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Abstract—Modern industrial systems, characterised by dis-
tributed and fragmented equipment, present challenges due to
their inherent heterogeneity and complexity. This should not
impact the stakeholders’ business logic, who are more concerned
with the information itself rather than how it is collected or
processed. Recently, Digital Twins — software copies of physical
assets and systems — emerged as a pivotal strategy to bridge
the cyber-physical world into an effective digital layer decoupling
applications from the management and interaction with physical
assets. Fostering this vision, we propose a structured industrial
Digital Twins ecosystem exploiting twin relationships and hier-
archies to build a digitalised replica of the whole manufacturing
system structure enabling a simplified navigation and interaction
with the physical world and the data it generates. To support
the depicted visions, a fully functioning prototype has been
implemented and evaluated in an experimental scenario.

Keywords—Digital Twins, Smart Manufacturing,
Physical Architecture, Hierarchical Composition
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I. INTRODUCTION

Nowadays, industrial production systems face a variety of
diverse and heterogeneous challenges, from shorter product
life cycles, tighter production budgets, increasing demand for
customisation, to the need for energy optimisation to meet
environmental goals. As a result, production facilities must
be capable of continuously updating to incorporate process
improvements and specialised solutions tailored to specific
use cases [1]. This requires a high degree of flexibility, but
it also makes timely decision-making difficult due to the
scattered nature of key information across the shop floor.
Extracting valuable insights from this data is time-consuming
and complicated by the intrinsic complexity of the systems
involved [2]. Moreover, integrating various systems often
necessitates multiple handcrafted solutions, which complicates
daily operations and makes implementing changes and updates
more challenging [3].

The importance of digitalisation in this context cannot be
overstated. Digitalising a production system involves mirroring
the industrial architecture within a digital environment, cap-
turing critical information such as the relationships between
machines, operation orders, and other essential data. This
digital reflection is crucial for streamlining operations, en-
hancing decision-making processes, and maintaining effective
production. Digitalisation enables a cohesive and integrated
approach, facilitating easier access to relevant information,
reducing the complexity of system integration, and allowing

Fig. 1: DT driven industrial cyber-physical ecosystem.

for more agile and responsive production environments. By
embracing digitalisation, industries can better manage the
complexities of modern production, optimise their operations,
and stay competitive in a rapidly evolving market.

Reflecting an industrial system into the digital environment
is challenging: the industrial architecture should be taken into
account in digitalising a production system, as it contains
vital information, such as relationships between machines,
operations orders, or other key information for effective pro-
duction. Abstracting the real-world structure and having a
standardised way to reflect the physical industrial organisation
into a composable, digital system, where information is gener-
ated, analysed, and made accessible to external applications,
can benefit industry managers and related stakeholders. The
need for those characteristics lies in existing difficulties in
digitalising a complex and heterogeneous environment as an
industrial shop-floor [2]. Such difficulties are exacerbated
by the dynamic nature of industrial systems, characterised
by an inherent propensity to complexity, and by continuous
improvement activities as well as product updates, which need
adaptations in the associated physical environment over time.

The contribution of this article is to present a Digital
Twin (DT) industrial ecosystem organised in a hierarchical
architecture featuring data augmentation, actionability, navi-
gability, and composability capabilities [4]. In particular, we:
i) proposes a structured DT model for industrial use cases;
ii) implement the model in a realistic industrial scenario; iii)
evaluate the prototype in a controlled environment; and iv)
measure complexity showing the impact of the introduced DT
ecosystem and quantifying resource consumption.

The proposed ecosystem acts as a DT-based abstraction
layer between the physical world and the digital domain,
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organised following the physical world structure, respecting
the relationships between physical entities, and collecting and
organising data in places where it is logical to obtain them.
The architecture has been implemented and tested to assess
the benefits of the proposed solution through an industrial
distributed heterogeneous and hierarchical system.

