected factories. 

The components of the production share their data via IoT-

technologies, allowing for the creation of a digital twin. 

This digital replica helps to gain insights and knowledge 

about the production process and suggest corrective 

actions when needed. 

Digital Twin 

Physical Factory 

https://www.ros.org/
https://www.tensorflow.org/
https://keras.io/about/


 

model factories we aim to teach OPC-UA and MQTT as 

examples for such protocols. 

5.  Digital Twins: Through technologies like IoT, modern 

production facilities have access to large amounts of data. 

To turn this into valuable insights about the system(s), it 

has to be analyzed and processed. This can be done through 

the creation of a so-called digital twin. A digital twin is a 

software system that uses data, models, and services to 

purposefully represent and manipulate its (cyber-physical) 

counterpart [12]. As the digital twin aims to be an accurate 

representation of its physical twin for a specific purpose, it 

can be used to simulate its behavior, analyze its 

performance, and optimize its operation. As depicted in 

Figure 1, the digital twin is a useful mean to turn process 

data into knowledge about the factory and its parts, perform 

predictive diagnostics experiment with alternative futures 

via simulation and much more, thus, making it an essential 

part of modern manufacturing [13]. Future robotic 

software engineers need to be familiar with the concept and 

implementation of digital twins and, data synchronization, 

and understand how to retrieve valuable insights through 

the analysis of digital twins.   

6. Model-driven Software Engineering: In Model-

Driven Engineering [14], models are the central 

development artifacts. They bridge the gap between 

domain-specific problem space and the technical solution 

space of software, enabling domain experts to contribute 

(parts of) software solutions without needing to become 

software experts themselves. An important technology to 

this end are domain-specific languages (DSLs), which use 

concepts and terminology of a specific domain instead of 

general-purpose programming language concepts. Such 

DSLs include KUKA’s KRL [13], the various languages of 

the Robotics DSL Zoo [13], and, recently, the application 

of low-code development in manufacturing [15], which 

relies on DSLs at the heart of every low-code development 

platform. It is necessary to educate robotic software 

engineers in these methods and extend them even to digital 

twins of robots that can also be defined in a model-driven 

way [16]. 

7. Risk analysis: Last but not least, systems are becoming 

exponentially more complex, with increased demands for 

interoperability and interconnectedness, integration of new 

technologies such as AI and re-configurable production 

systems. As a result of this complexity, the evaluation of 

potential failure scenarios becomes extremely challenging. 

This is especially true for safety-critical components and 

systems. In literature [17], risk is defined as a tuple, 

consisting of a failure scenario, the likelihood, and the 

resulting consequences. With increasingly complex 

systems, the search space for scenarios is increasing. 

Experience with older systems may prove non-transferable 

and therefore reliance on experience alone may prove 

inadequate. Established methodologies for likelihood and 

consequence estimation such as Event Tree Analysis 

(ETA), [18] Fault Tree Analysis (FTA) [19], or Bayesian 

Networks [20], may not be sufficient. Especially, when you 

consider rapidly reconfigurable systems by software or 

plug-and-play hardware modularization. In these cases, the 

risk may need to be automatically evaluated on models or 

digital twins prior to reconfiguration. The demand for 

engineers is likely to increase, both in terms of quality and 

quantity. It is essential that aspiring engineers are educated 

on established risk methodologies and made aware of the 

challenges mentioned above and the state-of-the-art 

solutions. 

Figure 2 Schematical representation of connected model factories and their components: (1) Production lines, (2) 

Manufacturing Execution System, (3) Automated Guided Vehicles, (4) Maintenance Dashboard, (5) Augmented Reality, 

(6) Cloud Connection, (7) Digital Twin. 



 

3 Architectures of the Mini-

Factories 

To ensure the state-of-the-art education of future robotic 

software engineers, the Institute for industrial automation 

and software engineering (IAS) and the Institute for 

Control Engineering of Machine Tools and Manufacturing 

Units (ISW), initiated a joined laboratory. The goal of this 

laboratory is to equip students with the important methods 

and skills addressing the beforementioned technologies 

and strengthen the understanding by some practical 

experience. For this reason, we created two miniature 

factories, imitating a real production environment (see 

Figure 2). 

