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Abstract—Control software for production systems is typically
developed by domain experts, despite its high complexity. The
increasingly available Large Language Models (LLMs) can assist
developers with code generation and debugging. However, their
suitability for generating control software for production systems
is still unexplored. Therefore, this study explores the generation
of Structured Text (ST) according to IEC-61131-3 by different
LLMs. We selected 21 coding examples that are representative
of PLC programming and developed an approach for comparing
the outputs of different LLMs using metrics for testing generated
code (CodeBERTScore, pass@k, generation time). The strategies
for prompt optimization that were developed as part of this
work can be directly used for improved ST generation. Our
results show that, at the time of the study, ChatGPT-4 had the
highest reliability in generating syntactically correct ST code that
expresses the desired functionality.

Index Terms—Code Generation, Structured Text, IEC 61131,
Large Language Model

I. INTRODUCTION

Automation and digitization are vital for maintaining com-
petitiveness in today’s production industry. Typically, this
happens through Programmable Logic Controllers (PLCs),
which act as an interface between the digital and the physical
world [1]. PLC programming differs significantly from pro-
gramming with modern programming languages as it tightly
interacts with the hardware components, leading to strict
timing requirements. Typical challenges are the design of
reliable software that can manage changes in the requirements
and safety regulations that demand high-quality standards [2].
As automating a cyber-physical system requires knowledge of
the hardware and processes that are involved, control software
is typically developed by domain experts [3], i.e., stakeholders
with little formal software engineering training. As production
systems are tailored to customer’s needs and are typically one-
of-a-kind, the software engineering effort is relatively high.
Having to manually create PLC code, consequently, is a subpar
use of the production experts’ time and might lead to subpar
code quality [4] as well. Automating the creation of PLC code
can help to save time and, thus, shift the focus to reusable,
maintainable, and correct code. Generative AI, in the form
of large language models (LLMs), promises to automate the
creation of source code [5]. LLMs may also enable generating
PLC code from natural language specifications. Successfully

generating useful PLC code will require an understanding
of which LLM to employ, and how to optimize the input
specification. We focus on Structured Text (ST), which is a
textual language defined in the IEC 61131-3 standard. This
standard defines five programming languages for PLCs. ST
is one of the most popular PLC programming languages
and most closely resembles a traditional programming lan-
guage [6]. Therefore, we investigate the use of LLMs that
have been trained on general corpora and have been shown to
successfully generate general-purpose programming language
(GPL) code. Our study yields a better understanding of the
potential benefits and problems of using general LLM-based
code generators. In the following, Sec. II discusses related
research and Sec. III describes LLMs and their comparison.
Sec. IV outlines the reusable evaluation method. Afterward,
Sec. V presents our results and Sec. VI discusses these and
the evaluation method. Sec. VII concludes.

II. RELATED WORK

Generally, using AI-based code generators has shown to be
beneficial in professional environments by enhancing produc-
tivity and efficiency [5]. This success has led to specifically
tailored LLMs for generating GPL code, such as Github
Copilot [7] or Code Llama [8].

A. Model-based PLC Code Generation

Automated generation of PLC code has been subject of
research for decades, an overview and classification are pro-
vided in [9]. All approaches require a high-level specification
as an input for a transformation. For example, Julius et.
al. [10] generated ST code from Grafcet models, which are
used in automation engineering as a behavior description for
systems. The approach retains hierarchical structures present
in the Grafcet model to ensure the maintainability of the ST
code. Another work introduced a method for automatically
generating ladder diagrams (LD) from a finite state machine
(FSM) [11]. In the FSM, states represent activated signals and
transitions represent corresponding signal changes. Each state
can be associated with an output and from this, LD can be
generated with each state representing a circuit [11]. Similarly,
Sequential Function Charts and ST code have been generated
from UML models (e.g., [12]). A limitation of these methods
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is that an additional methodology for specifying the expected
behavior of PLC code needs to be available or learned. With
LLM-based PLC code generation, the desired functionality can
be expressed using natural language.

