
Maturity Evaluation of Domain-Specific Language
Ecosystems for Cyber-Physical Production Systems

Sandra Greiner1, Bianca Wiesmayr2, Kevin Feichtinger2, Kristof Meixner3, Marco Konersmann4, Jérôme Pfeiffer5,
Michael Oberlehner2, David Schmalzing4, Andreas Wortmann5, Bernhard Rumpe4, Rick Rabiser2,6, Alois Zoitl2,6

1Software Engineering Group, University of Bern, Switzerland
2LIT CPS Lab, Johannes Kepler University Linz, Austria

3CDL SQI, Institute of Information Systems Engineering, Technische Universität Wien, Austria
4Software Engineering, RWTH Aachen University, Germany

5Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW), University of Stuttgart, Germany
6CDL VaSiCS, LIT CPS Lab, Johannes Kepler University Linz, Austria

∗E-Mail: sandra.greiner@unibe.ch

Abstract—Engineering Cyber-Physical Production Systems
(CPPSs) heavily relies on Domain-Specific Languages (DSLs),
which are tailored to a specific class of problems inherent to
CPPSs. DSLs enable non-programming experts to solve prob-
lems in their domain, such as modeling production processes,
implementing control software, or managing the variability of
production systems. A DSL ecosystem encompasses the entire
infrastructure (e.g., libraries and tools) built around its language
and contributes to the successful and easy adoption thereof by
domain experts. We present a maturity evaluation model for DSL
ecosystems serving two aims: to developers, it reveals missing
but essential aspects of the ecosystem, and users (e.g., industrial
companies) can evaluate the maturity of a DSL ecosystem. We
propose criteria to evaluate the maturity of DSL ecosystems and
apply them to existing, publicly available DSLs which have been
adopted in CPPSs. The results demonstrate that all components
of the model are covered and they allow for deriving hypotheses
about DSL ecosystems used in CPPSs.

Index Terms—Cyber-Physical Production Systems, Domain-
Specific Languages, Development Tools

I. INTRODUCTION

Cyber-Physical Production Systems (CPPSs) are mod-
ern production systems for manufacturing (custom-tailored)
goods [1]. Developing CPPSs requires addressing various
engineering viewpoints, including mechanical, electrical, au-
tomation engineering, and computer sciences [2]. Furthermore,
the manufacturing domain increasingly enhances production
facilities with various software applications, such as data
acquisition from physical components, digital twins of the
physical system, or AI-enabled applications. Consequently,
designing and maintaining CPPSs involves engineers from
diverse backgrounds, creating a multidisciplinary environment.

The financial support by the Christian Doppler Research Association,
the Austrian Federal Ministry for Digital and Economic Affairs and the
National Foundation for Research, Technology and Development is gratefully
acknowledged. The authors of the University of Stuttgart were supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
[grant number 441207927]. Authors of Johannes Kepler University Linz have
received funding, in parts, from the European Union’s 1-SWARM project
under grant agreement 871743.

Changing requirements, uncertain conditions, and evolving
CPPSs [3] represent only some challenges inherent to de-
veloping and operating software for CPPSs. Domain-specific
notations, specified in Domain-Specific Languages (DSLs),
address the needs of each engineering viewpoint. These nota-
tions convey challenges of integrating heterogeneous artifacts
created by the respective domain experts [4]. Beyond that,
domain experts rather than trained software engineers typically
develop the software for CPPSs. Thus, software engineering
methods, such as modularization or program complexity anal-
ysis, and recent development and maintenance approaches,
such as agile methods, continuous integration, and variability
modeling, hardly reach the CPPS domain [4], [5].

DSLs are languages tailored to a specific domain and may
not allow for creating programs beyond the scope of this
domain [6]. Due to this focus, DSLs can be optimized for
domain experts with little to no programming background
through simplified textual or graphical syntax. Thus, DSLs are
crucial in industry [6], where engineers develop processes and
the required control software for production systems (Sec. II).
In CPPS engineering, DSLs support the engineering process by
enabling aspects, such as modeling the configurability of a pro-
duction plant or developing the control software of production
resources. Examples span from variability modeling languages
[7] over languages based on IEC specifications [8] to archi-
tecture languages, such as MontiArc [9]. A DSL ecosystem
comprises the entire infrastructure surrounding the DSL, such
as tool environments, style guides, or its documentation.

