
Lifting ROS to Model-Driven Development:
Lessons Learned from a bottom-up approach

Nadia Hammoudeh Garcia∗, Harshavardhan Deshpande†,
Ruichao Wu‡ and Björn Kahl§

Fraunhofer Institute for Manufacturing
Engineering and Automation (IPA)

Nobelstr. 12, 70569 Stuttgart, Germany
∗nadia.hammoudeh.garcia@ipa.fraunhofer.de,
†harshavardhan.deshpande@ipa.fraunhofer.de,

‡ruichao.wu@ipa.fraunhofer.de, §bjoern.kahl@ipa.fraunhofer.de

Andreas Wortmann
Institute for Control Engineering of

Machine Tools and Manufacturing Units (ISW)
University of Stuttgart

Seidenstr. 36, 70174 Stuttgart, Germany
wortmann@isw.uni-stuttgart.de

Abstract—The benefits of using model-based technologies are
well proven in different sectors. However, in robotics, where the
dominant framework is one whose nature is to create the code
by hand, MDD approaches are struggling to gain a foothold. Our
approach is distinctly different from traditional MDD solutions,
we have created models and tools with a bottom-up perspective,
i.e. analyzing “ everyday” code and encapsulating this existing
code in models. In this paper we present the lessons learned
from (1) designing the models to encapsulate ROS hand-written
code, (2) creating tools to ease the production and debugging
of complex systems using the models, and (3) applying them to
real use cases. Through this work we have identified in which
situations it is worth using model-based technologies and in which
situations the traditional approach is more meaningful. Our aim
is to give a broad view of our conclusions and inspire the design
of new model-based tools for the assistance of roboticists.

Index Terms—MDD, robotics, ROS

I. INTRODUCTION

In many established domains, such as the automotive sector,
model-based technologies are used on a daily basis to optimize
software development. Among other features, model-driven
efforts facilitate software portability and interoperability and
can automate some steps by generating code, as well as
validate the implementation while designing and reducing the
number of defects of the final code.

In robotics, since its release in 2007, the Robot Operating
System (ROS) [19] has dominated software development. ROS
has expanded very quickly, in part due to its low barrier to
entry, rapid prototyping characteristic, and the use of popular
programming languages such as Python or C++. Unfortu-
nately, within the ROS community, the typical developer codes
manually for rapid deployment [21]. There is no culture of
modeling the design before the implementation phase, an
approach more adequate for industrial applications.

Traditional software development, assisted by model-based
tools, has a top-down lifecycle, i.e., firstly, the models are
created and, secondly, from these models new code is created.
Several initiatives, like the EU-project BRICS (Best Practice
in Robotics) [3], have tried to introduce Model-Driven Devel-

opment (MDD) in robotics, but the low acceptance of the ROS
community to adopt them has resulted in little success.

After an experience with ROS by collaborating on projects
together with industrial partners in various sectors such as
logistics or production, and being aware of its potential and its
incursion into industrial domains [22], we have analyzed the
factors behind the community’s displeasure of using models
and worked on a solution, a way of introducing models, that
would make the models more user-friendly for the typical ROS
developer.

That is why we have opted for a bottom-up approach, i.e.,
starting from existing code and transforming it into models. In
this way we enable the developer to continue implementing the
code manually, but all the relevant information is translatable
into models that can be used, e.g., for testing, composition or
to generate new packages.

In this paper, we convey the lessons we have learned during
the development process of our models and the tools to operate
them. This includes both the problems we have encountered
in trying to represent ROS concepts in models and the benefits
we have been able to gain from MDD to improve ROS. Our
findings may serve to inspire future work in this field, in
particular, to establish where MDD may be most valuable and
where it may not be worth the effort.

II. BACKGROUND

A. ROS

ROS [8] is characterized by its little architectural con-
straints, and a federated development model.

The most well known aspect of the ROS architecture is
the computation graph. ROS systems are composed by a set
of processes called nodes. The nodes run all at the same
time and can communicate among them with three types of
mechanisms: the topic, service and the action patterns.