B. LLM-based Code Generation

LLMs were originally developed to mimic and generate
natural language [13]. However, the question arises whether
this technology is also adequate for generating code. A com-
prehensive study investigates using ChatGPT 3.5 to generate
source code in ten different target GPLs, but not PLC program-
ming languages. [14]. The study suggests that the suitability
depends on the target GPL, with high-level dynamically typed
languages performing better than lower-level statically typed
languages. Out of the 4000 runs, 45.8% of the generated
code is successfully executable, with Julia (81.5% executable)
performing the best and C++ the worst (7.3% executable) [14].

C. LLM-based PLC Code Generation

At present, only few studies have investigated the suitability
of ChatGPT for PLC code generation. Koziolek et al. [15]
assessed the capability of ChatGPT-4 to generate ST code.
They evaluated their study with 100 different prompts that
examined the output of various prompts for syntactic and
functional correctness using a subjective scoring. The majority
of the output exhibited correct syntax and the code samples
appeared robust and efficient. The quality of generated control
code can be improved through Retrieval-Augmented Genera-
tion, which provides the LLM with sufficient information to
include domain libraries in generated code [16]. Boudribila
et al. [17] evaluated the use of ChatGPT (exact version not
specified) for PLC programming based on a single example.
The study evaluated the LLM’s capabilities for identifying
relevant components, generating code, and checking code
against its requirements. ChatGPT was able to identify entities
and actions from natural language descriptions. However, both
studies only covered ChatGPT, rather than comprehensively
comparing different LLMs. Our study extends this body of
knowledge by comparing different LLMs to generate ST for
production systems.

III. BACKGROUND

We present available versions of LLMs, as well as metrics
for comparing LLMs. The choice of LLMs has the requirement
of being able to run locally without expensive hardware, such
as a Nvidia A100.

A. LLMs under Investigation

We have included OpenAI’s ChatGPT1 (utilizing GPT-
3.5 and GPT-4), Google’s Bard2 (2023.12.18), Meta’s Code
Llama3 (7B + 4 Bit Quantization), Platypus24 (13B + 4 Bit
Quantization), and StabilityAI’s StableCode5 (3B + 5 Bit

1ChatGPT: chat.openai.com
2Google Bard: bard.google.com
3Llama: huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF
4Platypus2: huggingface.co/TheBloke/Platypus2-13B-GGUF
5StableCode: huggingface.co/TheBloke/stablecode-instruct-alpha-3b-GGML

Quantization) in our study. It is unclear whether the presented
language models have been trained on PLC code.

1) ChatGPT: Both versions are based on the transformer
architecture, designed for natural language understanding and
generation1. Trained on extensive text corpora and fine-tuned
with human feedback, GPT-4 has excellent coding abilities for
GPLs and the capacity to comprehend visual inputs1.

2) Code Llama: Code Llama is a specialized LLM that was
finely tuned for code generation and is based on the Llama2
model3. It was extensively trained on code-specific datasets.
It demonstrates impressive coding capabilities, capable of
generating and debugging GPL program code3.

3) Bard: Bard is based on Google’s LLM PaLM2, designed
for understanding, summarizing, and generating texts2. Trained
on diverse corpora, Bard is still in the experimental phase,
subject to updates and changes.

4) Platypus2: Platypus2, developed by Boston University,
is an LLM focused on acquiring logical knowledge, relying on
the Open-Platypus dataset.4 While demonstrating significant
performance in benchmarks, its ability for code generation
remains unexplored.4

5) StableCode: StableCode, a code-specific LLM trained
on the Stack Dataset of BigCode, distinguishes itself with
its relatively small size (three billion parameters)5. Tailored
for programming assistance, it holds potential advantages for
compatibility with consumer PCs.