II. RELATED WORK

DTs are employed in many different areas of application,
e.g., biology, automotive, and manufacturing [5]. In the manu-
facturing context, a distinction between Digital Models, Digital
Shadows and Digital Twins has been made in the literature [6].
In particular, a Digital Model is defined as a representation
of a physical object (existing or designed), but without any
kind of connection with the physical counterpart. The Digital
Shadow has the additional ability to receive data from the
physical counterpart but cannot affect it back. Finally, the
DT can instead communicate with the physical domain in a
bi-directional manner, characterising itself as an active entity
with a model of its physical counterpart [7]. Authors in [8]
proposed a 5-dimensional model for DTs, evolving the 3D
model of Grieves [9]. In particular, the dimensions consider
(i) the physical entity, (ii) the virtual model, (iii) the connection
between them, (iv) associated data and (v) services.

Practical applications of DTs in manufacturing have been
also studied. In [10] a CPS-enabled industrial scenario is
equipped with digitalised material handling objects, that are
made smart through the use of sensors. The shop-floor state
is then reflected in the digital domain using DTS, to track
its KPIs,make real-time analyses of them, and take timely
decisions, as tighten response logistics activities. Simulation
is part of the expected outcome of DTs in manufacturing,
and associated capabilities are studied by [11]. In particular,
the authors extract a simulation model from production data
with modern machine-learning and data-mining tools. The
scenario studied involves a quad-copter drone part assembly
system, and the simulation goal is to quantify its reliability.
The assembly process description is extracted from production
data and a Petri-net is computed from it. The extracted Petri-
net is then used to analyse the “fail” and “repair” transitions
of the system.

In general, DTs are expected to improve the optimisation
activities of complex systems as production facilities [5],
fostering an advanced application of optimisation models both
for industrial operations, as well as for production energy
consumption mitigation [12]. DTs application also opens new
opportunities on the product side, enabling the possibility of
interaction between the product and the production system
twins. The work in [13] presents a method of product design,
manufacturing and services driven by DTs.

Despite the interest in DTs, especially around the concept
of industrial digitalisation, most of the present applications
are scenario-specific [14]. This denotes a general lack of an
approach that abstracts each scenario specificity, towards a
general method suitable in digitalising an industrial system
starting from its base components forming the shop-floor. In
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this article we explore this area, starting from industrial re-
quirements for digitalisation and contributing to a DT ecosys-
tem that facilitates interaction with upper-level applications.

Twins aggregations and connection are concepts explored
in different ways by the scientific community, to reach inter-
action among DTs and promote their collaboration. In [15],
a six layer architecture for DTs is enriched with aggregation
mechanism, with off-the-shelf vendor-neutral software to en-
sure wider application with heterogeneous hardware settings.
Collaboration across different DTs is envisioned also in [16],
which approaches the topic under operational, management
and security standpoints supported by the proposed architec-
ture.

III. INDUSTRIAL REQUIREMENTS

Efficiently managing production requires considering a va-
riety of heterogeneous aspects, including safety, performance,
cost tracking, maintenance, quality control, logistics, equip-
ment management, environment, product design and life-cycle,
and so on. Stakeholders, as well as industrial managers, all rely
on information from the same source, the shop-floor.

Shop-floors are dynamic systems, continuously facing re-
configuration, improvements, and updates. Direct access of
upper-level applications towards the complexity captured by
IIoT [17] lead to difficulties in uniforming acquired data,
selecting information of interest of the given stakeholder and
continuously applying value extraction; moreover, travelling
the system from higher level applications toward physical
actuators to inject actions requests is still hard too, due to
the natural equipment heterogeneity of industrial shop-floors.
The need for continuous reconfiguration (to adapt the system
set-up for the production of different products), improvements
(for continuous optimisation of the system under the lean pro-
duction scope) and updates (to improve the production system
capabilities for a new generation of products) clarifies how
digitalising, maintaining and updating a physical shop-floor
is hard. As systems grow in complexity and market requests
change rapidly [2], information and heterogeneity increase,
making it difficult to have an organic, real-time representation
of the shop-floor state. In the given environment, uniformly
representing the physical shop-floor neglecting non-trivial de-
tails about the equipment gathering the given data, is valuable.
In this way each representation of physical assets in the digital
domain can be abstracted, promoting the logical scalability
of the system. Decoupling between industrial physical assets
and associated digital entities is also needed, as it detaches
the details of the physical elements concerning its digital
representation. Despite being abstraction an interesting point
for the digitalisation of industrial systems, the capacity to
adapt and personalise the industrial representation is needed,
to find a good fit to the specialised needs of each production
environment.