The objects of the communication (e.g., messages, services
and actions types) are defined using language-independent data
structures composed of common data types (String, Double,

31

2023 IEEE/ACM 5th International Workshop on Robotics Software Engineering (RoSE)

979-8-3503-0184-7/23/$31.00 ©2023 IEEE
DOI 10.1109/RoSE59155.2023.00010

20
23

 IE
EE

/A
C

M
 5

th
 In

te
rn

at
io

na
l W

or
ks

ho
p

on
 R

ob
ot

ic
s S

of
tw

ar
e

En
gi

ne
er

in
g

(R
oS

E)
 |

97
9-

8-
35

03
-0

18
4-

7/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
R

oS
E5

91
55

.2
02

3.
00

01
0

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 16:00:32 UTC from IEEE Xplore. Restrictions apply.

Int, Boolean . . .). Launch files are used to start a group of
nodes, as well as to set global parameters and their values.

Since its launch in 2007, this framework has been widely
supported by the robotics community. In 2016 the new version,
ROS 2, was released, with the main goal of adapting ROS to
new needs, such as improving the quality and the security of
the systems.

B. Kinematics Modeling

Unified Robotics Description Format (URDF) is an XML
specification used to model multi-body systems.The specifi-
cation covers the kinematic and dynamic descriptions of the
robot, the visual representation of the robot, and the collision
models of the robot. The advantage of having a non-interpreted
data exchange format is that the robot system can be described
independent of the code, which can then be reused and
consumed in many different softwares like collision checking
and dynamic path planning. A parser parses this URDF file
and populates C++ or Python URDF data structures. There are
some limitations with URDF. The most notable ones are

• robot description cannot be changed (immutability),
• only tree structures (no loops),
• no sensor models, and
• low reusability of URDF files (composability).

The first three limitations are out of the scope of this paper.
The problem of composability is solved with the widely used
Xacro, an XML macro language. The Xacro file has to be dy-
namically converted into a URDF file before being consumed
by the target software. Syntax and parser errors happen for
a variety of reasons during this conversion process resulting
in an exception thrown by Xacro tools. Many other non-
interpreted data exchange formats like SDF [9] (Simulation
Description Format, an XML format that describes objects and
environments for robot simulators, visualization, and control)
and COLLADA [2] (COLLAborative Design Activity, an
interchange file format for interactive 3D applications) and
also interpreted forms (Python or Ruby based) have been
proposed, though they have not been accepted by the wider
community.

III. RELATED WORK

A. MDD approaches in robotics

The BRICS (Best Practices in Robotics) [14] project
joined a model-driven approach with a separation of concerns
paradigm. Also, they introduced the BCM (BRICS Component
Model) which serves as a high abstraction model to describe
the characteristics of the robotics software independently
of the actually deployed framework. The BRICS Integrated
Development Environment (BRIDE [15]), bridged BCM and
ROS using model-to-text (M2T) transformations to generate
ROS skeleton code.domain expert.

There are other examples of how we can generate ROS
applications, starting from modeling languages. A previous
effort uses AADL to represent and generate ROS code [13], a
case study of this approach shows the complexity of this type
of solution because of the high degree of expertise required.

Along the same lines of system architecture representation
but with a more sophisticated approach [12], domain-specific
M2M transformations can be used to optimize code generation,
and more easily scale the robotic application to be imple-
mented.

All of these efforts follow a traditional MDE top-down
approach with the generation of boilerplate code from the
models, but they do not support the import of existing code
created manually.

The most recent community attempt is the RobMoSys
project [6]. This project promoted the use of MDE techniques
through cascaded funding initiatives. The RobMoSys project
enables the use of their conceptual models through two
toolchains:

• SmartSoft [20], a service-oriented component-based ap-
proach for the definition of the full robotic application.
It provides code generators, validators, and textual and
graphical editors for robot system designers, component
developers, and others.

• Papyrus for Robotics [5], apart from being a solution to
design, simulate and deploy robot applications, it checks
safety measures by performing dysfunctional analysis on
the components.

The RobMoSys project has made great improvements in inter-
operability between frameworks, as well as in the separation of
roles by offering different perspectives of its tools. However,
it has not accomplished major results in the integration and
re-utilisation of existing code and systems.

IV. CONTEXT AND PRACTICAL USE OF OUR APPROACH

All the work presented in this section is open-source1.
To get a deeper understanding of our metamodels please
check our previous publication in the topic [18]. Concrete
experiments and examples applying the technology are also
publicly available [17]2.