B. Quantization

Executing LLMs requires powerful and modern hardware
[18]. The required memory, in bytes, is approximately four
times the number of parameters. One way to address this
is quantization. The parameters of an LLM, representing the
weights and biases, are typically represented as 32-bit floating-
point numbers. The idea of quantization is to convert these
numbers from higher precision to lower precision, such as
16-bit float, 8-bit integer, or 4-bit integer. This reduces the
memory requirements and optimizes computational perfor-
mance. However, a drawback is the lower precision [19].
This study uses quantized models of Code Llama, Platypus2,
and StableCode due to the following hardware constraints:
AMD Ryzen 7 4800h eight-core processor á 4,2 GHz with
16 threads; 16 GB RAM; Windows 11; Python 3.10.6.

C. Metrics

The metrics CodeBERTScore and pass@k are used because
they are specifically developed to test machine-generated code.
In addition, the time taken by the LLM to generate the ST
code is also measured. Evaluation metrics and benchmarks
now exist to test the capability of code synthesis using
LLMs. However, most testing tools are tailored to higher-level
programming languages like Python, therefore, they cannot
be used for this study [20]. This study focuses on evaluating
whether the code is executable. Quality metrics, such as the
cognitive complexity of generated ST code [21], are not
considered.
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1) CodeBERTScore: The CodeBERTScore [22] introduces
an evaluation metric for machine-generated code that measures
the similarity between the generated code and a reference code.
The advantage of this metric lies in its simple calculation and
its good assessment of the syntactic structure of programs.
CodeBERTScore also considers semantic similarity to the ref-
erence code [22] using the pre-trained CodeBERT model [23].
The similarity is calculated by representing tokenized code
as vectors and computing pairwise cosine similarity This
calculation allows for the creation of a similarity matrix.
From this matrix, Precision,Recall, F1, and F3 can be
computed [22]. The Precision indicates how many tokens
are translated/generated correctly, while Recall indicates how
many of the truly correct tokens are also generated [24]. In
other words, Precision represents accuracy, while Recall
represents the hit rate. The F1-Score is the harmonic mean
between Precision and Recall. The F3-Score also considers
Precision and Recall, but with a higher weight on Recall.
For this study, the F3 is more important, as Recall provides
more insight into how closely the generated code matches the
reference code [22], [24]. While these comparison metrics are
unable to evaluate the functionality of the code, a correlation
between a high rating and correct functionality has been
observed [22].

2) pass@k: The pass@k indicates the probability that at
least one of the top-k generated code samples exhibits correct
functionality [25]. Traditional token-matching metrics like
BLEU have limited applicability, as they are not well-suited
to assess the functionality or executability of the code. The
pass@k score addresses this issue and is a common metric
for evaluating the performance of LLMs in coding, allowing
for comparisons with other models.

IV. METHODOLOGY AND IMPLEMENTATION

We followed the evaluation method as depicted in Fig. 1.
Firstly, the LLMs are evaluated solely based on their ability
to generate IEC-61131-3 ST. This decision was made be-
cause most LLMs generate textual outputs, simplifying the
evaluation and assessment of the code. Each LLM receives
the same prompt to allow comparison. We used the metrics
CodeBERTScore and pass@k to compare the output by the
evaluated LLMs (cf. Sec. III-C). Furthermore, Codesys V3.5
SP19 Patch19 [26] is used to test the functionality of the
generated programs. Codesys is a widespread tool that is
free-to-download, supports the IEC 61131-3 standard, and
hardware-independent [6]. Hence, it is used in this study.

A. Prompts

Using prompts, instructions are provided to the LLM to
generate ST. For evaluation, a collection of 21 prompts has
been compiled to test ST generation. These prompts cover
various aspects of ST programming, such as the use of IF-
ELSE branches, FOR loops, SWITCH-CASE statements, as
well as the utilization of timers and the ability to imple-
ment functions. Furthermore, a more extensive program is
generated to test the AI’s capabilities in handling such tasks.