Given the need for an industrial digitalised system, it should
have a set of features to make it suitable for representing
the industrial domain structure in real-time and expose this
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Fig. 2: Abstracted model and structure of a DT with internal components and communication channels.

structure in the digital environment to applications and stake-
holders organically, as depicted in Figure 1. Usually, industrial
architectures are divided into sub-components, i.e. an entire
production plant is divided into departments, and departments
are divided again into working areas or production nodes. Pro-
duction nodes are then constituted by a set of heterogeneous
hardware equipment, that could be both automatised in the
case of a highly automated node or manually operated. Be-
tween department-level production nodes as well as individual
production nodes, there are often exploitable relationships; for
instance, a robotised production node typically includes input
and output buffers, a processing machine, and a robotic arm.
Furthermore, components and relationships may evolve due
to routine operations or shop-floor upgrades. The abstraction
layer must facilitate composability and relationship represen-
tation capabilities, enabling the full reflection in the digital
domain of possible production system reconfiguration carried
out on the physical shop-floor, making it easier to retrieve
needed information from the reconfigured system without a
full or partial re-design of the digitalisation system.

To enable the described digitalisation of a manufacturing
environment, five capabilities (see Figure 3) reported in [18]
have been identified and implemented: (i) data ingestion and
augmentation, i.e., the ability to ingest data in the digitalised
entity that logically follows the state of affairs of the physical
world, disregard the protocol used to obtain higher level
information; (ii) physical world actionability, i.e., the ability
to accept high level actions requests as an input to the
digitalised entity, analyse them and pass such requests to
associated physical counterparts, monitoring the outcome; (iii)
cyber-physical relationships, i.e., the ability to represent any
existing relationship between physical objects in their digital
counterparts; (iv) composition and hierarchical views, i.e., the
ability to compose two or more digitalised entities into one
higher level entity, that lives thanks to information flowing
from the underlying structures; (v) application interaction,
i.e., the ability to offer to the digital domain the information
represented by digital counterparts, and collaborating to reach
an agreed state of affairs in the real world.

IV. DIGITAL TWIN MODELLING

Among the different conceptual models for DTs specialised
in different target contexts, in this work, very specific charac-
teristics of DTs are required. Since the digitalisation process is
expected to start from individual physical objects, which will
then be composed into more complex entities, the necessary
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DT model must be able to represent each physical entity
starting from its smallest component. Leveraging explored
concepts from existing research [19], proposed models in the
manufacturing domain [8], and standardisation bodies [20],
the DT model fostered and adopted in this work consists of
the following parts (as illustrated in Figure 2): i) Physical
Asset (PA): is the digitalised physical entity; ii) Physical In-
terface (PI): Handles communication with the physical entity,
typically using network protocols based on the sensors and
actuators involved. Following the 5D model, it represents
the connection between the physical entity and its virtual
counterpart; iii) Core and Models (M): The Core receives data
from the PI, processes it based on the best asset model given
a set of different models, and potentially computes additional
information. The Core stores also the DT data gathered by
the interaction with the PA, respecting the 5D model; and iv)
Digital Interface (DI): Manages interaction with other DTs
and applications, exposes services, and grants access to DT
data and actuator capabilities. This element corresponds to the
services dimensions of the 5D model.

Envisioned hierarchies are therefore reached chaining differ-
ent DTs, i.e., connecting the DI of a DT to a PI of a second
DT. Since a hierarchy is likely to be composed of several
low-level DTs grouped into a higher-level DT, the higher-
level DT can accept connections from multiple lower-level
DTs through its PI. While the core structure captures asset
state, industrial applications require representing relationships
between physical equipment (and their DTs). The DT core
model incorporates properties, events, actions, and relation-
ships. In particular, relationships support hierarchy representa-
tion (vertical relationships), model other physical connections
(like order between equipment - horizontal relationships),
and enable the navigation the DT ecosystem without prior
knowledge (evaluated in Section VI-B).