3.1 Production Lines 

Each of our factories (see Figure 3) consist of up to 30 

Fischertechnik4 stations distributed among four production 

lines. These Fischertechnik stations are equipped with 

various sensors, such as light barriers or color detectors, as 

well as actuators like encoder motors and vacuum suction 

cups. In general, the components can be grouped in four 

categories: (i) Conveyor belts for the transportation 

between the stations, (ii) different grippers for the picking 

and placing of objects, (iii) processing station with various 

functionalities, such as drilling or sorting and lastly (iv) 

warehouses to store and retrieve products. For better 

comparability and to allow replanning in case of an 

unforeseen incident (fault tolerance), we designed some of 

the factory lines redundant. In order to process the input 

data from the sensors and trigger the respective actions of 

the different actuators, each factory is controlled by a 

programmable logic controller (PLC), in our case the 

RevolutionPi5. These RevolutionPis are connected to a 

central manufacturing execution system (MES) that plans 

and initiates the entire production process, monitors the 

stock and incoming orders from the web shop and manages 

the automated transport robots. 

 
4 https://www.fischertechnik.de/en/products/simulating/training-

models 

 

3.2 Manufacturing Execution System 

The Manufacturing Execution System (MES) of our model 

factories can receive orders from a web shop, identify 

which production line is capable of adding specific product 

features, and plan a production process, i.e. define the steps 

to produce a certain product, instruct and monitor the 

factory stations and the AGVs, and manage the inventory 

of production goods. 

We explicitly designed the MES to have multiple process 

layers, to improve maintainability and portability to other 

products with the help of two descriptions. The product 

description contains its features, the production steps, and 

a mapping to required skills, that have to be provided by a 

factory station to manufacture a certain feature.  For 

instance, during the manufacturing step, a punching skill is 

required to put lid on a cup. The description of the 

capabilities of our factory stations then provides, that for 

instance, punching machines can punch, grippers can move 

and manipulate objects, etc.. Thus, from this, the MES can 

produce a plan to manufacture a product with the given 

stations of the model factory. This plan is then translated 

into commands that are sent to the PLCs of the production 

lines and the AGVs via MQTT topics The lines and AGVs 

answer with status messages about the current state of 

execution. Through this, the layers of our MES are loosely 

coupled, i.e., the command layer that interacts with the 

factory lines is independent from the product that is 

produced on it, and we can change the product according 

to our use case.  For instance, for one exercise the factory 

could produce cereals or yoghurt, in another exercise, the 

factory could produce an automotive. Both use cases only 

differ in their product description. For the communication 

with the digital twin, our MES provides a REST interface.  

5 https://revolutionpi.com/ 

 

Figure 3 Photos of the Fischertechnik model factories assembled at the ISW (left) and the IAS (right). 

https://www.fischertechnik.de/en/products/simulating/training-models
https://www.fischertechnik.de/en/products/simulating/training-models
https://revolutionpi.com/


 

3.3 Automated Guided Vehicles 

Automated Guided Vehicles (AGVs) are programmable 

mobile robot vehicles, that are used for the autonomous 

transportation of products and their parts. These vehicles 

with electric motors use computer algorithms to navigate 

across factories to transport items safely. We use small and 

configurable Turtlebot3 Waffle Pi mobile robots, shown in 

figure 5. They are capable of Simultaneous Localization 

and Mapping (SLAM), navigation and manipulation of 

objects. To create a map of the surroundings, a 360-degree 

lidar sensor on top of the Turtlebot is used. Submaps are 

built through lidar scanning, as the robot moves through 

the area, adding to the overall global map. The robot’s 

location is estimated using the Adaptive Monte Carlo 

Localization (AMCL) method, see Cartographer SLAM 

[5]. Additionally, the lidar sensors, wheel encoders, and 

IMU sensors of the are used to navigate the robot. Adapted 

A* algorithm is used  for route planning. In order to pick 

and place the transported items, we equipped the TurtleBot 

with an OpenManipulator arm. Through the integration of 

a camera and the implementation of object detection 

algorithms for computer vision, the TurtleBot can identify 

the requested object. The distance between the object and 

the robot can then be determined by the lidar sensor. 

Combining these sensor information’s will allow us to 

issue instructions to the manipulator arm to pick or place 

the object from the station. ROS provides several packages 

for the control of the aforementioned tasks as an open and 

widely used framework. 

3.4 Maintenance Dashboard 

The model factories have the maintenance dashboards. 

Equipped with a Samsung tablets, students are able to 

monitor and analyze the production process. The aim of the 

dashboard is to provide the user a visual representation of 

the most important information. Figure 4 shows the 

dashboard interface. In the top-left corner, the 

performances of the individual components of the factories 

are displayed. These values allow to implement 

maintenance measures if  a component performance is low. 

