Executing Robot Task Models in
Dynamic Environments

Kai Adam, Arvid Butting, Oliver Kautz, Bernhard Rumpe, Andreas Wortmann
Software Engineering, RWTH Aachen University
www.se-rwth.de

Abstract—Deploying successful robotics applications requires
tremendous effort due to the need for contributions of experts
from various domains. We present the iserveU family of exe-
cutable DSLs that separate the concerns of domain experts and
robotics experts and leverage model-transformation at system
run-time to enable the robotic platform to flexibly fulfill tasks in
a changing real-world environment. Current research in DSLs
for robotics applications focuses on abstraction in the solution
domain, whereas our DSLs support the domain expert in declar-
atively describing properties of the domain and loosely coupled
tasks. To enable flexible task execution based on the domain
expert’s declarative models, these are translated into components
of a reference architecture prior to deployment and into planning
domain definition language (PDDL) problems at system run-
time. Resulting problems are translated into executable plans
using the Metric-FF solver and re-translated into iserveU models
that ultimately are executed against a loosely coupled robotics
middleware. Leveraging model transformation at run-time en-
ables the flexibility necessary for robotics applications deployed
to dynamic environments where design-time assumptions and
run-time reality diverge easily.

Index Terms—Model-Driven Development; Domain-Specific
Languages; Planning; Software Architectures; Service Robotics

1. MOTIVATION

Service robotics is one of the most challenging domains:
successful deployment of even simple applications requires
participation of experts from various domains including nav-
igation, perception, software engineering, and the application
domain. Dynamic environments are a major challenge to
service robotics success: robots deployed to such environment
must either feature deterministic solutions for many, if not
all, possible challenges or yield flexible solution strategies
to solve service tasks in the face of unforeseen challenges.
To achieve this, robotic experts usually employ planning
techniques borrowed from knowledge representation. These
techniques, such as Golog [[1], are tailored towards knowledge
representation experts and purely virtual planning only, which
raises two challenges: (1) Enabling domain experts to represent
the knowledge required to support run-time problem solving;
(2) Realizing the actions of the resulting plan in the real world.

We conceived the iserveU family of domain-specific lan-
guages (DSLs) that separate the concerns of domain experts
and robotics experts [2]]. These DSLs enable domain experts
to specify tasks, goals, and domain causalities in DSLs specif-
ically tailored to describing service robotics applications. To
this effect, they feature robot entity models that are grounded
in robotics middlewares (such as ROS [3]]) by respective

experts. The iserveU framework transforms entity models into
component implementations of its reference architecture [4]]
and leverages transforming service robotics tasks into planning
problems at system run-time to enable the service robot to
flexibly fulfill tasks in a changing environment. Based on
previous work ([2], [4]) this paper presents
« the execution of iserveU task and goals models by lever-
aging their run-time transformation into problems of the
planning domain definition language (PDDL),
« solving these problems with the Metric-FF planner, and
« transforming the resulting plans into sequences of robot
actions that ultimately are executed with a loosely cou-
pled robotics middleware in the real world.

In the following, describes preliminaries and

presents an example of the iserveU DSLs in action. Af-
terwards, introduces the reference architecture that
enables model execution and presents the language
transformations. highlights related work and
discusses our approach. concludes.

II. PRELIMINARIES

This section recapitulates quintessential concepts of the
iserveU DSLs presented in [2] and introduces PDDL as well
as the Metric-FF planner.

A. The iserveU DSLs

The iserveU DSLs are a family of four textual DSLs that en-
able describing platform-independent, reusable robotic tasks.
To this effect, we separate the concerns of the domain expert,
who knows the domain’s types, causalities, and concerns of
the robot platform and its environment (denoted as world) [2].
The latter describe the robot’s services as tasks that comprise
sequences of reusable goals, i.e., conditions over the properties
of robot and world that must hold at some point in time.

define capabilities as actions and properties (— properties of the domain model

«entityp _J | uses «class diagram» uses «entity»
TransportRobot LogisticsDomain RoomsWorld ‘
T T
requires uses requires
«goal» has «task» has «goal»
‘] LoadedAt DeliveredTo UnloadedAt ‘
Boolean conditions over en tity properties sequences of goals

Figure 1. Models of the four iserveU DSLs: CDs, entities, goals, and tasks.