A. Bottom-up approach. From code to models.

In our case, we divided the development into two parts.
Firstly we implemented the metamodels and secondly tools
that allow us to automatically convert existing software into
models, called extraction tools.

1) Metamodels: The first step was to determine which parts
of the information in a ROS package we want to cover with
our models. In our case we relied on three aspects:

1) The information represented in a ROS package containing
the source code of a node.

2) The information of a running system once the launch file
has been started.

3) The description of the robot’s kinematics.
Apart from that, we have to cover two dimensions, on the

one hand, the basic concepts that characterize a ROS package
(node, topic, message, service, etc.) and on the other hand,

1https://github.com/ipa320/ros-model and https://github.com/ipa320/
kinematics-model

2https://github.com/ipa-nhg/ros-model-examples

32

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 16:00:32 UTC from IEEE Xplore. Restrictions apply.

the generic concepts that we want to represent (interface, port,
component, systems, etc.).

For the ROS aspects, it was sufficient to analyze the
most representative ROS packages as well as the existing
documentation and Wiki to identify all the information that
should be represented in the models.

The kinematics in ROS is a special case since it uses
the URDF format (Sec. II-B), which is already a model.
But the specification for the model exists only as outdated
Wiki pages [10] and as hardcoded data structures along with
validation functionality in the C++ and Python parsers. Even
though an attempt has been made to formalize URDF [11], it
has never been utilized.

For generic concepts, we looked for existing standards to
take as a basis and inspiration. Among them, we opted for
the OMG standard about “Deployment and Configuration of
component-based Distributed Applications” [16], in addition
to it, we studied the models created by other initiatives like
the BRICS and RobMoSys.

Fig. 1: Simplified representation of the RosSystem metamodel

We decided then to design three types of models:
1) Representation of the information in a package, our

ROS model. The filesystem information, the definition
of the communication objects (i.e., messages, services,
and action types) as well as the description of the nodes,
their names, which topics, services, and actions they use,
and the parameters they consume and set.

2) Representation of a system, our RosSystem model. A
system is a composition of components, where a compo-
nent can be one or several nodes. This model references
the nodes of the ROS model. Fig. 1 shows a simplified
version of its metamodel.

3) Representation of kinematics information, our Kinemat-
ics model. The kinematic (links and joints) and the
dynamic description (inertia) of the robot, the visual
representation of the robot, and a collision model of the
robot.

2) Extraction technologies: In our view, one of the reasons
behind previous MDD efforts were not well adopted in the
ROS community is because they are based on generating
new code from the models, while in ROS there is already a
large catalog of open-source components. The usual practice

in this framework is to reuse existing code. Therefore we put a
significant effort into the automatic extraction of models from
existing code.

We do this in three different ways: (1) Using static code
analysis for C++ and Python, (2) with observers to the ROS
rosgraph during the execution time, and (3) parsing existing
models like URDF format files.

B. Practical applications

In this section, we will give a brief overview of the most
representative tools we have created based on our models.

1) Composability / Integration: We have created tools for
the composition of both ROS nodes and physical components
at the kinematic level. A graphical interface allows to import
of models of nodes and kinematics components and easily
builds the connections between them. In addition, a compiler
takes care of validating that the connections are correct (e.g.,
the same type of message by the publisher and the subscriber)
and finally automatically generates the artifacts of the compo-
sition, i.e., launch files for the system and xacro files for the
kinematics.

This approach has been successfully tested with different
robot systems with different levels of complexity3.

Furthermore, the use of abstract component models in the
system composition process easily allows to handle of multiple
software frameworks in one application. As proof of concept,
we developed a code generator for interfacing native ROS
nodes and SmartSoft components4.

2) Gather best practices: Our models are accompanied
by their respective DSLs (Domain Specific Languages). This
approach allows us to create a textual editor that, among other
features, integrates an auto-complete function. We use it to
suggest to the user the objects to use, e.g., common message
types while defining a publisher. Apart from that the validators
of the DSLs contain rules to follow the ROS conventions, for
example, the naming conventions defined in the REP 1445, as
it is showed in Fig. 2.

Fig. 2: Warning message shown when the designed
components do not follow the naming conventions.