Next to it, the user can see the current amount of raw 

materials, stored in the warehouses. In addition to the 

current stock, it also displays the critical amount, which is 

an indicator to reorder certain raw materials before the 

production has to be paused. The pie chart in the top-right 

corner illustrates the amount of finished products in stock. 

In combination with the two bar charts representing the 

number of incoming and produced orders, the user has a 

clear understanding of the current warehouse stock.  

The bottom part of the dashboard shows the state of the 

factories on schematic layouts. The user can see the current 

status of each component. Machines, that are running are 

highlighted, while the ones, that are idle are shown as 

passive. In addition, it displays disturbances and failures of 

the components, so the user can directly see where the 

problem is located. By clicking on an individual 

component, important process parameters of the respective 

component are shown. 

3.5 Augmented Reality 

Augmented Reality (AR) serves as an overlay for model 

factories. The goal is to create a tool that can be used to 

control and monitor the factory's operations, as well as 

display general information and identify critical areas in 

addition to the dashboard.  

The second generation Hololens are used. It features a 

variety of functions, including speech recognition and 

gesture control, which allow users to operate the headset 

without physical contact. Additionally, it is equipped with 

a powerful processor and high-resolution camera, enabling 

precise capturing of the environment. By leveraging AR 

technology, the application allow users to view and interact 

with the factory in real-time. The AR app enable users to 

visualize the various components of the factory, including 

the assembly lines, conveyor belts, and robotic grippers. 

Moreover, the AR offers a range of features designed to 

Figure 4 Graphical user interface of the maintenance 

dashboard  

Figure 5 Mobile transport robot (TurtleBot3) and it’s 

technical components 



 

simplify the factory's operation, including the ability to 

control individual components, monitor performance, and 

identify bottlenecks and other critical issues. For the 

realization of the software, we use Unity, a popular 3D 

engine that has become increasingly prevalent in the 

development of AR applications.  

3.6 Cloud Connection 

Our model factories share the data and information across 

both institutes via the cloud. Each factory streams the data 

to its MES, which in turn enriches the process data with 

further information about the entire system and transfers 

this to the digital twin in the cloud as shown in Figure 2. 

Through this process, the digital twin (further described in 

the following chapter) becomes a virtual replica of physical 

production. The MES can also retrieve information from 

the digital twins in the cloud. Therfore, each MES also has 

knowledge about the state of the other institute’s factory. 

Through this shared knowledge, we support the 

collaboration and exchange between both productions. 

This can be especially relevant when, for example, one 

production faces problems and components stop working. 

In this case, the second factory can support and integrate 

the order in its own production planning to compensate the 

downtime. Another scenario is the delayed delivery of raw 

materials. If one factory runs out of raw materials for the 

production, the second one either produce the required 

goods or send raw materials from their stock.  

3.7 Digital Twin 

The top-level entity of our factory architecture that 

oversees the MES is the digital twin. Our architecture for 

digital twins (see Figure 6) is developed using MontiArc 

[21], a component & connector architecture description 

language [22]. It allows to model architectures as a 

hierarchy of interconnected components. The digital twin 

comprises a Data Processor component connected to a Data 

Lake to aggregate current Cyber-Physical Production 

System (CPPS) state data. The Evaluator monitors the state 

of the CPPS and verifies that the CPPS is operating as 

intended. In the event that it detects any anomalies, it 

creates goals that specify the intended state of the CPPS. 

The Reasoner finds a solution to the current situation and 

passes this solution to the Executor. The executor translates 

the provided solution into concrete CPPS settings and 

executes them on the CPPS. To specify the domain 

knowledge and the behavior of the digital twin, domain 

experts can use several modelling languages: 

– UML/P class diagrams [23] for defining the domain 

model with its elements and their relationships. 

– A language for Case-Based Reasoning (CBR) [24], 

which is a problem-solving paradigm. A case consists 

of a description of the situation as conditions 

properties of the domain model, its solution in terms 

of actions to be performed, and the situation the 

solution intends to produce.  

– A communication specification language which 

enables defining communication of data types from a 

specified endpoint and with a defined protocol. 

Currently, the architecture supports communication 

via OPC-UA and MQTT. 

4 Teaching concept 

In Chapter 2 we have introduced seven goals for the 

education of future robotic software engineers. This 

chapter illustrates how we use our model factories (Chapter 

3) to fulfil these goals and prepare our students for the real-

world application of the important technologies. 

4.1 Robotic Software 

Students will work with model factories to investigate the 

capabilities of the production line and AGV software, 

cloud software that implements DT functions, as well as 

dashboard widgets. The AGV software is implemented in 

ROS and C++. Students will learn how to leverage ROS to 

realize mobile robotics tasks like guidance, navigation, and 

control, and how to use the manipulator to transport items. 