Fig. 1: Activity diagram illustrating the evaluation process. It
was performed before and after prompt optimization.

Each prompt is accompanied by a reference code used for
calculating the CodeBERTScore. The collection consists of
six mathematical functions, five process control functions,
seven processes, one interlock, and two calculations. The
reference code was sourced from publicly available examples,
that we include in our replication package.6 The prompts
are formulated in detail to best test the LLMs and contain
explicit instructions for generating IEC-61131-3 ST. The pres-
ence of the keywords BEGIN, START, PROGRAM <Name>,
END_PROGRAM, METHOD <Name>, and END_METHOD is
irrelevant since they are not essential for program execution.

B. Evaluation of Generated Code

Each LLM gets the 21 prompts as the input to generate
21 ST codes, with the time required for generation being
measured. Every prompt is composed with the generic instruc-
tion Give me an IEC 61131-3 structured text
program, followed by the functionality of the program.
All PLC programs are checked for syntactic and semantic
correctness. For syntactic validation, similarity to the refer-
ence code is computed using the CodeBERTScore. Semantic
correctness is tested by compiling and executing the logic in
Codesys, categorizing the code into one of four categories:
FAIL, NONEX, INCOR and PERF. Four categories are defined
for classifying ST code:

• FAIL: No code generated, i.e., the model generates text
that does not represent ST.

6Replication package: https://github.com/iswunistuttgart/generating_plc_
code_with_llms/tree/main
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• NONEX: Non-executable code that has ST syntax, but is
not syntactically correct according to Codesys.

• INCOR: ST code with incorrect functionality that com-
piles, but fails the test cases.

• PERF: The ST code compiles and satisfies the test cases.

After generating the 21 ST codes, the process is repeated
three times for the same LLM. On the one hand for the
calculation of the pass@3 score, and on the other hand for
consistency checks. After generation, the median of the F3

score and the average time from the three runs are calculated.
Then, the average of these values from the 21 sub-results is
determined. The pass@k is the primary metric followed by
the F3 score for selecting the best LLM.

Furthermore, the entire evaluation is conducted twice. In
the first run, ST is generated with unchanged prompts. Based
on the insights from this run, the prompts are augmented
and optimized, a process known as Prompt Engineering. It
involves designing and formulating prompts to achieve im-
proved results [13]. The original collection, i.e., without op-
timization, already has a detailed description of functionality.
In the second run, explicit points that the LLM should avoid
are highlighted, depending on the resulting errors the LLMs
produce. An example could be Use IF-ELSE branches
instead of Switch-Cases. Additionally, the prompt
specifies which variables to use, as in practice, the programmer
is likely to want to use specific input and output devices. An
example could be: Use following variables: I1:
BOOL; I2: BOOL; I3: REAL; O1: BOOL; The new
prompts include the prompt optimization (the rules to avoid
errors), the prompt that describes the specification of the
program, and the desired variables to use.

C. Implementation

The implementation of our process utilizes the LLM API
to generate three sets of 21 PLC logics and calculates their
similarity to reference code using the CodeBERTScore library.
The developer executes the generated programs with the
Codesys component for categorization. Some aspects of the
analysis are automated. Manual code generation is performed
for ChatGPT and Bard due to API costs or unavailability,
while local LLMs automate code generation. Verifying the
executability and correctness of generated PLC logic poses
a challenge. Unfortunately, no functional automated testing
solution was identified, necessitating manual examination of
programs using Codesys. The implementation utilizes the
libraries ctransformers, code_bert_score, pandas,
and numpy. For generating STs our implementation iterates
over each prompt and passes it to the respective LLM.

During the generation, the time is measured, and the gener-
ated ST is then saved in a file. This process is repeated three
times. For calculating the CodeBERTScore our implementa-
tion iterates over each generated ST and reference ST includ-
ing the corresponding prompt. Furthermore, we calculated the
pass@k-Score according to [25].