While software engineering research established a vast
knowledge on developing and designing DSLs [10] and build-
ing respective tools [6], industrial needs tend to drive an ad-
hoc and uninformed development of DSL ecosystems used
for CPPSs. Thus, it is crucial for DSL developers to assess
the maturity of the DSL ecosystem to identify potentials for
improvement. Moreover, for users with little programming
background, it is challenging to identify a mature DSL ecosys-
tem. To address both needs, this paper contributes the maturity
evaluation model for DSL ecosystems (Sec. III). It allows

20
23

 IE
EE

 2
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
m

er
gi

ng
 T

ec
hn

ol
og

ie
s a

nd
 F

ac
to

ry
 A

ut
om

at
io

n
(E

TF
A

) |
 9

79
-8

-3
50

3-
39

91
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
FA

54
63

1.
20

23
.1

02
75

62
4

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

engineers from heterogeneous backgrounds determining the
maturity of a DSL ecosystem for CPPSs qualitatively. To
evaluate the applicability of the model, we apply it to distinct,
publicly available DSL ecosystems employed in CPPS engi-
neering (Sec. IV). We find that all components of the model are
needed to evaluate maturity of a DSL ecosystem and observe
qualities of ecosystems which may correlate with its maturity.

II. BACKGROUND

This section illustrates various viewpoints in CPPS engi-
neering through an example, and presents a diverse set of
DSLs used in CPPS engineering. We show how to employ
each DSL in the example and outline challenges arising from
using immature DSLs ecosystems in CPPS engineering.

A. CPPS Example

To illustrate the use of DSLs in CPPS engineering, let us
consider shift forks, as parts of manual transmissions, which
move cuffs along pipes to the correct position so that the gears
mesh for the correct gear. The shift fork use case [11] describes
a real-world CPPS, which produces a set of shift fork types.

Engineering CPPSs requires several activities, such as suit-
ably modeling the product portfolio or defining the control
structure. For instance, the type comparison matrix repre-
sents a traditional artifact for product-part definitions, which
compiles product types as columns and their parts (e.g., the
different pipes and forks) as rows. However, such matrices
usually miss precise semantics and attribute definitions, which
may provoke misconceptions. Similarly, control software for
production resources (e.g., robots welding the forks to the
pipe) can be specified in languages residing at a low-level
abstraction, such as Assembly. The flexibility causes programs
that are hard to comprehend and debug.

These issues call for accurate models of CPPS concepts to
foster easy use and understanding, to separate the concerns
of the involved disciplines, and to let engineers from these
disciplines collaborate over the engineering life-cycle [12].
DSLs aim to fulfill these properties and overcome the de-
scribed shortcomings by addressing the defined scope of CPPS
engineering, for instance, with a product definition with rich
semantics. Today, CPPS engineers already use various DSLs of
varying maturity, such as SysML for system conceptualization
or IEC 61499 for control code (cf. Section II-B). The maturity
level of these DSLs has to be suitable for an efficient and
effective industrial application.

B. Examples of DSLs (Ecosystems for CPPS)

IEC 61499 [8] defines a graphical language for developing
control software. The DSL helps developers to abstract the
software from the physical inputs and outputs. The block-
based application models consist of software components that
are collected in a library and can be executed in a runtime
environment that is compliant with IEC 61499. In our use
case, the DSL can be employed to develop event-based control
software for the robot arms, which assemble the shift fork.

SysML v1.6 [13] is a modeling language for systems
engineering applications based on a subset of UML 2 [14].
SysML provides languages for specification, analysis, design,
and verification as well as structural elements (denoted as
blocks) that can be composed to represent the system’s struc-
ture. In the shift fork use case, block diagrams can be used
to model the production-resource hierarchy. Connected parts
define the usage of blocks in an internal block diagram.
Connectors between ports can describe the flow of items
between parts. Besides a block and the internal block diagram,
SysML extends UML with a parametric diagram, which can be
utilized to express constraints between properties. As the stan-
dardization is not finalized yet, we do not regard SysML v2.

MontiArc [9] is a formally defined language for modeling
the architecture of distributed systems through hierarchical
components and connectors. A key property is its easy ex-
tensibility, allowing for integrating new functionalities with
little effort. Components perform computations and are in-
terconnected by type-directed ports. Typed components are
instantiated. Similar to IEC 61499, the language can be used
to define the control software of production plants. MontiArc
is closely related to SpesML [15]which adds a methodology
and graphical editing to the underlying concepts. In the shift
fork use case, the component controlling the robot arm may
get two forks as input and assemble them as an output.

Variability (Modeling) DSLs [16] describe configurable
software-intensive systems. For instance, IVML [17] is a
modular textual variability modeling DSL to specify the
variability of service platform ecosystems based on decision
modeling principles [18]. As such, varying CPPS aspects can
be described and configured by selecting varying parts and
a reasoner can validate these configurations. By supporting
multiple product lines through shared features and composi-
tion, it allows configuring and linking artifacts with each other
[19]. Complex software-intensive systems can be developed
by using the modeling editors of EASy-Producer [20], the
accompanying reasoning mechanism, and modeling libraries.
In the shift fork use case, variability modeling DSLs can define
dependencies between processes that should be executed in a
given order and guide the configuration of a production line.