[Fig. T]illustrates the relations of the four iserveU DSLs by
example: UML/P [3] class diagram (CD) models describe the


www.se-rwth.de

platform-independent concepts of the logistics domain. Those
classes are accessible in models representing entities, tasks,
and goals of a robotics application and can be manipulated by
in-class specified methods. Entity models describe properties
and actions of actors (robot, world) that can manipulate the
environment and operate in the context of a shared domain.
Entity properties yield parameters and return values of types
defined in the domain model (plus Java basics). Actions
declared in the entity model specify the actor’s capabilities
in terms of preconditions and postconditions over the entity
properties or domain model concepts. They resemble actions
of STRIPS [6], which enable planners to reason over action
executability and their effects. Goal models describe situations
as parametrizable Boolean conditions over domain types and
entity properties. Task models are sequences of goals that must
hold in the predefined order. They can be parametrized and
pass arguments to their goals.

The DSLs and their MontiArcAutomaton [7] reference
architecture, have been deployed to and evaluated in the
Katharinenhospital in Stuttgart, Germany [2], [4].

B. The Planning Domain Definition Language and Metric-FF

PDDL [8] is a widely used artificial intelligence planning
language. It distinguishes domain and problem models. A
domain model expresses the properties of a domain, i.e., all
relevant objects, predicates, and actions. An action consists
of parameters, a precondition over the parameters, and an
effect. The precondition may reference the action’s parameters
and describes when it is executable with respect to a current
domain state. Its effect describes the domain changes that
occur on action execution. A precondition can be interpreted as
an arbitrary function-free first order predicate over the action’s
parameters. An effect is a list of changes the action imposes on
its execution. Effects may contain universal quantification and
conditional expressions. As those are simply lists of actions, a
universal quantification can be interpreted as a for-each loop.
A conditional expression is a simple if-then-else expression.
A PDDL problem describes an initial domain state in terms
of initially satisfied predicates, i.e., existing objects and the
properties they satisfy, and a goal describing the desired world
state that is to be achieved. Goals are arbitrary function-free
first order predicates also.

Solving PDDL Problems requires an efficient planner. For
our implementation, we choose Metric-FF [9], a domain
independent and competitive planning system for PDDL. From
a black-box perspective, Metric-FF takes a PDDL domain and
a PDDL problem as input and outputs a plan, i.e., a list of
actions. Starting from the domain state described by the PDDL
problem, executing the actions in order leads to satisfaction of
the goal described by the PDDL problem.

1II. EXAMPLE

Consider describing robot delivery tasks. Decoupling these
from the specific environments they can be executed in and
from the platforms they can be executed with, requires proper
abstractions. With the iserveU languages, the domain model

is abstracted to a CD holding information of the domain’s
concepts and their relations. To deliver items between rooms,
this can be manifested as the CD depicted in

LogisticsDomain cD

WayPoint <] Room in Item
adjacent [T « String name String name

Figure 2. Domain model characterizing items in connected rooms.

This domain model describes the world (i.e., the environ-
ment), consisting of connected waypoints out of which some
are rooms that store items. It does not disclose who knows
about this or can provide instances to reason about. For this,
the iserveU languages distinguish actions and properties of
robot entities and those defined by the world entities. Worlds
provide information about everything required by the robot to
fulfill tasks. Consequently, in our example, the world knows
where items are and which rooms are adjacent. We model this
as the entity model depicted in The entity model is

Entity

01| domain LogisticsDomain;

02 | world RoomsWorld {

03| property Boolean itemLoc(Item item, Room room);

04| property Boolean adjacent(Waypoint wl, Waypoint w2);
05| /* Additional properties */