0 20 40 60

ChatGPT-3.5

ChatGPT-4

Bard

Code Llama

Platypus2

StableCode

11

28

8

10

5

3

12

40

30

58

40

26

3

2

2

3

37

60

Number of programs

L
L

M
s

FAIL
NONEX
INCOR
PERF

Fig. 2: Correctness of generated programs (without prompt
optimization)

V. EVALUATION RESULTS

In this chapter, we first present the common syntax errors
in the two runs for each LLM. Then, we compare the output
based on the metrics.

A. Performance without Prompt Optimization

Generated code was categorized into four groups according
to Sec. IV-B in Fig. 2. StableCode produces only three exe-
cutable ST programs, while Platypus2 exhibits ST-like syntax
in 26 programs, with few exceptions. For the remaining LLMs,
most generated programs are ST. Among them, ChatGPT-4
generates the most functional PLC programs (28), followed
by ChatGPT-3.5 (11) and Code Llama (8). Only 5 out of
63 programs generated by Bard are executable. In total, only
30 of the generated programs contain incorrect functionality.
Interestingly, the code generated by locally running LLMs is
similar, sometimes identical, in all three attempts.

1) Common Mistakes: Common errors as depicted in
Table I. The frequency of errors is classified into three
categories: frequently, occasionally, and rarely. Frequent
errors occur more than 50% of the time, occasional errors
occur in about 25% of cases, and rare errors occur only a
handful of times. Whereas the errors for incorrect syntax,
usage of printf-functions and incorrect usage of RETURN-
Statements are not severe, fixing them requires high manual
effort. On the other hand, errors for non-ST or timer
tend to become more time-consuming to fix. The errors
encountered are mainly syntactic, and StableCode shows
the most errors. Most programs generated by this model
either show JavaScript-like syntax or are plain text. In
contrast, only half of Platypus2’s generated programs have
ST-like syntax. The other models mostly produce correct ST
structures. Frequent errors, particularly in locally executed
LLMs, are related to the syntax of control structures. For
example, ELSIF is often written as ELSE IF, or the control
structures are not properly terminated. In some cases, the
END_<control structure> is missing. Additionally,
LLMs encounter issues with switch cases. ChatGPT treats
the cases as conditions in the IF-ELSE branches, which
does not conform to the syntax of switch cases. In some
models, such as StableCode and Code Llama, the variable
declaration is faulty due to missing the correct variable
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TABLE I: Common mistakes without prompt optimization

Errors Stable-
Code

Platy-
pus2

Code
Llama

Bard GPT
3.5

GPT
4

No ST
IF-ELSE Syntax
Error
Switch-Case Syntax
Error
Incorrect
termination of
control structures
Incorrect Variable
declaration
Usage of
Print-Funktion
Incorrect Usage of
RETURN-
Statements
Incorrect Usage of
Timer

frequently occasionally rarely/not the Case

declaration. Furthermore, in Bard, END_VAR is frequently
omitted. Another common error involves the use of printf-
functions, which do not exist in PLC programming. All
models struggle with the RETURN statement in functions. In
ST, the RETURN statement is not used to return parameters,
but to return to the main program. This mistake is made
by all LLMs. Most models also face difficulties in correctly
applying timers during initialization or retrieval. Bard
frequently misplaces code comments in various programs,
causing entire code blocks to be commented out. On the
basis of the insights gained, prompts can be optimized
to effectively minimize these errors. Addressing the most
common errors, the following additional instructions for
prompts have emerged:
Following rules should be followed:

1) Variables should be declared between VAR and
END_VAR;

2) When using control structures do not forget;
END_<control structure>;

3) Avoid switch cases unless instructed in the task;
4) Use the right quotation marks for the string type;
5) Implementing a function should be avoided;
6) Only when implementing a function: the variables

should be declared inside the function; the return value
should be stored in a variable named after the function;
RETURN should be used correctly, to return to the main
method and not to return a value;

In addition, relevant variables will be added, considering that
in realistic scenarios, the developer typically intends to use
specific input and output devices.