The Product-Process-Resource DSL (PPR-DSL) [21] is
a language for defining three aspects of CPPSs, (i) products
with their properties, (ii) processes that produce the products,
and (iii) resources that execute the processes, often referred
to as Product-Process-Resource (PPR) concept [22]. The
VDI 3682 [23] is a standard to represent the PPR concept in
a technology- and implementation-agnostic graphical notation
for the functional view on a CPPS. It offers a basic data
model for implementation. The PPR-DSL defines a concrete
machine-readable representation of the PPR aspects and allows
using abstract PPR concepts and specifying and evaluating
constraints between the PPR aspects. In the shift fork use
case, the PPR-DSL can define the products, i.e., the shift fork
and the parts, such as the type of forks, the processes which
assemble the parts, and the potential resources, which can be
selected, such as the available robot arms.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

C. Challenges with DSLs for CPPS

DSLs for CPPSs inherit the increasing complexity of the
domain [4]. Engineers of the various domains involved may
already use DSLs to model certain CPPS aspects. New prob-
lems may provoke the ad-hoc development of additional DSLs
which have to be integrated into the engineering process,
causing a significant challenge for the domain [4]. Low-
quality models with improper abstraction and neglected DSL
ecosystems, such as missing tool support, documentation, or
tutorials, as well as discontinued maintenance of a language
or its accompanying elements threaten successfully integrating
and applying DSLs. Consequently, it is challenging for users
to decide which DSLs to employ and to integrate into exist-
ing processes. Additional guidance is crucial to evaluate the
suitability and maturity of DSLs for CPPS engineers.

III. THE CPPS DSL MATURITY EVALUATION MODEL

Based on inspecting existing DSL ecosystems used in CPPS
engineering, discussions at the SECPPS workshop [24], and in
subsequent meetings, we developed a model for evaluating the
maturity of ecosystems of DSLs for CPPSs, depicted in Fig. 1.
We describe each component and enumerate quality criteria
for determining its maturity degree. Components at the bottom
(i.e., grammar and syntax) build the basis, which at minimum,
influence the components on top of it. The components on the
left (i.e., documentation, tools, and analysis) are cross-cutting
concerns that may influence the components on the right (e.g.,
patterns, naming conventions, and style guides) and vice versa.

A. Grammar and Syntax

This component refers to the rules on constructing syntacti-
cally correct specifications in a DSL. While the abstract syntax
defines the available language elements and their potential
relations, the concrete syntax defines the representation of
the language elements to the users. For instance, modeling
languages exist with textual, graphical, projectional, or tabular
concrete syntax. Metamodels [25] or grammars [26] often
define the abstract syntax while grammars may define the
concrete syntax of the DSL, too.
Maturity Criteria

GS1 Unambiguous definition of concrete syntax (except for
explicit syntactic sugar)

GS2 Formal definition of abstract syntax
GS3 Support for well-formedness rules

Supporting abstract syntax and concrete syntax is essential for
each DSL as languages without either are incomplete and not
usable. Well-formedness rules enable refining the set of valid
models of a DSL with context-specific conditions, something
metamodels and context-free grammars do not support on their
own. For instance, the name of a part must be unique to be
identifiable in the PPR-DSL.

B. Semantics

Semantics represents the meaning of DSL elements. For
instance, Petri Nets can define the semantics of UML activity
diagrams. Defining a DSL’s semantics requires to map its

abstract syntax onto a well-understood semantic domain [27],
either formally or informally (e.g., via natural language) [28].
Maturity Criteria

Sem1 Definition of the semantic domain
Sem2 Unambiguous mapping of each DSL element into the

semantic domain either
- denotationally, i.e., by employing mathematical

constructs or
- translationally, i.e., by translating them into an-

other language (compiling), or
- operationally, i.e., by assigning execution behavior.

Sem3 Informal definition, i.e., through natural language
Sound definition of semantics requires an unambiguous

mapping of each language construct onto a given semantic
domain, e.g., an algebra. Thus, either a denotational, transla-
tional, or operational mapping is sufficient.

Semantics need not be defined informally. Still, for under-
standing the mapping (e.g., a formalization), natural language
descriptions may be beneficial. Thus, informal and formal def-
initions of semantics benefit the maturity of a DSL ecosystem.

C. Naming Conventions

Naming conventions help developers in identifying concepts
and navigating unknown projects. For instance, one should be
able to distinguish a part from a process at first glance. Without
naming conventions individual teams may employ their own
style such that comprehending another team’s software might
be challenging. Thus, mature DSLs allow users to identify the
syntactic constructs of yet unknown programs easily.
Maturity Criteria

Nam1 Naming conventions documented by developers
Nam2 Naming conventions applied in additional material

Ideally, language developers define naming conventions (e.g.,
in documents added to the language specification). Besides,
naming conventions may be (partially) derived from material
demonstrating the usage of the language, such as tutorials.

D. Style Guides

Style guides go beyond naming conventions. They recom-
mend how to structure programs to increase readability and
comprehension of the software. For instance, listing all blocks
in one row in a block diagram may cause connections which
humans can hardly decipher but do not violate the syntax.
Maturity Criteria

Sty1 Specification of code style documented by developers
Sty2 Application of coding styles in additional material

As with naming conventions, developers may explicitly doc-
ument or additional material (from third parties) may demon-
strate best practices of formatting programs in the DSL.