06|}

Figure 3. World entity providing information about rooms and items.

valid in the context of the aforementioned domain model (1. 1)
and begins with the keyword world (to distinguish it from
robot entity models) followed by its unique name (I. 2) and a
body of properties (ll. 3-5). The properties describe relations
over the instances characterized in the domain model: here
they describe whether an item is in a specific room (l. 3) and
whether two waypoints are adjacent (1. 4). Modeling these
relations independent of their technical realization (which is
bound later during design time [4]) enables reusing these
concepts in different environments and with different robots
with little effort. Similarly, the robot entity depicted in

Entity

01 | domain LogisticsDomain;

02 | world RoomsWorld rw;

03| robot TransportRobot {

04| property Waypoint robotLoc();

05| property Boolean hasLoaded(Item item);

06| action move(Waypoint from, Waypoint to) {

07 pre: robotLoc() == from &% rw.adjacent(from, to);
08 post: robotLoc() == to;

09| }

10| action pickUp(Item item, Room room) {

11 pre: robotLoc() == room &% rw.itemLoc(item, room);

12 post: hasLoaded(item) && !rw.itemLoc(item, room);

14| /* Additional properties and actions */

Figure 4. Robot entity model specifying its properties and capabilities.

is valid in the context of a domain and world (1l. 1-2) only. It
characterizes properties (11. 4-5) and actions (1l. 6-14) the robot
entity is capable of, independent of their technical realization.



Robots realizing this entity must be able to identify, which
waypoint they are at (1. 4) and which item they have loaded
(1. 5). How, for instance, localization is realized is irrelevant.
Actions feature unique (in context of the containing entity)
names and parameters over which they specify preconditions
and postconditions. Preconditions describe when executing
the action is possible, postconditions describe the effect of
executing the action. For instance, picking up an item in
a specific room (ll. 10-13) requires that the robot and the
item are in that room (1. 11). Here, itemLoc references
the properties specified in the RoomsWorld world entity.
On successful action execution, the item is not in that room
anymore, but loaded onto the robot (1. 12). These causalities
are independent of the specific domain (whether the item
is moved around in a factory or hospital is irrelevant) and
independent of the employed platforms.

Tasks in the iserveU context are sequences of goals the robot
must fulfill given what is specified in the world and entity
models. These goals are Boolean conditions over properties
specified in world and robot entities. The goal LoadedAt,
as depicted in for instance, is considered fulfilled
if the related TransportRobot instance (I. 1) confirms
being in the specified room and holding the specified item
(1. 3). Instead of imperatively describing a sequence of actions

\
Goal

01| robot TransportRobot rob;

02 | goal LoadedAt(Room room, Item item) {

03 (rob.robotLoc() == room) && (rob.hasLoaded(item))
04|}

Figure 5. Goal requiring the robot being in a room while holding an item.

that should lead to fulfilling goals at design time, specifying
the participating entities and their capabilities declaratively
enables finding solutions using a planner at system run time
where potentially unforeseen challenges can arise. This yields
greater flexibility and more robust robotics applications.

IV. REFERENCE ARCHITECTURE

The approach relies on a centralized software architecture,
which is deployed to a system that is capable of communicat-
ing with the robot and the user interface. The software archi-
tecture is modeled as MontiArcAutomaton C&C architecture
as depicted in[Fig. 6] The component Controller organizes
the orchestration of the overall process of task execution, as
described in [4]. If a task entering the architecture is executed,
the Controller starts by dividing it into an ordered list of
goals that the robot has to fulfill one after another. It selects
the next goal and sends it to the Planner component, which
either calculates a plan to achieve the goal or indicates that
no plan exists. The plan may depend on the current status
of each element of the world and the current status of the
robot. Therefore, the Planner component can query the
StateProvider component to obtain current states of robot
and world. A valid plan to achieve a goal comprises an ordered
list of actions. The Controller selects the next action to be
executed and sends it to the ActionExecutor component.

manages task execution

Executor

N \ .
refrieves state of the environment

Figure 6. Overview of the iserveU reference architecture.