B. Performance with Prompt Optimization

We observe in Fig. 3 that functionally correct ST is
generated more frequently. Variable declarations were not
considered anymore, as the optimization requires that the user
has provided them to the LLM. Approximately half of the
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Fig. 3: Correctness of generated programs (with prompt
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TABLE II: Common mistakes with prompt optimization

Errors Stable-
Code

Platy-
pus2

Code
Llama

Bard GPT
3.5

GPT
4

No ST
IF-ELSE Syntax
Error
Switch-Case Syntax
Error
Incorrect
termination of
control structures
Usage of
Print-function
Incorrect Usage of
RETURN-
Statements
Incorrect Usage of
Timer

frequently occasionally rarely/not the Case

generated programs have C-like syntax. Platypus2 was capable
of producing programs in ST syntax, but they remained non-
executable and typically showed syntactic errors. Interestingly,
Code Llama produced fewer correct programs after prompt
optimization. However, the majority of the generated programs
are non-executable. Bard was better able to generate correctly
executable code, but only for 4 programs of the first run, and
9 programs over all three runs.

ChatGPT-3.5 is capable of delivering performance similar
to that of ChatGPT-4 without prompt optimization. Again,
ChatGPT-4 achieved the best performance of all LLMs, with
over half of the generated PLC logics being correctly exe-
cutable. Common errors for prompt optimization are sum-
marized in Table II. In general, we observed fewer errors.
StableCode, Platypus2, and Bard failed to terminate the syntax
of control structures correctly despite explicit instructions.
Furthermore, switch-case-statements were used incorrectly in
most cases for all LLMs. In particular, in three ChatGPT-4
samples, the syntax for case conditions is correct, but the
instructions are placed between BEGIN and END, leading to
a compiler error. The problem of misusing the RETURN state-
ment persists. All language models, except for ChatGPT-4,
use RETURN to return parameters. ChatGPT-4 is also the only
model that correctly implements the application of a timer.
An issue arises with the generation of long programs, such as
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TABLE III: The average of the medians of Precision,
Recall, F1, and F3 from the three runs without prompt
optimization

Model Precision Recall F1 F3
Bard 0.74984 0.80241 0.77391 0.79632

ChatGPT-3.5 0.74306 0.79420 0.76608 0.78814
ChatGPT-4 0.74148 0.80821 0.77216 0.80051
Code Llama 0.77725 0.79300 0.78374 0.79093

Platypus2 0.72155 0.69657 0.70749 0.69852
StableCode 0.68841 0.67396 0.68017 0.67504

TABLE IV: The average of the medians of Precision,
Recall, F1, and F3 from the three runs with prompt opti-
mization

Model Precision Recall F1 F3
Bard 0.86187 0.86826 0.86392 0.86721

ChatGPT-3.5 0.84051 0.87374 0.85479 0.86954
ChatGPT-4 0.80420 0.86744 0.83317 0.86010
Code Llama 0.85150 0.86328 0.85631 0.86171

Platypus2 0.81878 0.83539 0.82628 0.83343
StableCode 0.75569 0.79781 0.77507 0.79297

one prompt, which contains 200 lines of code. Specifically,
local LLMs fail to generate code after 70 lines of code,
repeating certain keywords. A possible cause identified in
previous research [27] is the limited attention span of LLMs,
which causes the language model to lose context after a certain
number of tokens. In Gemini, further generation needs to be
explicitly requested by entering another prompt.