E. Libraries

Libraries allow for integrating third-party implemented
functionality of recurring use. In DSLs for CPPS, problems
recur, for instance, in the IEC 61499, types recur which
system libraries provide as function blocks. In a mature DSL

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

 Patterns design patterns, syntactic constructs, behavioral patterns

language definition
installation guide

video tutorial
open-source examples

active forums

Documentation

parser
compiler/interpreter
error management

editor (syntax highlighting)
analysis reports

automatic formatting

Tools

syntax
violated well-formedness rules

semantics
code quality

Analysis

 abstract syntax, concrete syntax, well-formedness rulesGrammar and Syntax

explicit, implicit

Naming Conventions
semantic domain

semantic mapping
informal definition

Semantic

import mechanism
implemented libraries

dependency management

Library

specification
applications

Style Guides

Fig. 1. Maturity evaluation model for DSL ecosystems for CPPSs.

ecosystem, developers, tool vendors, or active communities
offer libraries that can be easily integrated into a program.
Maturity Criteria

Lib1 Syntactic construct for importing library functions
Lib2 Library implementations in the DSL (i) exist, (ii) are

available, and (iii) actively maintained or up-to-date
Lib3 Dependency management between libraries

A mature DSL offers existing and available libraries, such
as a standard library. Libraries have to be up-to-date when
being adopted, either due to active maintenance or high
stability. Additionally, an import mechanism and dependency
management are indispensable to integrate (complex) libraries.

F. Patterns

(Software) design patterns [29] provide a reusable solution
and may encode best practices to recurring problems. While
architectural patterns structure the implemented system in a
modular way, behavioral patterns allow for easily extending
the behavior at runtime. For instance, the same set of block
arrangements may serve to define the control unit for a robot
arm. Patterns surround the component libraries because they
may be employed by libraries but can also use functionality
implemented in a library (e.g., standard types).
Maturity Criteria

Pat1 Documented design patterns
Pat2 Syntactic constructs to implement patterns
Pat3 Documented implementation patterns

As software design patterns [29] may not be appropriate
in specific domains, we do not ask for their adoption for
DSLs. Yet, recurring problems requiring recurring solutions
are inherent to the CPPS domain. Thus, a mature DSL ecosys-
tem should document design patterns. Additionally, syntactic
constructs for implementing them are essential. Finally, im-
plementation patterns exceed the architectural and behavioral
level by defining implementation best practices.

G. Analyses

This component refers to quantitatively evaluating how a
program in the DSL performs in various aspects. Analyses
may identify software parts that require maintenance and lay
the foundation for automated design decisions (e.g., suggesting
refactorings). For instance, in textual languages, counting the
lines of code gives a rough estimate of the complexity of a

program. Further, analyses may examine naming conventions,
style guides, or patterns. A mature DSL ecosystems documents
metrics for analysis (implemented in accompanying tools).
Maturity Criteria require analyses (e.g., via metrics) for:

A1 Syntax (e.g., length (LOC) and redundancy)
A2 Violations of well-formedness rules
A3 Semantics
A4 Code quality, which measures the adherence to (i) nam-

ing conventions, (ii) style guides, the employment of
(iii) design patterns, and (iv) libraries.

To analyze a program in the DSL, maturity criteria require
metrics for syntax and semantics at minimum. For syntax, the
total number of elements/lines of code may be measured as
well as the redundancy of implementation blocks, which could
be refactored into a single block. Similarly, violations of well-
formedness rules can be validated and reported. For instance,
analyzing the semantics of a component-based language may
indicate flooding of a port through an increasing number
of incoming messages. Besides, if libraries, patterns, naming
conventions, and style guides exist, a program may also be
analyzed for employing respective mechanisms.

H. Tools

Each component of the maturity evaluation model requires
different tool support aspects. The component tools is related
to documentation as users of tools require guidance for in-
stalling and using tools for developing programs in the DSL.
Maturity Criteria

T1 Parser for complete syntax definition
T2 Compiler or interpreter
T3 Error management and quick fixes
T4 Editor with at least syntax highlighting
T5 Analyses and reporting of the supported metrics

(cf. (i) A1 - (iv) A4)
T6 Automatic formatting according to (i) style guides,

(ii) naming conventions
Developers benefit most from tools which offer the entire
spectrum of support to increase their productivity.

I. Documentation

This component represents a cross-cutting concern, which
benefits developing programs in the DSL. At minimum, the
current language specification should be available. Ideally, fur-
ther material, such as tutorials or screencasts, is available for

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

easily adopting the DSL. Accompanying documentation may
specify naming conventions and style guides. Developers or
active user communities may contribute further documentation
artifacts, such as forums or tutorials.
Maturity Criteria

D1 Publicly available standard or language definition po-
tentially including further documents on naming con-
ventions and style guides

D2 Installation guide, which is (i) up-to-date and (ii) plat-
form-independent

D3 Video tutorials or screencasts
D4 Open-source example projects including source code
D5 Active forums for exchange with users or developers

Documentation must be accessible to users to ease learning the
DSL. Ideally, it is publicly available for users to familiarize
with the language before selecting it for a specific use case.
Available examples and active user forums help to introduce
the language into new domains and use cases.