The execution of actions is influenced by the status of robot
and/or world, which is queried from the StateProvider
component. If the execution of an action is finished, it can be
either successful or not. On success, the controller executes the
next action, otherwise, it triggers the Planner component
to calculate an alternative plan. The implementation of the
Controller component is independent of the concrete
models and is therefore part of the run-time system. The
StateProvider component requires all available properties
of robot and world and is thus partially generated from the
properties defined within entity models. The implementation
of the ActionExecutor is generated from actions of entity
models. It delegates the actual execution of actions to an
employed middleware API. Therefore, a Java interface for
each robot and world is generated, and the handwritten imple-
mentation of these interfaces calls the employed middleware
API. The implementation of the Planner component itself
is independent of the concrete types of goals it processes
and actions it produces. Instead, it is part of the run-time
system and invokes a PDDL tool with arguments generated

as described in Sec. V1
V. To PDDL AND BACK AGAIN

Developers use the iserveU DSLs to describe domain knowl-
edge with UML/P CDs, tasks consisting of sequences of
goals, and entities consisting of properties and actions. Solving
tasks requires deriving actions to satisfy their goals step-
by-step. The latter is a classic planning problem, hence we
translate entities with actions and properties as well as domain
knowledge to PDDL, use Metric-FF [9] to solve each goal, and
transform the results back to plans at runtime.

The reference architecture’s Planner component imple-
ments the transformations to calculate plans for goals using the
template-based code generation facilities of MontiCore.
overviews the main modules of the planning infrastructure
and their dependencies. At design time, application developers
model entities with properties and actions, domain model
CDs, and goals representing desired situations (Sec. TI-A).
At compile time, the planning infrastructure applies several
preparing model transformations to the entity models to, e.g.,
ensure uniqueness of names for the predicates of the PDDL
artifacts generated later. Based on the transformed entity



Entity
ASTs

Intra-| Ianguage
transformations '

Inter—language S
transformations

v

Entity Entlty Entity
models parser ASTs
CD
models p
A
Goal
models
PDDL
planner

g{ provided by architecture at run time

Partial
PDDL models
LY

Plans

PDDL
models

e.g., Metric-FF|

RTE — Model Realization Base Class instances ]

Figure 7. Overview of the transformation infrastructure.

models, it creates intermediate data structures that represent a
complete PDDL domain and several partial PDDL problems.
To complement a PDDL problem, the planning infrastructure
has to be additionally provided with an initial state and argu-
ments for goal parameters. These are only available at runtime.
Once the planner receives the information at runtime in form of
Java objects that are instances of goal and property classes (cf:
RTE in[Fig. 7), the PDDL problem is produced and the PDDL
planning problem can be solved. Thus, the PDDL domain is
generated once at compile time and remains unchanged at run
time. In contrast, for each individual runtime planning request,
anew PDDL problem is produced. After solving a dynamically
generated PDDL problem with respect to the domain generated
once at compile time, the infrastructure transforms the PDDL
planner’s output back to a list of RTE class instances that
represent sequences of actions. Under the assumption that the
actions’ symbolic preconditions and postconditions adequately
reflect the actions’ implementations, executing the actions in
order leads to physical goal satisfaction.

A. Intra-Language Model-to-Model Transformations

The infrastructure generates a single PDDL domain from a
CD domain model, a robot entity, and a world entity. To ensure
the PDDL domain is well-formed, various transformations are
applied to the entities. The first transformation ensures that
no two actions have the same name. To this effect, the trans-
formation prefixes each action name with the full-qualified
name of its enclosing entity (using _ as package delimiter).
The same is performed for properties. For instance, the name
of the action move depicted in [Fig. 4] is transformed to
TransportRobot_move. To reduce notational complexity,
the examples for the transformations following in the next
sections do not include these preparation transformations.