C. CodeBERTScore

For this analysis, the median of the F3 score from the
three runs is selected. Subsequently, the average of the 21
medians is calculated. In Table III, these values are presented
for the run without prompt optimization, and in Table IV, with
prompt optimization. For this work, the F3, as explained in
Sec. III-C1, provides insight into how closely the generated
code resembles the reference code. As evident in Table III,
ChatGPT-4 performs the best in the first run. Bard, ChatGPT-
3.5, and Code Llama also achieve around 80% similarity.
Significantly lower are Platypus2 and StableCode with 69.85%
and 67.5%, respectively. Most samples from StableCode and
Platypus2 exhibit C-like syntax. Concerning the other pa-
rameters, it is evident that StableCode performs the worst.
Interestingly, Code Llama has the highest Precision and F1
score. Code Llama is also capable of generating ST-like code.
However, ChatGPT-4 has the highest Recall.

In the second run, ChatGPT-3.5 performs best with a
similarity of 86.95%, as shown in Table IV. Surprisingly,
ChatGPT-4 ranks fourth, despite generating the most correctly
executable logics. Once again, StableCode ranks at the bottom
in all four metrics with a similarity of just under 80%. Bard
achieves the highest Precision, ChatGPT-3.5 has the highest
Recall, while Bard has the highest F1 score. Moreover, we
observe that the average F3 score has increased from 75.82%
to 84.75% through prompt optimization. This indicates that
precise prompts and specific instructions potentially lead to
higher code quality. The similarity to each reference code is

TABLE V: pass@k-Score for k=1,2,3 without prompt opti-
mization

Model pass@1 pass@2 pass@3
Bard 0,0% 0,0% 0,0%

ChatGPT-3.5 17,46% 32,1% 44,35%
ChatGPT-4 44,44% 69,53% 83,52%
CodeLlama 12,7% 23,96% 33,94%
Platypus2 0,0% 0,0% 0,0%

StableCode 0,0% 0,0% 0,0%

TABLE VI: pass@k-Score for k=1,2,3 with prompt optimiza-
tion

Model pass@1 pass@2 pass@3
Bard 6,35% 12,39% 18,14%

ChatGPT-3.5 34,92% 58,01% 73,16%
ChatGPT-4 57,14% 82,03% 92,63%
Code Llama 4,76% 9,37% 13,83%

Platypus2 0,0% 0,0% 0,0%
StableCode 0,0% 0,0% 0,0%

shown in Fig. 4. It becomes evident that during the first run,
all language models achieve a consistent similarity, but in the
second run, especially for six of nine prompts the similarity
is lower than the rest. The reason could be that these prompts
are input prompts for functions.

D. pass@k

The pass@k-score (Section III-C2) indicates the proba-
bility that at least one of the top k generated programs
is functional. Table V summarizes the probabilities without
prompt optimization. We observe that ChatGPT-4 shows the
best performance, where almost every second generated PLC
program is perfect in the first attempt. With three attempts,
the probability rises to 83.52%. With a probability of 17,46%
ChatGPT-3.5 comes in second place. Code Llama has only
a 12.7% chance of generating correct PLC programs. Bard,
Platypus2, and StableCode were unable to generate correct ST
(0,0%). As mentioned in Sec. V-A1, Platypus2 and StableCode
mostly generated C code or non-ST. In cases where ST was
generated, the programs could not be compiled. Bard, on
the other hand, is capable of generating non-executable ST
code. Prompt optimization improves performance, as seen in
Table VI. The probability increases by 28.58% for ChatGPT-
4 and 100% for ChatGPT-3.5. ChatGPT-4 exhibits the best
performance here, reaching a probability of 92.63%. Sur-
prisingly, the probability for Code Llama has decreased to
4.76%. On the other hand, with prompt optimization, Bard is
capable of generating functional ST and achieves 6.35% in
pass@1. Platypus2 and StableCode remain unable to generate
the correct executable code.