IV. APPLICATION OF THE MATURITY EVALUATION MODEL

This section describes how to employ the maturity evalua-
tion model to determine the maturity of DSLs ecosystems for
CPPS. It explains how to compute a metric for each of the
model’s components and demonstrates the results of applying
the evaluation to the DSLs introduced in Sec. II-B.

A. Methodology

To evaluate the maturity of a DSL ecosystem, we consider
each component of the maturity evaluation model and the re-
spective quality criteria. For instance, the component Patterns
requires documented design and implementation patterns as
well as syntactic constructs to implement them. For computing
the value of a component, the DSL ecosystem can score 0,
0.5, or 1 point in each maturity criterion. For instance, if the
ecosystem satisfies maturity with respect to the component
semantics, the language will define a semantic domain, the
mapping between language construct and semantic domain
element, and an informal description of the mapping. Further-
more, and- and or-groups exist as sub-criteria for scoring. For
instance, the mapping of semantics can be realized differently,
such that it suffices to satisfy one of the sub-criteria of the
mapping criterion (or-group). In contrast, in and-groups, each
of the sub-criteria should be satisfied by a mature ecosystem
(e.g., metrics for code quality (A4)).

We categorize the maturity of each component in three
levels: immature, intermediately mature, and highly mature.
To compute the maturity level, we divide the computed score
into quartils, meaning score < 0.25 (#) implies immature,
0.25 >= score < 0.75 (

G#

) implies intermediately mature,
and score >= 0.75 () implies highly mature.

For each DSL, one author who has either worked with the
language for at least 3 years or contacted one of the developers
of the language, assigned the scores. A second author checked
the scoring for completeness and correctness.

TABLE I
COMPARISON OF DSLS ACCORDING TO THE MATURITY MODEL

GS Sem Nam Sty Lib Pat A T D

IEC 61499

G#

G#

#

G#

G# G# G#

SysML v1.6

G# G# G# G#

G#

#

G#

MontiArc

G#

 #

G# G#

IVML

G#

 # #

G# G# G# G# G#

PPRDSL

G#

G#

#
G#

#

G# G# G#

B. Application of Model to CPPS DSL Ecosystems

To examine the applicability of the maturity evaluation
model, we applied it to the DSL ecosystems presented in
Sec. II-B. Tab. I summarizes the results. We provide the
detailed scoring online [30] and explain important decisions
here.

IEC 61499. The standard defines the grammar and syntax
of IEC 61499 whereas the graphical syntax is only provided as
recommendations [31] [32], such that the implemented seman-
tics and graphical syntax vary among tools. A modular library
concept is not standardized but proposed in a publication [33]
and two open-source tools (Eclipse 4diac1 and FBDK2). In
contrast to naming conventions or style guides, patterns are
published in the literature (e.g., [34]). Analysis metrics are
mainly described theoretically. A broad community employs
IEC 61499 and various vendors offer mature tools including
feasible documentation.

SysML v1.6 partially satisfies syntax and grammar by
providing an abstract and concrete syntax for its syntactic
elements missing well-formedness rules. SysML does not de-
fine semantics formally, but informally defines the intention of
syntactic constructs. Few naming conventions exist regarding
the meta-data of SysML models, for instance, the title of a
model should convey which kind of model is used. Thus, this
criterion is only partially satisfied (score: 0.5). Style guides
and patterns are also only partially available. SysML offers
a comprehensive library of models for different use cases,
thereby, satisfying the respective criterion. Metrics for analysis
are not provided whereas several tools (e.g., MagicDraw, or
Sparx Enterprise Architect) exist for creating SysML models.
As a large community employs SysML, a plethora of docu-
mentation, such as video tutorials and forums, is available.

MontiArc defines its concrete and abstract syntax using
MontiCore [35] grammars, which are used to derive the
parser, symbol table, and language infrastructure. Handwrit-
ten context conditions ensure a model’s well-formedness in
context, including a strong type system. Its semantic domain
is formally defined through the FOCUS calculus [36], which is
the theory of stream processing functions. MontiArc employs
automata and their composition as behaviour descriptions, for
which both denotational and operational semantics exist [37].
It also features a code generator that translates component
models into Java simulations [38]. Language conventions are
defined [38] and implemented to provide explicit feedback.

1Eclipse 4diac, https://www.eclipse.org/4diac/
2Function Block Development Kit, https://holobloc.com/fbdk11/index.htm

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

Style guides are not explicitly stated but defined implicitly
through a pretty printer and mentioned and applied in the doc-
umentation’s examples. MontiArc documents some libraries,
but not all of them are up-to-date. Library management is pro-
vided through a Gradle plugin. Analyses are implemented for
well-formedness rules via context conditions, and additional
analyses can be implemented using a prepared framework.
Documentation is provided online and as a book. [38].