The process of digitalising and managing synchronisation
between the physical and digital worlds can be denoted as
shadowing [19]. The DT acts (but is not limited to) as a
shadow of the real asset, mirroring its state and capabilities
promptly. For accurate DT updates, changes in the physical
asset are captured by the PI, and processed by the model, and
state changes are shared with the DI. The DT state can only be
changed by processing information from the PI. Nevertheless,
the DT also accepts action requests from entities external to
itself, as other DTs or applications, extending therefore its
capabilities from a simple digital shadow. Change requests are
introduced into the DT from its DI; then, requests are sent to
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Fig. 3: Vital capabilities of Digital Twins for industrial manufacturing (based on [18]).

the core of the DT where the model validates them and then
forwards them to the target PA through the PL

V. MODELLING INDUSTRIAL DIGITAL TWIN ECOSYSTEM

In this Section, we present the proposed industrial DTs
abstraction focusing on the main modeling patterns to build a
structure digital abstraction layer.

A. Data Ingestion & Augmentation

Each machine DT need to have an interface facing the
physical world whose responsibility is to ingest information
received by the physical world. The interface facing the
physical world has to be flexible for the communication needs
of each scenario, i.e. should be possible to use different
protocols and interaction patterns in the interface to flexibly
adapt to the physical world system implementation. A second
aspect to consider in the interface is that it doesn’t realistically
know the information structure received by the physical object.
Therefore, is necessary to consider in the interface some
description of the physical entity received or built at the DT
start. The description can be grouped into abstracted fields
as properties, events, actions, and relationships [21]. After
getting all machine information, they have to be processed
by the DT. Then, information obtained by the physical world
has to be passed to the DT core, where they are manipulated
following some model or function, and then written as the DT
state. Data manipulation is needed to extract some valuable
information from the underlying physical entities.

This is the case, for example, of Overall Equipment Ef-
fectiveness [22], a performance metric for industrial equip-
ment representing how efficient is the system in utilising
the production capacity of production equipment in the time
domain. OEE can be tracked by a production node DT that
monitors its sensors and events and manipulates the received
data to understand if the machine is up and producing at the
designed speed. After the core manipulation and updates, is
exposed externally to other applications or DT entities flexibly
concerning the used protocol, through the DT Digital Interface.

B. Physical World Actionability

In the industrial scenario is also needed a pattern of interac-
tion from the digital environment towards the physical world
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[8]. For example, this can be the case for machine setups,
that must follow some specific information usually shared by
industrialisation and scheduling offices, maintenance activities,
where operators must interact with physical objects and ma-
noeuvre them, or logistics, that must be triggered to coordinate
with the production node buffers. Action capabilities have to
be exposed by the physical objects through their description as
reported in Section V-A, and then are expected to be received
from the digital environment (e.g. from another twin or another
piece of software used by a system actor). As a consequence,
the interaction pattern can be considered as the one depicted
for ingesting information in Section V-A, but with the opposite
flow: the action request comes from the digital interface, which
has the responsibility to correctly handle the request with a
suitable communication protocol. After that, the request is
ingested by the twin core that eventually analyses it, augments
it, or translates it into a set of physical actions. Lastly, the
twin core output is given to the physical interface, which has
to communicate the result to the underlying physical world.

C. Cyber-Physical Relationships

Physical entities are usually related one to another and
between actors in physical world systems. This is also the
case for industrial environments, where relationship constraints
exist to obtain a certain outcome or logic. The very practical
example is represented by industrial layouts, where equipment,
production nodes and supportive pillars are grouped and
related one to another. A very specific sequence can exist
between production nodes, having therefore nodes that come
before and after a given one. Moreover, production nodes can
be grouped into clusters (i.e. departments) and clusters can
express relations in turn. Operators and equipment can be
related to industrial systems, being part of one area as well
as another. Industrial layouts pose constraints also in KPI and
system monitoring: throughput, for example, is a metric that
needs to monitor only the first and last machines in a grouped
system, being thus based on a relationship existing between
them. Hence, DTs need to model also relationships between
them, concerning the represented physical object. Relationship
modelling enables also the possibility of navigating them if
the relationship itself stores a pointer to the related digital
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entity. This characteristic is crucial to have the ability for a
DT or external software to retrieve the needed information
about related DTs.