a) From CDs to PDDL Types and Predicates: Each CD
class is transformed to a PDDL type and each attribute of
each class is transformed to a PDDL predicate. The generated
PDDL types preserve the inheritance relation of the CDs
and have the same names as the classes they originate from.
For instance, the classes depicted in are transformed
to the PDDL types illustrated in (1. 5-7). The types
String and Boolean (ll. 3-4) are built-in and may be
used in domain and entity models. The name of the PDDL
predicate derived from an attribute of a class is the name of

01| (define (domain myDomain)

02| (:types

03 String - object ; build-in type
04 Boolean - object ; build-in type
05 Item - object

06 Waypoint - object

o7 Room - Waypoint ; ...

e8| )
09| (:constants
10 False - Boolean

11 True - Boolean

12| )

13| (:predicates

14 (Item_name ?item - Item ?name - String) ; ...
15| )

16| )

Figure 8. Results from transforming the domain depicted in to PDDL.

the class concatenated to an underscore (_) and the name of
the attribute. Each predicate has two parameters. The first
parameter has the type of the class, whereas the second
parameter has the type of the attribute. The class Item
depicted in for instance, has an attribute name of type
String. Thus, the class, together with the attribute name,
defines the binary PDDL predicate (Item_name ?item -
Item ?name - String) depicted in[Fig. §| (1. 14).

b) From Entities to PDDL Predicates and Actions: Each
property of each entity is transformed to a PDDL predicate. A
property has parameters and a return value, whereas PDDL
predicates represent Boolean predicates on a subset of the
domain’s types. With this, properties represent functions that
are transformed to PDDL predicates. Therefore, a property
with n arguments is transformed to an (n+1)-ary PDDL
predicate. The first n predicate parameters have the PDDL
types corresponding to the types of the parameters of the
property. The last argument of the predicate has the PDDL
type corresponding to the return value type of the property.
Each PDDL predicate has the same name as its corresponding
property. For instance, the RoomsWorld properties
1. 3-5) are transformed to the PDDL predicates itemLoc
and adjacent 11. 3-4) and the TransportRobot
properties 1. 4-5) are transformed to the PDDL
predicates robotLoc and hasLoaded (Fig. 9} 1. 5-6).

AN
PDDL

01| (define (domain myDomain) ; ...
02| (:predicates

03 (itemLoc ?item - Item ?room - Room ?res - Boolean)

04 (adjacent ?wl - Waypoint ?w2 - Waypoint ?res - Boolean)
05 (robotLoc ?res - Waypoint)

06 (hasLoaded ?item - Item ?res - Boolean) ; ...

e7| ) ; ...

es|)

Figure 9. The properties of the entities depicted in|Fig.3]and [Fig. 4]in PDDL.

Each action of each entity model is transformed to a PDDL
action. The parameters and preconditions of entity actions
correspond to parameters and preconditions of PDDL actions.
The postconditions of entity actions correspond to PDDL
effects. After transforming an entity’s action, the resulting
PDDL action yields the same name as the entity’s action. The
parameters of the resulting PDDL action yield the same names
and types as the parameters of the entity’s action.



c) From Action Preconditions to PDDL Preconditions:

The precondition of an entity’s action is a Boolean expression
consisting of logical conjunctions, logical disjunctions, logical
negations, and expressions referencing properties as well as
attributes of the enclosing action’s parameters. The transforma-
tion of action preconditions to PDDL preconditions preserves
logical negations, conjunctions, and disjunctions. Expressions
referencing values of properties as well as qualified expres-
sions referencing attributes of domain model classes become
corresponding PDDL expressions. In preconditions, values of
attributes and properties may be queried and compared to
parameters of the enclosing action, attributes of objects, or
values requested from properties.

01| (:action move
02| :parameters (?from - Waypoint ?to - Waypoint)
03| :precondition (AND (robotLoc ?room)

PDDL

04 (adjacent ?from ?to True))

05| :effect: (AND (forall (?X_© - Waypoint)

06 (WHEN (AND (not (= ?X_@ ?to)))

o7 (AND (not (robotLoc ?X_9)))))
08 (robotLoc ?to ))

Figure 10. The action move of the entity depicted in in PDDL.