IVML und Variability (Modelling) DSLs. The full specifi-
cation of the textual variability modeling language IVML [17],
including the language syntax and semantics, represents the
only documented resource and available online3. Naming
conventions, style guides, patterns, and libraries are not doc-
umented. The modular product line engineering tool EASy-
Producer [20] provides various editors and reasoners for
software ecosystems modeled with IVML. Thus, our maturity
model classifies IVML as mature with respect to grammar
and syntax, and semantics, but as immature in terms of style
guides, naming conventions, patterns, and libraries. The tools
provided for IVML are currently limited to parsers and simple
reasoners in the context of EASy-Producer, but without check-
ing well-formedness or advanced analysis capabilities. Hence,
the model classifies tools and analyses as partly supported.

Product-Process-Rescource DSL. The PPR-DSL is mature
in syntax and grammar but misses well-formedness rules. It
satisfies semantics as it builds on and extends the VDI 3682
standard and additional constructs map onto the semantics
of the variability modeling domain, such as implications or
exclusions. The PPR-DSL offers little support for naming
conventions and style guides as the modeled concepts possess
concise nouns per default. The PPR-DSL provides basic
support for libraries with an import statement and rudimentary
libraries for distinct use cases. The PPR-DSL does not support
patterns or metrics for analysis, but through an open-source
implementation of the model, a parser, and some support
libraries for auto-completion in a text editor, it provides basic
tool support (0.29) including documentation.

V. DISCUSSION

This section discusses applying the maturity evaluation
model and states observations and threats to validity.

A. Observations

By applying the maturity evaluation model, we observed the
following aspects: First, at least one DSL ecosystem satisfies
each component. While style guides, naming conventions
and libraries are rarely available in the examined ecosystems
for CPPS, at least one DSL scores each component with a
minimum of 0.5 points. Thus, we draw the conclusion that
the components of our maturity model are chosen well.

Second, SysML and MontiArc satisfy the most components,
rendering them mature DSL ecosystems for CPPS overall. In
both ecosystems, either a large group of academics is involved
in the development or the adoption in industry formed a large

3EASy-Producer – https://github.com/SSEHUB/EASyProducer

community to drive the development. The open availability
of both, language specification and tools, eases contributing
to the ecosystem development. The opposite can be observed
for the PPR-DSL which is a comparably young DSL with
few developers. Thus, the number of developers, its open
accessibility, and an active community which adopts the DSL
may influence the maturity degree of the DSL ecosystem. On
top, a language design which allows for easy extensibility,
such as MontiArc, may benefit its progress and adaption.

Third, as the leveled structure of the maturity evaluation
model indicates, some components influence each other. For
instance, implementation patterns may be considered as part
of a style guide but still represent a pattern how to define a
program such that we added them to the component patterns.
Similarly, patterns may be employed to implement libraries
while library functionality may be used to define a pattern
(e.g., using types of a standard library). The same holds for
analyses: While the component enforces metrics to analyze a
language instance, without tool support, which performs the
analyses automatically, the metrics remain a mere theoretical
construct requiring handcrafting for their adoption. Thus, to
apply the model adequately, one has to understand the contents
and semantics of its components and their relationships.

Finally, language ecosystem maturity evaluation must be
based on the modeling purpose (see [39]). We apply the model
to languages with different purposes. For instance, the PPR-
DSL names language constructs concisely such that additional
naming conventions may not be necessary to distinguish a
process from a part. Thus, it remains the developers’ and users’
task to regard the result of maturity in certain components.

B. Threats to Validity

We identified internal and external threats to validity [40]
of applying the model and regarding the maturity model itself.

Internal threats of the maturity evaluation model. The
evaluation criteria resulted from discussions among the au-
thors of the paper. Our diverse academic CPPS and software
engineering backgrounds and experiences with using DSL
ecosystems for CPPS engineering in practice influenced the
result. Claiming the criteria complete or representative requires
subsequent studies (e.g., applying them to more DSLs or
interviews with domain experts).

Similarly, dependencies exist between the criteria of a
component which may influence the scoring. For instance,
without defining a semantic domain, the mapping onto lan-
guage constructs is not possible, such that the mapping cannot
be satisfied if the domain is missing the component semantics.
By introducing and- and or-groups for sub-criteria, we tried to
counter that threat to account for fair maturity judgment. Still,
we argue that it must be straightforward to check the criteria.
Introducing or explicating additional dependencies may hinder
rather than benefit the model’s conciseness.

Internal threats of applying the maturity evaluation
model. The authors who applied the maturity model to a
language were mostly developers of the DSL. While they
are the most experienced, they may be biased in turning the

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

results towards higher maturity. Additionally, errors may have
been introduced by chance or due to missing knowledge. To
counter both threats, we asked the DSL developers, considered
publicly available sources, when possible, and at least a second
author validated the scoring independently. So far, we have not
validated their agreement [41] but plan to perform an extended
evaluation of the applicability with (non-academic) users of
DSLs ecosystems for CPPS.