D. Composition & Hierarchical Views

Industrial architectures are the result of complex composi-
tion and interactions between its sub-parts or sub-systems, that
need to cooperate to fulfil the common goal of production. In-
deed: resources are grouped into departments, departments into
business units, and business units into plants. Talking about
industrial metrics, a KPI involving composition abstraction is
the composed OEE, also called Weighted OEE. Composed
OEE is calculated in very different ways [22]. Nevertheless,
considering a group of machines going from ¢ = 1,...,n , in
the following experiments Weighted OEE is calculated as:

i=1

The composition can be also used to create specialised
views of the same shop floors, letting the high-level com-
position ingest only a subset of data from component DTs.
As a consequence, a composed DT tracking the department
performance through Weighted OEE can exist “in parallel”
with another DT composition tracking the overall energy
consumption of the same department. This mechanism can
be implemented by exposing the digital-side interfaces of a
group of DTs to the interface of the physical side of another
DT: in this way, DTs exposing their digital-side interfaces
act as components, while the DT ingesting data from its
physical-side interface is the composed twin. Composed DT
interfaces (those facing the physical and the digital side) in
this context can be abstracted as input and output interfaces.
Flexibility characteristics in terms of communication protocols
described in Section V-A are also requested in composed twins
as they still need to connect to composition twins and expose
information to other applications or twins, without communi-
cation constraints and with the best communication patterns.
Composition, as depicted so far, is based on a relationship
between heterogeneous DTs that compose a higher-level entity
(e.g., a set of machines composing a department), as reported
in Figure 4. Therefore, in setting up a composition, the
relation existing between sub-components and the composed
DT has to be taken into account when setting the state of
all DTs. Recalling Section V-C, relations “is-part-of” and

net available time;

(1

total net available time
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“is-composed-by” need to be placed in the components and
composed DT, respectively.

E. Application Interaction

The presented distributed DTs ecosystem represents an
effective way to build a digital layer on top of the com-
plexity of the physical world. Thanks to this homogeneous
and interoperable level, external applications can interact at
different DT levels based on required information, capabilities,
and responsibilities. For instance, an app might monitor the
entire shop floor, focus on a specific area, or even modify its
state of affairs to achieve certain goals. For the OEE status
of a department, the external app can query the department’s
DT. If it seeks the OEE of a specific machine in the com-
position, information can be obtained from the machine DT
or the department’s composite DT, depending on the chosen
implementation. A similar pattern can hold for action requests.
If an action involves a single machine, the external application
can make the action request directly to the machine DT. Then,
if the DT analyses the request and finds it feasible, it can pass it
to the underlying physical object. If an action, instead, involves
a group of DTs, the external application can make either one
request to each target DT, or one request to the composed DT
that, in turn, analyses and shares it with component DTs.

The depicted interaction pattern of interaction can happen
when setups are requested at a production changeover. If a
setup involves the whole department or a big sub-set of it,
e.g. eventuality likely to happen in a cellular manufacturing
industrial architecture, is reasonable to have a composed DT
for the whole department whose responsibility is also to man-
age setup requests for each machine. Therefore, the external
application interacting to obtain the setup (for example, a
scheduling application), will request the department DT. Then,
the department DT forwards needed actions to each machine
according to its core analysis. If instead, a setup involves a
single machine, as can happen in a job-shop layout, where
machines are grouped by common working capabilities but
raw material usually does not traverse in sequence more than
one machine in the same department, a direct setup request is
more likely to be passed directly to the machine DT from the
external application.