3) Identification of design patterns: We used the static code
analysis tool to get the models of all the packages listed on
the ROSDistro. Then, using a comparison algorithm we were
able to identify common design patterns.

For example, in our analysis of the ROS Noetic Distro6 we
found a total of 384 useful models automatically, passing our

3https://github.com/ipa-nhg/ros-model-examples/tree/master/RosSystems
4https://github.com/seronet-project/SeRoNet-examples/tree/master/

SeRoNet-Tooling-ROS-Mixed-Port
5https://ros.org/reps/rep-0144.html
6https://github.com/ipa320/RosCommonModels

33

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 16:00:32 UTC from IEEE Xplore. Restrictions apply.

comparison algorithm this resulted in a total of 44 common
design patterns.

As a long-term feature, this can be the base of a catalog of
components categorized by functionalities, as well as it could
be a good impulse for the definition of common specifications.

4) Runtime diagnosis: Our introspection tool called ROS-
Graph monitor7 uses the rosgraph node to obtain information
about the running system, this is compared to the designed
system model and publishes an error message in case one of
the desired nodes is not present at the execution time. This
tool is completely generic and uses the standard diagnostic
message type from ROS. Fig. 3 represents an example of the
use of these tools. The desired system (as a .rossystem model)
is created using the system designed and compared at runtime
with the actual running system. In case of unexpected node
shutdown, a diagnostic message was published with ”Missing
node” error. Also we can set specific observers like for the
battery component. This module observes the current battery
level of the robot and in case it dropped below the prescribed
threshold, a diagnostic message will be published with an error
”Battery level below threshold”.

Fig. 3: Overview of the ROSGraph monitor tool.

V. LESSONS LEARNED

A. Models design

In this section, we analyze the lessons we learned by
designing our models from ROS existing code.

1) Level of abstraction: In ROS there are no developer
roles. In general, the same person is in charge of developing
new packages, integrating, testing, and finally deploying them.
The consequence of this is that there is no clear distinction
between the software related to each phase of the integration
process. All code packages are treated in the same way,
regardless of whether they are specific (like a concrete arm
driver), generic (like the robot manipulation platform Moveit!),
low-level or high-level, and there is usually no division into
subsystems or blocks. This is a major drawback when creating
models and deciding on their level of abstraction. Many of
the classic concepts of component, module, or system are
undefined in ROS, the developer has the freedom to decide the
type of modularity of the resulting system. Thus, we decided

7https://github.com/ipa320/rosgraph monitor

to define a component as an entity with a name and a set
of interfaces (i.e., input and output ports). In this way, a
component can be either a single node as a system or a union
of nodes, independent of how it is created internally. This type
of component can be combined to create new systems. With
this approach, we give the integrator all the freedom that she
has in ROS to define the granularity of the system. Besides
that, we can highlight two disadvantages of this approach:

• The systems models created as compositions of sub-
systems are complicated sets of model references. This
resulting model is not very readable and practically
impossible to create by hand, so we had to create a
series of tools to help the user to create the systems in a
graphical way.

• In the generator part, where for one system we generate
ROS launch files, all the structure is lost, and we can
only create a large launch file with a list of nodes that at
most if the user has created it correctly, will be divided
according to their namespaces.

In this case, it would probably be preferable to prescribe cer-
tain rules when defining components and subsystems, adding
more rigidity to the definition and distinguishing between
systems made up of simple components and systems made
up of sub-systems. In this way, the definition of conventions
and best practices can help to unify the models, and, in
addition, would make the systems much more modular and
these modules reusable.

2) Applicability of standards and framework-independent
concepts: As previously mentioned Sec. IV-A1, to create
the models we were inspired by an OMG standard that
defines the concept of a system as a composition of con-
figurable components. Thanks to this mechanism we enable
the M2M (model-to-model) transformation with other MDD
framework-independent approaches at the component level. To
demonstrate the advantages of this concept we developed a
model transformer between ROS and the SmartSoft Model
Driven Software Development(MDSD) [20] to be able to auto-
generate glue-code between ROS native components and OPC-
UA or ACE middlewares. This approach is compatible with
the RobMoSys [6] concept.