External threats regard the generalizability of the maturity
evaluation model. First, the criteria of each component may be
misinterpreted by third parties. To counter this threat, a sub-
group of the authors discussed and developed the criteria and
let the remaining authors apply the criteria to at least one DSL.
In this way, we refined and clarified the criteria for scoring, for
instance, by introducing different scoring for sub-criteria. As
DSL users with little or no programming background have
not used the maturity model yet, we plan to examine the
applicability of the model with practitioners as next step.

Second, while we applied the model to several DSL ecosys-
tems for CPPS, some of the evaluation criteria may not fit or
miss an important aspect. We countered this threat by applying
the model to a broad set of DSLs and refining it based on initial
results and discussions. In future work, we plan to apply the
model to a broader set of DSLs which may include DSLs
outside the CPPS domain for comparison purposes.

VI. RELATED WORK

To the best of our knowledge, no work evaluates the
maturity of DSL ecosystems. Instead, guidelines for develop-
ing DSLs, maturity models for organizational processes and
comparison criteria in software language engineering exist.

Guidelines for DSL Specification. A systematic mapping
study on best practices in domain-specific modeling [42]
reports guidelines and best practices that cover all phases of
developing DSLs. However, it presents properties of DSLs
definitions and best practices during developing DSLs only.

Another work [43] describes quality characteristics of DSLs
and an assessment method to check them based on which
a success level of the DSL is derived. Unlike our maturity
model, the ecosystem (e.g., tools or patterns) is not considered.

Guidelines for DSL Development Processes. An approach
to systematically develop DSLs [44] reports on the language
definition steps, such as specifying concrete and abstract
syntax and giving models meaning by defining their behavior.
Beyond the language definition in form of syntax and seman-
tics, no further guidelines are provided.

Mernik et al. [45] examine patterns for the DSL develop-
ment stages: decision, analysis, design, and implementation.
They discuss tools that support developers at these stages
and state challenges of reusing existing General Purpose Lan-
guages (GPLs) and DSLs for creating new ones, and reducing
the efforts to learn metalanguages for the DSL creation.

A survey among DSL developers [46] identifies established
practices in the life-cycle of DSLs. Accordingly, compre-
hensive documentation, training material, and an attractive
development environment encourage users to employ a DSL.

Yet, the authors do not propose a method or metrics to enable
future DSL developers measuring or improving these practices.

In addition to general guidelines for DSL development
processes, specific guidelines and patterns for single phases
of the process exist, such as monitoring [47], or theory for
understanding the domain covered by the DSL [48] in the
design phase, or to measure the maturity of grammars [49].

Applying DSL Guidelines. One work applies DSL guide-
lines and software quality attributes to assess the current state
of the language design of SysML v2 [50]. It maps existing
DSL guidelines onto categories of the ISO 25010 which
classifies software quality attributes. The results suggest to
improve the extensibility of SysML v2 in the investigated state
through modularization and to provide a semantic mapping to
understand the models’ meaning.

Language Workbenches generate the infrastructure re-
quired to employ programming languages. Existing frame-
works [51] and studies [52] offer criteria to compare such
workbenches. While we do not aim for assessing workbenches,
we may enrich our model with suitable criteria thereof.

Maturity Models [53], [54], such as the TRL [55] or
CMM [56] are layered models to evaluate the level of maturity
of organizational processes or tools. Contrary to our model,
they do not consider ecosystems but rather the evolution of
one aspect of an organization or software.

VII. CONCLUSION

This paper contributes the maturity evaluation model for
DSL ecosystems for CPPS. As mainly non-programming
experts from diverse backgrounds employ DSLs for CPPSs
and due to a partial ad-hoc development of these DSL to
satisfy specific uprising needs, many DSLs are unstable and
ambiguous in their definition. To assess the maturity of the
surrounding ecosystems, we presented the proposed evaluation
model. We successfully applied the model to several DSL
ecosystems, which may be employed in CPPSs. The results
show that all proposed categories are applicable and the rela-
tions are well-defined. Furthermore, we observed that large-
scale adoption benefits the maturity of DSL ecosystems (e.g.,
through advanced tools). The model resulted from discussions
among academics and was qualitatively applied to a small
set of publicly available DSL ecosystems. Future work shall
conducts studies with practitioners from industry and apply
the model in a more fine-grained way.

REFERENCES

[1] S. Biffl, D. Gerhard, and A. Lüder, “Introduction to the Multi-
Disciplinary Engineering for Cyber-Physical Production Systems,” in
Multi-Disciplinary Engineering for Cyber-Physical Production Systems.
Springer, 2017.

[2] X. Wu, V. Goepp, and A. Siadat, “Concept and engineering development
of cyber physical production systems: a systematic literature review,”
The Int. Journal of Advanced Manufacturing Technology, 2020.