E. Time

A detailed overview of execution time for each LLM with
and without prompt optimization is included in Fig. 5. On
average, Google’s Bard required the least time, while Platy-
pus2 took the longest. For Bard, ChatGPT-3.5, and ChatGPT-
4, the respective services were used, causing a reliance on
computation load and connection quality. Surprisingly, prompt
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Fig. 4: Average F3-Score for each prompt, including average over all prompts (column Avg.), left with initial prompt, right
with prompt optimization.

optimization reduced the required time for these three LLMs,
while it increased for Code Llama, Platypus2, and StableCode.
The longest and most complex program required a signifi-
cantly longer execution for most LLMs. This prompt took over
13 minutes for Platypus2 with prompt optimization.

VI. DISCUSSION

Our evaluation reveals that the correctness with regard to
our metrics varies depending on the used LLMs. ChatGPT-
4 generates the most correct programs, specifically 28 out of
63 and 36 out of 63. Based on the pass@k-score, ChatGPT-
4 shows the highest likelihood of producing executable code.
In the F3-Score, Bard outperforms ChatGPT, indicating that
Bard-generated programs more closely resemble the reference
code. In our study, Platypus2 and StableCode achieve the low-
est F3-score. We discovered syntactic and semantic errors in
generated programs, with a focus on the former. Many LLMs
struggle with ST syntax, especially in correctly terminating
control structures. Semantic errors, particularly involving the
improper use of the RETURN statement, occur mainly in
functions and methods. The computation time of local LLMs
is system-dependent, ChatGPT had the highest computation
time of the web-based ones. The small size of StableCode was
also reflected in its required time. Generating long programs is
discouraged, in particular for local LLMs, due to the increased
amount of errors and the longer generation times. However,
the positive impact of prompt optimization was clearly shown
in our study. The additional information significantly improved
results, which are reflected in both the F3 and pass@k scores.
Prompt optimization enabled Bard to generate functionally
correct programs, although no correct programs were achieved
without optimization. Due to the large size of ChatGPT-4, a
higher performance regarding ST generation was anticipated.
The results furthermore highlight unexpected weaknesses in
StableCode and Platypus2. Hardware limitations also impact
the performance of locally operated LLMs, as models with

fewer parameters and in a quantized form have to be used.
By using non-quantized variants, improved results can be ex-
pected. Limitations include the prompt collection covering var-
ious PLC programming areas but potentially missing certain
use cases and technologies. The dataset of 21 prompts might
not fully represent the diversity of scenarios. The formulation
of prompts may unintentionally favor ChatGPT. Automated
solutions for syntax checks and tests of PLC code are not
state-of-the-art, presenting challenges for efficient evaluation
of generated code. Finally, the replicability of this study is
limited due to regular version updates of web-based LLMs. For
instance, Bard was replaced by Google’s newer LLM Gemini.
The performance of updated models regarding ST generation
cannot be predicted.

VII. CONCLUSION

This study investigated among five current LLMs which one
is best suited for generating ST. The devised evaluation method
applies prompt engineering for typical PLC programming
tasks in four iterations and compares the selected LLMs
based on the average response time, pass@k, the F3 score,
and CodeBertScore. Our experimental results indicate that, at
the time of the study, ChatGPT-4 had the highest capability
for generating ST. However, the investigations revealed that
current LLMs often produce syntactical errors in generating
ST, highlighting significant developmental needs. Considering
the development progress in recent years, the performance
may continue to improve. Identified limitations have to be
addressed in further research, which can explore additional
versions of LLMs (e.g., new releases, improved hardware to
execute non-quantized models), a larger set of prompts, or
refined prompt optimization. The current study was further
limited to ST, but other PLC programming languages of IEC
61131-3, including graphical ones, are yet to be explored.
Finally, research on fine-tuning LLMs for PLC code generation
may allow them to enhance their domain-specific capabilities.
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Fig. 5: Average time for generating ST code for each prompt, including average over all prompts (column Avg.), left with
initial prompt, right with prompt optimization.

This direction requires access to the PLC code. In the future,
PLC programmers can augment the devised set of instructions
with their own prompts.
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