3) Overcoming ROS models limitations: To design the kine-
matics, as mentioned above in Sec. II-B, there has already been
an effort to create an XML-based specification of kinematics
that can be used as a meta-model description. One of the
reasons XML-based specification of kinematics has not been
accepted in the ROS community is that it cannot describe
URDF elegantly. In this regard, two re-design aspects can be
highlighted:

a) Types and attributes poorly supported: An example
clause from URDF that is difficult to describe through an XML
schema is The ”limit” element of the ”joint” element can only
have ”lower” and ”upper” attributes IF the ”type” of the joint
is not ”continuous”.8. To overcome this problem, we have to
modify the models to comprehend four different sub-classes

8Paraphrased from http://wiki.ros.org/urdf/XML/joint.

34

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 16:00:32 UTC from IEEE Xplore. Restrictions apply.

for the joint types: fixed, continuous, revolute, and prismatic
since each class has attributes that are specific to its type.

b) Unclear split of concepts: The current URDF specifi-
cation combines three different aspects of the robot hardware
description: kinematics, dynamics, and geometry. We decided
to modify the model to split it into three sub-models. The rea-
son for this is to enable different developers (model users) to
work on the domain of their expertise. This allows to extension
of any of the sub-models for special cases without affecting the
overall specification. Over time if it is accepted by the wider
community, it can be integrated into the corresponding sub-
model. In addition to URDF, a meta-model for composition is
defined, which is currently one-to-one mapped to Xacro. This
allows for the logging of accurate error messages.

Many of the classic concepts like components, mod-
ule,s or systems are undefined in ROS. Thus, we
created a component entity whose description is in-
dependent of how it works internally, i.e., it can be a
single node or a composition of several nodes.

B. Model simulations: Use-cases application

In this section, we analyze the learnings from applying the
models in real use cases.

1) The limitations of extraction technologies: The success
rate of static code analysis tools varies considerably in ROS.
There are too many code styles that cannot all be supported.
In previous experiments [18] we were capable of successfully
finding 66% of the information with this technique. Con-
versely, extracting the full model from code at runtime is,
on the one hand, dangerous, and on the other hand, it is not
possible to reliably access all information, e.g., all information
about the file system level is lost. Even for ROS1 we also
cannot distinguish at runtime which node set which parameter,
and we cannot get the data about the services, i.e., they are
only visible if they are called. A redesign of our current tools
is necessary.

2) Inconsistency between design-time and runtime infor-
mation: We found three specific peculiarities that break the
coherence of the models at design time with respect to runtime
and that are hard to overcome:

a) The name of an interface can be given by using input
arguments: We separate the information coming from a node
(from its source code (C++ or Python) with the system-level
information (what is in a launch file). However, in ROS a
very common technique is to pass the name of an interface
(e.g., of a topic) as an argument in the launch file or even as
a parameter. This means that this information, which for us
should be static, is only given when the node is instantiated.

b) The type and name of the interfaces are parsed as
parameters: A very clear and well-known example of this
particularity is ros control. In this case, the parameters specify
the type of controller that will be started (i.e, a joint trajectory
controller, a velocity controller, or a position controller...). This

node at runtime checks the parameters and, only then, starts
the interfaces particular to the selected controller type.

c) The use of nodelets in ROS1: Nodelets provide a way
to compose nodes into a single process, that allows zero-
copy passing of data between nodelets in order to reduce the
network traffic. During design time, nodelets can be composed
in a launch file using a specific language construct. However,
nodelets provide the same interfaces as nodes at runtime,
therefore, our models treat nodelets as the same as nodes.

3) Lack of conventions: In ROS there are a set of recom-
mendations available in the REPs (ROS Enhancement Propos-
als) [4], some of them are used as common conventions but
they are not mandatory. Furthermore, these REPs do not cover
all aspects. When using our models for system integration we
encountered two problems related to this issue:

a) Structure of the launch files: There is no description
of good practice on how to organize or split a launch file. In
ROS1 the options are limited so, apart from deciding where
to set the parameters and how to create launch file groups
or include, we can handle most cases with our system models
and code generators. However, in ROS2, the options get wider
because a launch file can be implemented in Python, XML,
and YAML. Especially, when a launch file is implemented
in Python, apart from different coding styles, there is no
clear guide as to when and how nodes and processes should
be launched. For example, there are big differences between
launch files of MoveIt! configuration packages for the panda9

and Universal Robots10 manipulators.
b) URDF/xacro: Certain REPs exist to specify naming

conventions and semantic meaning for coordinate frames of
mobile platforms, industrial arms, and cameras (for example
[7]). These conventions provide a specification to develop
better integrable and reusable software components that can
be used with a variety of robots. Even though most OEMs
follow the conventions, it is not always the case. Also, these
conventions are broken in multi-robot scenarios, where is it
necessary to add a ”prefix” to distinguish similarly named
coordinate frames.