The result from transforming the precondition of action
move 1. 6-9) is depicted in (1. 3-4). The
intention is that the PDDL expressions robotLoc ?room
and adjacent 2from 2to True are satisfied if, and
only if, the property robotLoc returns True and the value of
property adjacent applied to ?from and ?to yields True.
The transformation of preconditions containing qualified ex-
pressions that reference values of domain model instances,
e.g, 11l.name == i2.name where i1 and i2 are of type
Item 1. 3), is more involved. The resulting PDDL
expression checks whether there is an object reachable by
chaining the predicates introduced for the attributes referenced
on both of the expression’s sides. The example above, for
instance, results in the following PDDL expression:

exists (X_@ - String X_1 - String)
(AND (Item_name ?il X _©) (Item_name ?i2 X_1) (= X_© X_1))

The intended PDDL precondition’s meaning is the fol-
lowing: there exist zo and x; such that xy = il.name,
r1 = i2.name, and xg = x;. Expressions comparing the
values of two properties are similarly transformed to PDDL.

d) From Action Postconditions to PDDL Effects: A post-
condition of an entity action is a Boolean expression that
consists of logical conjunctions and infix expressions, i.e., ex-
pressions of the form X == Y, where X and Y are expression
that either query the value of a property, a parameter, or a
parameter’s attribute. Simply specifying an expression B is
syntactic sugar for B == True and !B is syntactic sugar
for B == False. Each postcondition can be interpreted as
a sequence of assignments, where each either assigns a new
value (Right-hand side Y) to a property or to an attribute (left-
hand side X). The transformation preserves logical conjunc-

tions and transforms infix expressions to PDDL expressions
for removing or adding facts.

The postcondition of the action move 1. 8), for in-
stance, assigns the value of the parameter to and the property
robotLoc (). The corresponding generated PDDL effect
11. 5-8) ensures that the object encoded by ?to is
the only object that satisfies the predicate robotLoc. To this
effect, for all objects ?X_0 (I. 6) such that Xx_0#?to (I. 6),
the effect deletes the fact (robotLoc 2?X_0) (1. 7) and
then adds the fact (robotLoc ?to) (l. 8). The condition
X_0#7?to (1. 6) ensures the effect does not introduce an
inconsistent planning state. Without the condition, the effect
would first add the fact (not (robotLoc ?to)) and
afterwards add the fact (robotLoc ?to), which introduces
a planning state inconsistency. Expressions used in postcondi-
tions that assign the value of a property to another property or
assign the value of a property to an attribute, and vice versa,
are transformed similarly as above.

B. From Goals to PDDL Problems

Each goal encodes a partial PDDL problem. In contrast to
PDDL problems, goals can be parametrized. Hence, a goal
only partially defines a PDDL problem. Additionally, they
neither encode information about existing objects, nor about
currently valid properties. In contrast, each PDDL problem
defines a set of existing objects and an initial state consisting
of facts relating objects (i.e., the corresponding domain’s
predicates). Thus, PDDL problems cannot be generated at
compile time, but only during run time when the current
world and robot states are known, i.e., it is known, which
objects exist and, which properties are valid. Given a list of
Property instances, which encode facts holding
at a certain point in time, and a Goal instance,
which assigns values to parameters of the corresponding goal,
at run time, a well-formed and complete PDDL problem can
be generated. The PDDL problem of [Fig. T1] e.g., is an excerpt
of a PDDL problem generated from the goal model depicted
in[Fig. 5] a list of Property instances, and a Goal instance.

The PDDL problem generator takes a list of Property
instances, a goal model, and a Goal instance corresponding
to the goal model and generates a PDDL problem as follows:
(1) Each attribute of each Property instance becomes an
object in the PDDL problem (1. 2-6). The identifier of each
object is determined by concatenating the parts of the full
qualified class name of the object before suffixing the object’s
hash-code to the result of the concatenation.