VI. EXPERIMENTAL EVALUATION

In the implementation of a practical scenario involving com-
posed DTs, we utilised the Multi-process Station with Oven
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module from the Fischertechnik Training Factory Industry 4.0"
research equipment, schematised in Figure 5a. This module
prototypes a flow shop layout with five machines: 3 material
handling machines (a vacuum gripper carrier, a turntable, and
a conveyor) and 2 transformation stations (an oven and a saw
station). The machines are equipped with light barriers, limit
switch sensors, and actuators with 2 or 3 operative states,
controlled by a 24V industry-grade digital board. The control
hardware consists of two computers: a Raspberry Pi-based
soft-PLC directly managing the Fischertechnik factory replica
with a 24V Digital Input-Output expansion board and a laptop.
These layers are interconnected via an MQTT broker. The
envisioned DTs have been implemented using the open-source
project WLDT?, a modular Java software stack designed to
effectively implement IoT and IIoT DTs through its commu-
nication capabilities, shadowing procedures, and augmentation
functionalities [21]. Although other platforms (as presented in
[23], [24]) can achieve similar results, the adopted open-source
library provided the flexibility to map the envisioned DT
modelling, particularly in terms of cyber-physical interactions,
modular augmentation, and the digitalisation of cyber-physical
relationships with navigability and hierarchical composition.

A. Machine-Layer Digitalisation

For each machine in the production system, a DT has
been implemented, categorising the layer as “Machine Layer
DT”. While it is not mandatory to have a single DT per
machine, in this case, a one-to-one mapping has been adopted
for simplicity. Each Machine Layer DT is equipped with
an MQTT Physical Adapter, and HTTP and MQTT Digital
Adapters. The HTTP Adapter exposes endpoints correspond-
ing to the DT nature: the state endpoint for retrieving the DT
state (read-only), and the action endpoint for accepting action
requests. The DT state reflects sensor and actuator states, while
events, such as product-on-carrier and process-completed, are
tracked under each machine’s topic. Augmentation capabilities
vary among machines. For the oven DT, real-time power
consumption data is received, allowing computation of its
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energy consumption in the associated Shadowing Function.
Other machines also track energy consumption, but based on
hypothetical data-sheet power consumption values and events
representing the machine working state, also mapped in the
DTs’ Shadowing Function. Based on the machine working
state is also OEE, computed equally for all the machines of
the use case.

B. Composition & Relationships Navigability

Two composed DTs were created for demonstration: a
department-performance composition view and a department-
environmental composition view. Composed DTs have an
MQTT Physical Adapter subscribed to Machine Layer DT
topics, and therefore receiving data from Machine Layer DTs
Digital Adapters. The received data is processed through
the Shadowing Function and exposed through the Digital
Adapter as Machine Layer DTs, in this case, through an HTTP
Adapter. In the KPI DT Shadowing Function, composition and
augmentation are used to compute the department-weighted
OEE and the energy consumption of the entire department.
Property updates trigger these calculations, allowing different
perspectives of the same production system.

The composed KPI DT includes also throughput computa-
tion, a metric representing production rate capability. Through
navigability and relationships, the DT tracks when a product
starts and ends production in the department, computing
throughput via the timestamps received from the first and last
machines. In the proposed use case, navigability lies in the fact
that the KPI DT, through its composition relationships, navi-
gates the structure depicted in Figure 1, retrieving the needed
information from components themselves. Then, relationships
of retrieved components are analysed, to understand whether
the received update comes from the first or last machine in the
department. The resulting composition structure, reported in
Figure 5b ensures an organic view for stakeholders interested
in the production system’s performance.

C. Experiments & Results

To assess complexity levels with and without its adoption,
we utilised the Physical Complexity Indicator (PCI) introduced
in [25] to measure the complexity level that an external
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Use Case
Criterion Imp. Factor | without DT ~ with DT
Required Protocols (p) 2 2 2
Communication Patterns (c) 1 2

Data Formats (m) 3 5 3
Interaction Points (n) 2 5 1
Aggregation Points (a) 3 5 2
PCI - 46 23

TABLE I: Use case’s PCI with or without DTs.