The production lines software is written in Python, which 

is an easy to learn, high-level language. The AGV cameras 

images will be used for teaching image recognition 

algorithms, for instance, for QR-code reading. Gazebo and 

RViz will be used for simulation and testing the students’ 

software before the deployment to the actual robots.  

4.2 Artificial Intelligence 

To familiarize the students with the topic of artificial 

intelligence, we plan to take different approaches. The first 

aspect we want teach is the AI used for the AGV 

navigation. This not only includes smart path planning, but 

also the processing of visual information for object 

detection tasks in order to allow accurate pick and placing 

with the manipulator. The second aspect we plan to cover 

with our model factory is deep learning-based anomaly 

detection and AI-powered risk analysis, see Section 4.7.  

4.3 Human-Robot Interaction 

As this model factory covers many aspects of a networked 

production, students can learn about various interfaces for 

the interaction between robots and humans. One of them is 

                         

                      

    

                 

         

               

         

          

          

     

               

    

  

                

Figure 6 Digital Twin Architecture  



 

the augmented reality described in Section 3.4. In addition, 

the dashboard also allows for a direct interaction and 

control of the factory. The most safety-critical interaction, 

however, happens between the self-driving transport robots 

and their environment. Here we will cover the algorithms 

and methods for collision avoidance between robots and 

humans.   

4.4 Internet-of-Things (IoT)  

For teaching the protocols relevant for IoT, we plan a two-

step exercise for OPC-UA where the students first create 

an OPC-UA server on one of the factory’s RevolutionPis 

to represent the data available. In the second step, the 

students replace the existing connection of the MES to the 

RevPis with an OPC-UA client that can communicates 

with the server created in the first step. The second exercise 

is creating a MQTT-Publisher/Subscribe network between 

the factory islands/production lines to enable decentral 

communication independent of the MES.  

4.5 Digital Twins 

Our digital twin architecture is configurable by a multitude 

of modeling techniques that are easily comprehensible in 

short time for students. For instance, UML class diagram 

could be leveraged for modeling the data received from the 

MES. For the scope of a student lab or smaller project, the 

MontiArc architecture description language enables simple 

exchange of single components in the architecture. 

Students could exchange the current implementation of the 

planner component for case-based reasoning with another 

planning algorithm, e.g., AI-based, pddl [25]. By this, the 

students will learn how to create and work with digital 

twins and get to know their benefits in the industrial 

environment. 

4.6 Model-Driven Software Engineering 

The implementation of the MES and loosely coupled MES 

layers is already designed for model-driven engineering. 

Students will introduce a new product, write a product 

description model, and its manufacturing process via UML 

Activity Diagrams or BPM [26]. The software 

implementation of the MES performing the manufacturing 

of this product then will be automatically generated. In the 

future, low-code approaches [27] will be used to improve 

the digital twin with new features. 

4.7 Risk Analysis  

For the teaching of risk modelling and analysis, the first 

step for the students will be to identify the existing risks 

and to create and draft a risk model of the factory using 

event trees, fault trees, Markov chains, and possibly 

Bayesian networks. Once this is done, this model is then 

used to evaluate potential risks within the operation. Based 

on these results, the students’ task will be to mitigate these 

risks and develop a more resilient production system using 

error detection and mitigation mechanisms and redundant 

components [28]. The redundancy of the factory is 

especially important, as it allows students to test and 

compare different mitigation actions and approaches with 

each other and compare the results. 

5 Outlook 

Industrial robotics is changing through the advancement 

and integration of new concepts like Software Defined 

Manufacturing, Internet of Things and Artificial 

Intelligence. Since these developments mainly address the 

software side of industrial systems, it is essential to prepare 

the new generation of software engineers for these changes 

and make them familiar with the seven technology fields 

presented in this paper. For this, two connected mini 

factories were developed. They provide the learning basis 

for our students and combine the theoretical knowledge 

with some hands-on experience.  

Besides the integration of the factories in lectures such as 

Model-based Software Engineering and Risk Analysis, we 

continuously develop and improve the curriculum further. 

One aspect we want to integrate in the future is the 

collaboration with industry partners, to ensure that the 

curriculum is relevant and tailored to the latest industry 

needs. In addition, the extension of this learning concept to 

universities around the world and hence generating a 

network of connected factories covering various aspects of 

modern industry would be a great asset for all participants 

and the education of their students. 
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