The lack of conventions or well-defined good practices
is a big drawback to implementing an MDD solution
as there are no guidelines for the code to be generated.
In our case, we had to put effort into analyzing existing
code and interview experts to build our solution on a
best-practices basis.

VI. LEVERAGING THE TRADITIONAL BENEFITS OF
MODEL-BASED TECHNOLOGIES

In the Tbl. I we summarise, based on our experience, to
what extent the use of MDD has been beneficial or dis-
advantageous compared to ROS. The first column lists the

9https://github.com/ros-planning/moveit resources/blob/ros2/panda
moveit config/launch/demo.launch.py.

10https://github.com/UniversalRobots/Universal Robots ROS2 Driver/
blob/2.2.6/ur moveit config/launch/ur moveit.launch.py.

35

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 16:00:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Table analyzing advantages and disadvantages of using Models compared to ROS in various dimensions

MDD benefit/disadvantage How?

Reduce the gap between experts and developers Models are easier than code to be understood for all the different project and process profiles.

Empowers domain experts There isn’t a clear split of domain experts within the ROS developers community. But our models make the only division between low-level code developers and system integrators.

Enforce Architecture The graphical editors and the system models are based on the architecture representation, this is missed by the ROS traditional approach.

Introduce rigidity The use of models introduce always rigidity, however so far with our bottom-up approach, we didn’t find restrictions on what is allowed in ROS.

Programmers can focus on code logic The code generators make automatically the tedious and repetitive work.

Modularity of the software architecture System models help to structure a system and its modules.

Interoperability with other frameworks M2M transformations automatize the bridges generation between frameworks.

Portability to new technologies This was not yet demonstrated with our models.

Unification of specifications The use of models facilitates the identification and use of design patterns.

Documentation equals Implementation The type of models we provide servers as ROS nodes and systems documentation.

Up-to-date documentation The models describing the code serve as documentation, every model update comes together with documentation update.

Increase productivity and efficiency Validation and code generators avoid typo errors and repetitive work. Significantly reduces debug tasks, which in ROS are typically trail-error methods.

Automatization of tasks Code generators and M2M techniques automatize tasks.

Faster Development Time For the case of large systems, the time is significantly reduced.

More cost-effective The tests made so far do not demonstrate it. But we expect that this will be the case for large systems once the user is familiar with the use of our tools.

Less error prone All the URDF and launch files created manually are highly error-prone. Thanks to code generators we avoid this.

Validation at design time The DSLs associated with the models include rules that are checked while editing the model.

Meaningful validation At design time ROS does not allow validation at all, while the DSLs implementations take care of it.

High quality software The generation of code does not ensure high-quality software.

VCS not efficiently supported The code generated automatically is not for all the features well handled by VCS systems.

Friendly-development environment MDD tools enable graphical editors, however, this is not necessarily more friendly for a ROS developer.

Lower the entry barrier ROS entry barrier is very low, due to the use of general-purpose programming languages. MDD requires learning the use of new tools and domain-specific languages.

typical virtues [1] and shortcomings that are often mentioned
when talking about model-based technologies. In green are
represented those that we believe have been evident when
using our approach, in red those that have not, where the
manual solution used in the community is preferable. We have
left blank those where we have not been able, through our
experiments, to demonstrate. This overview is intended to give
only an insight into our findings, clearly, these points need to
be studied in detail with practical examples in order to be
accurately evaluated and scored.

VII. CONCLUSION

In this paper, we present what we have learned from our
efforts to combine ROS with MDD using a bottom-up, code-
to-model approach. Thanks to this experience we have formed
an initial picture of where MDD can improve the development
of robotic systems with ROS and where ROS is much more
powerful. Our next step is to evaluate quantitatively to what
extent this improvement is significant, and in which cases and
at what level of system complexity it is worthwhile to use
MDD techniques. In addition, we will continue to develop our
tools to make them more user-friendly to the ROS community
and to mitigate further known shortcomings.