application faces to communicate with deployed assets, collect
data, and issue commands. PCI is defined considering the
following criteria: i) Required Protocols (p): the number of
application layer protocols needed for digital interaction with
deployed physical assets; ii) Communication Patterns (c): the
number of communication patterns for devices and platforms
interaction (e.g., Publisher/Subscriber or Request/Response);
iii) Data Formats: the variety of data formats, serialisation, and
information representation techniques for reading and sending
data to deployed devices; iv) Interaction Points (n): the
number of modules, services, or platforms an application must
interact with to retrieve target data or consume services; and
v) Aggregation Points (a): the levels of aggregation or compo-
sition needed to abstract the physical world to the appropriate
complexity for observers’ typologies and application goals
(e.g., merging information and telemetry data from machines
in the same production line). Each criterion is assigned an
Importance Factor (IF) on a scale from 1 (lower) to 3 (higher)
that acts as a multiplier. The index is computed as a weighted
sum of the chosen criteria: PC'I = Zle criterion; X IF;.
Results are reported in Figure 6a and Table I, showing how
DTs standardise data formats, presenting a single interaction
and aggregation point to the digital environment. Without DTs,
PCI increases with the number of devices and protocols, while
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DTs decouple physical complexity from the digital aspect,
simplifying interaction with external applications. Despite
being the proposed case study a simplified scenario, in a real-
world layout complexity and fragmentation grow at a high
pace. For example, a number of communication protocols
higher than 2 are likely to be used, making it hard for
higher-level applications to exchange data with the physical
layer. With DTs, instead, communication responsibility is
delegated to the associated twin, which then translates the
communication from the protocol of the machine to the
protocol that mostly suites the needs of upper-layer applica-
tions. The reduced complexity comes at a computational cost
due to the added layer of abstraction. To gauge the impact,
CPU, memory, and Shadowing Function execution times were
measured during an experiment producing 20 pieces over
17 minutes. Figures 6b, 6d, and 6e show execution times
consistently below 5 ms on average, with peak CPU usage
at 2%. Memory usage stayed under 200MB due to garbage
collection. Specific memory optimisations were not applied
to Shadowing Functions, resulting in average execution rates
of 0.12 to 1.35 events/second. In an industrial setting, the
DT of the whole shop floor can serve as an interface for
external applications to monitor and control physical assets.
As an example of this functionality, the prototype includes
software to dynamically adjust production rates based on
market demands or orders. Configuration data is sent to the
machine’s DT via its HTTP Digital Adapter, as detailed in
Section VI-A. The shadowing function of the DT validates the
request and forwards it to the physical controller through the
physical adapter of the DT. In this case, three machines can
adjust their speed: vacuum gripper, turntable, and conveyor
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carriers. An experiment was conducted with the following
parameters: production of 8 pieces; three-speed settings for
each machine (low, medium, high); and an initial low-speed
setting. The first two runs maintained the low speed for the
oven heat-up phase. From the third to the eighth run, each
machine’s speed was incremented. DTs observed the real-
world state in near-real-time. The Department DT monitored
the overall throughput, which was expected to change during
the eight runs due to speed adjustments. Figure 6¢ shows the
observed throughput changes, which confirm the behaviour.

VII. DiSCcUSsSION & CONCLUSION

In this study, we proposed and experimentally evaluated
a distributed modelling approach based on DTs to enable
and improve industrial digitalisation by creating a distributed
hierarchy of twins. The DTs enabled monitoring of production
KPIs and energy consumption, with augmentation techniques
transforming low-level data into high-level insights. Relation-
ships and system navigability facilitated accurate computation
of production throughput, while the DTs accepted actions for
real-time adjustments to production rates. Performance assess-
ment included CPU usage, memory utilisation, and execution
times of DT shadowing functions. Work limitations involve
the usage of industrial protocols as OPC-UA as well as the
involvement of industrial stakeholders’ feedback: future works
will address those aspects, including industrial stakeholders
and exploring the use of multiple industrial protocols, focusing
on adaptability and scalability of the system. Moreover, future
works will include also work-in-process materials scenarios,
the applicability to complex industrial environments, and
exploring collaborations with external applications to fully
harness the potential of DTs in manufacturing.
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