(2) Each Property instance becomes an initial fact in the
PDDL problem (Il. 7-13). The name of the fact is the full
qualified name of the class of the Property instance. Each
attribute of the Property instance becomes a parameter of
the fact. The parameters’ identifiers are determined as in (1).
(3) The goal formula of the PDDL problem (1l. 14-19) is gen-
erated from the predicate of the goal model, and the attributes
of the Goal instance. The attributes of the Goal instance
instantiate the parameters of the goal model. Therefore, the
goal of the PDDL problem results from applying the following



01| (define (problem LoadedAt)
02| (:objects

03 logisticsdomainItem14l -
o4 logisticsdomainItem149 -
05 logisticsdomainRoom412 -

Item
Item
Room ; ...

06| )

07| (:init

08 (itemLoc logisticsdomainItem141

09 logisticsdomainRoom412 True)

10 (itemLoc logisticsdomainItem149

11 logisticsdomainRoom412 True)

12 (robotLoc logisticsdomainRoom412 True) ; ...
13| )

14| (:goal ; Derived from goal “loadedAt”

15 (exists (?room - Room ?item - Item)

16 (and

17 (= ?room logisticsdomainRoom412)

18 (= ?item logisticsdomainItem149)

19 (and (robotLoc ?room) (hasLoaded ?item True))))
20| )

211)

Figure 11. PDDL problem derived from the goal depicted in [Fig. 3] and
instances of the classes generated from the properties of the entities depicted

in and as well as the domain depicted in

two transformation steps: First, the predicate given in the goal
model is transformed the same way as preconditions of actions
are transformed to PDDL preconditions (1. 19). Afterwards, the
result of the former transformation is enclosed by a term that
binds the goal’s parameters by existential quantification (1. 15)
and requires equality to the values defined by the attributes of
the Goal instance (ll. 17-18).

The result from solving a PDDL problem with respect
to a PDDL domain is a sequence of actions defined in the
domain where the actions’ parameters are bound to objects
defined in the PDDL problem. After planning, the reference
architecture maps each action of the plan back to its entity
action and each PDDL object back to the instance it originated
from. With this information, for each action in the plan, the
architecture creates an instance of the class generated from the
entity’s action and sets the instance’s attributes to the domain
instances corresponding to the objects bound to the action in
the plan. The architecture then adds the action instances to a
list (representing a sequence of actions) in the order defined
by the plan and forwards it to trigger their execution.

VI. RELATED WORK

Modeling techniques for robotics focus on abstraction in
the solution domain [[10]. Techniques for the problem domain
are rare and usually tied to specific platforms. The textual
DSL for modeling robot abilities presented in [L1]], e.g., also
enables defining sequences of actions that are independent
from specific robots. It is implemented as a DSL embedded
in Java and requires imperative programming of tasks. Fixing
tasks this way eliminates the flexibility of on-line planning in
cases where the environment at system run time differs from
assumptions made at system development time. The ontology
for service robot behavior presented in [[12]] resembles the
DSLs we presented, but distinguishes sensing actions from ma-
nipulation actions. The authors present common control struc-
tures for robotics applications, whereas we did not consider
confronting the domain experts with control structures in the

tasks. The concepts presented in the ontology are not realized
as a modeling technique. Various robotics specific modeling
techniques defined on top of the situation calculus [[13]] enable
describing robotic goals and actions and properties required
to fulfill these in a platform-independent fashion. These DSLs
are tailored to knowledge representation experts.