REFERENCES

[1] “15 reasons why you should start using Model Driven Development.”
[Online]. Available: http://www.theenterprisearchitect.eu/blog/2009/11/
25/15-reasons-why-you-should-start-using-model-driven-development/

[2] “COLLADA,” https://www.khronos.org/collada/.
[3] “Eu research results: Best practice in robotics (brics).” [Online].

Available: https://cordis.europa.eu/project/id/231940
[4] “Index of ROS Enhancement Proposals (REPs),” http://www.ros.org/

reps.
[5] “Papyrus for robotics - A graphical development environment for

robotic applications.” [Online]. Available: https://www.eclipse.org/
papyrus/components/robotics/

[6] “RobMoSys - Composable Models and Software.” [Online]. Available:
https://robmosys.eu/

[7] “ROS Enhancement Proposal for Coordinate Frames for Mobile Plat-
forms,” https://www.ros.org/reps/rep-0105.html.

[8] “ROS: Robot Operating System,” http://www.ros.org/, accessed: 2022-
11-25.

[9] “SDFormat,” http://sdformat.org/.
[10] “URDF: Unified Robot Description Format,” http://wiki.ros.org/urdf/

XML, accessed: 2022-11-25.
[11] “URDF XML specification,” https://github.com/ros/urdfdom/blob/

master/xsd/urdf.xsd, accessed: 2022-11-25.
[12] K. Adam, K. Holldobler, B. Rumpe, and A. Wortmann, “Engineering

robotics software architectures with exchangeable model transforma-
tions,” 04 2017, pp. 172–179.

[13] G. Bardaro, A. Semprebon, and M. Matteucci, “A use case
in model-based robot development using AADL and ROS,” in
Proceedings of the 1st International Workshop on Robotics Software
Engineering, ser. RoSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 9–16. [Online]. Available:
https://doi.org/10.1145/3196558.3196560

[14] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar,
L. Gherardi, and D. Brugali, “The BRICS Component Model: A
Model-based Development Paradigm for Complex Robotics Software
Systems,” in ACM Symposium on Applied Computing (SAC), ser. SAC
’13. New York, NY, USA: ACM, 2013, pp. 1758–1764. [Online].
Available: http://doi.acm.org/10.1145/2480362.2480693

[15] A. Bubeck, F. Weisshardt, and A. Verl, “BRIDE - A toolchain for
framework-independent development of industrial service robot appli-
cations,” in International Symposium on Robotics (ISR/Robotik), June
2014, pp. 1–6.

[16] “Deployment and configuration of component-based distributed appli-
cations,” 2016, version 4.0.

[17] N. Hammoudeh Garcı́a, H. Deshpande, A. Santos, B. Kahl, and
M. Bordignon, “Bootstrapping MDE development from ROS manual
code - Part 2: Model generation and leveraging models at runtime,”
Software and Systems Modeling, Apr 2021. [Online]. Available:
https://doi.org/10.1007/s10270-021-00873-2

[18] N. Hammoudeh Garcia, M. Lüdtke, S. Kortik, B. Kahl, and M. Bor-
dignon, “Bootstrapping MDE development from ROS manual code -
Part 1: Metamodeling,” in 2019 Third IEEE International Conference
on Robotic Computing (IRC), Feb 2019, pp. 329–336.

[19] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in IEEE International Conference on Robotics and Automation
(ICRA) - Workshop on Open Source Software, 2009.

[20] C. Schlegel and R. Worz, “The software framework SMARTSOFT
for implementing sensorimotor systems,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, 1999, pp.
1610–1616 vol.3.

[21] L. J. D. L. Yoonseok Pyo, Hancheol Cho, ROS Robot Programming
(English). ROBOTIS, 12 2017.

[22] L. Zhang, R. Merrifield, A. Deguet, and G.-Z. Yang, “Powering the
world’s robots—10 years of ROS,” Science Robotics, vol. 2, no. 11,
2017, http://robotics.sciencemag.org/content/2/11/eaar1868.

36

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 16:00:32 UTC from IEEE Xplore. Restrictions apply.