VII. DISCUSSION

The iserveU DSLs enable separating the concerns of ap-
plication domain experts from robotics experts. Consequently,
the DSLs are designed to be uncomplicated (i.e., there are
no conditionals or loops). However, formulating goals still
requires understanding the dot-notation typical to object-
oriented programming and describing Boolean expressions.
Comprehending dot-notation and Boolean expressions requires
a certain skill set from the domain expert. Whether other
notations are better suited for this is subject of research. We
also did not include heuristics into planning. Despite being
able of accelerating planning, defining heuristics requires
modeling relevant properties of tasks and goals as well as
heuristic functions the planner can optimize. With the aim
of providing straightforward DSLs, we refrained from that.
Our approach requires to explicitly model all effects of an
action that influence the world state. If this is incomplete,
a plan may not be executable, because the models rely on
an erroneous description of the current situation. Further,
describing non-functional properties as, e.g., the robot has to
arrive at a certain location within a given amount of time,
is impossible or complicated with the described approach.
Decoupling the robot’s actions from their problem domain
representation enables exchanging the underlying platform
easily: this requires implementing the interface generated from
the robot model only. Hence, the same domain model, tasks,
goals, and model transformations can be reused to execute
robot actions with different robots with little effort.

VIII. CONCLUSION

We presented a family of executable DSLs that support
describing the concepts of service robotics applications in a
platform-independent fashion by separating the different stake-
holders’ concerns. Models of these languages are transformed
into parts of the execution framework at design time as well
as into PDDL problems at system run time. Based on these
problems, the integrated Metric-FF planner computes a series
of actions that ultimately are executed using loose bindings to
the underlying robot platform. Execution via transformation to
an established planner yields the benefit of run-time flexibility
required for dynamic real-world environments.

REFERENCES

[1] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl,
“GOLOG: A Logic Programming Language for Dynamic Domains,”
Journal of Logic Programming, 1997.

[2] R. Heim, P. Mir Seyed Nazari, J. O. Ringert, B. Rumpe, and A. Wort-
mann, “Modeling Robot and World Interfaces for Reusable Tasks,” in
Intelligent Robots and Systems Conference (IROS’15), 2015.

[3] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in ICRA Workshop on Open Source Software, 2009.



[4]

[5]
[6]

[7]

[8]

K. Adam, A. Butting, R. Heim, O. Kautz, B. Rumpe, and A. Wort-
mann, “Model-Driven Separation of Concerns for Service Robotics,” in
International Workshop on Domain-Specific Modeling (DSM’16), 2016.
B. Rumpe, Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, 1971.

J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann, “Language and
Code Generator Composition for Model-Driven Engineering of Robotics
Component & Connector Systems,” Journal of Software Engineering for
Robotics (JOSER), 2015.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL-The Planning Domain Definition
Language,” Yale Center for Computational Vision and Control, Tech
Report, 1998.

[9]

[10]

(1]

[12]

[13]

J. Hoffmann, “The metric-FF Planning System: Translating "Ignoring
Delete Lists" to Numeric State Variables,” Journal of Artificial Intelli-
gence Research, 2003.

A. Nordmann, N. Hochgeschwender, D. L. Wigand, and S. Wrede, “A
survey on domain-specific modeling and languages in robotics,” Journal
of Software Engineering in Robotics, 2016.

M. Reckhaus, N. Hochgeschwender, P. G. Ploeger, G. K. Kraetzschmar,
and S. Augustin, “A Platform-independent Programming Environment
for Robot Control,” in Proceedings of the st International Workshop
on Domain-Specific Languages and models for Robotic systems, 2010.
J. P. Diprose, B. Plimmer, B. A. MacDonald, and J. G. Hosking,
“How People Naturally Describe Robot Behaviour,” in Proceedings of
Australasian Conference on Robotics and Automation, 2012, pp. 3-5.

J. McCarthy and P. J. Hayes, “Some Philosophical Problems from the
Standpoint of Artificial Intelligence,” Machine Intelligence, 1969.



	Motivation
	Preliminaries
	The iserveU DSLs
	The Planning Domain Definition Language and Metric-FF

	Example
	Reference Architecture
	To PDDL and Back Again
	Intra-Language Model-to-Model Transformations
	From Goals to PDDL Problems

	Related Work
	Discussion
	Conclusion
	References