[3] T. Bureŝ, D. Weyns, B. Schmer et al., “Software engineering for smart
cyber-physical systems: Challenges and promising solutions,” SIGSOFT
Softw. Eng. Notes, vol. 42, no. 2, jun 2017.

[4] K. Feichtinger, K. Meixner, F. Rinker et al., “Industry voices on software
engineering challenges in cyber-physical production systems engineer-
ing,” in Int. Conf. on Emerging Technologies and Factory Automation,
ETFA 2022. IEEE, 2022.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

[5] T. Berger, J.-P. Steghöfer, T. Ziadi et al., “The state of adoption and the
challenges of systematic variability management in industry,” Empirical
Software Engineering, vol. 25, no. 3, 2020.

[6] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[7] M. Raatikainen, J. Tiihonen, and T. Männistö, “Software product lines

and variability modeling: A tertiary study,” Journal of Systems and
Software, vol. 149, 2019.

[8] Int. Electrotechnical Commission, “IEC 61499-1, Function Blocks - part
1: Architecture: Edition 2.0,” Geneva, 2012.

[9] A. Butting, A. Haber, L. Hermerschmidt et al., “Systematic Language
Extension Mechanisms for the MontiArc Architecture Description Lan-
guage,” in European Conf. on Modelling Foundations and Applications.
ECMFA 2017. Springer, 2017.

[10] A. Wasowski and T. Berger, Domain-Specific Languages: Effective
Modeling, Automation, and Reuse. Springer Int. Publishing, 2023.

[11] K. Meixner, K. Feichtinger, R. Rabiser, and S. Biffl, “A reusable set of
real-world product line case studies for comparing variability models in
research and practice,” in Int. Systems and Software Product Line Conf..
SPLC 2021. ACM, 2021.

[12] L. Berardinelli, A. Mazak, O. Alt et al., “Model-driven systems
engineering: Principles and application in the CPPS domain,” in
Multi-Disciplinary Engineering for Cyber-Physical Production Systems.
Springer, 2017.

[13] Object Management Group, “Systems Modeling Language (OMG
SysML): Version 1.6,” November 2019.

[14] Object Management Group (OMG), Unified Modeling Language. Ver-
sion 2.5.1, formal/2017-12-05 ed., Needham, MA, 12 2017, https:
//www.omg.org/spec/UML/2.5.1/PDF.

[15] TUM, “Spesml,” 2023. [Online]. Available: https://spesml.github.io/
[16] M. H. t. Beek, K. Schmid, and H. Eichelberger, “Textual Variability

Modeling Languages: An Overview and Considerations,” in Int. Systems
and Software Product Line Conf.. SPLC 2019. ACM, 2019.

[17] H. Eichelberger and K. Schmid, “IVML: A DSL for Configuration
in Variability-Rich Software Ecosystems,” in Int. Conf. on Software
Product Line. SPLC 2015. ACM, 2015.

[18] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision
modeling approaches in product lines,” in Int. Workshop on Variability
Modelling of Software-Intensive Systems. ACM, 2011.

[19] K. Meixner, K. Feichtinger, R. Rabiser, and S. Biffl, “Efficient Produc-
tion Process Variability Exploration,” in Int. Working Conf. on Variability
Modelling of Software-Intensive Systems. VaMoS 2022. ACM, 2022.

[20] H. Eichelberger, S. El-Sharkawy, C. Kröher, and K. Schmid, “EASy-
Producer: Product Line Development for Variant-Rich Ecosystems,” in
Int. Software Product Line Conf.: Companion Volume for Workshops,
Demonstrations and Tools. SPLC 2014. ACM, 2014.

[21] K. Meixner, F. Rinker, H. Marcher et al., “A Domain-Specific Language
for Product-Process-Resource Modeling,” in Int. Conf. on Emerging
Technologies and Factory Automation. ETFA 2021. IEEE, 2021.

[22] M. Schleipen, A. Lüder, O. Sauer et al., “Requirements and concept for
plug-and-work,” at-Automatisierungstechnik, vol. 63, no. 10, 2015.

[23] “VDI/VDE 3682: Formalised process descriptions.” Beuth Verlag,
VDI/VDE, 2005.

[24] R. Rabiser, B. Vogel-Heuser, M. Wimmer et al., “Workshop on Software
Engineering in Cyber-Physical Production Systems (SECPPS), 2nd
Edition,” in Software Engineering, ser. LNI, vol. P-320. Gesellschaft
für Informatik e.V., 2022.

[25] T. Kühne, “Matters of (meta-)modeling,” Software and Systems Model-
ing, vol. 5, no. 4, 2006.

[26] K. Hölldobler, B. Rumpe, and A. Wortmann, “Software language
engineering in the large: towards composing and deriving languages,”
Computer Languages, Systems & Structures, vol. 54, 2018.

[27] B. Combemale, R. France, J.-M. Jézéquel et al., Engineering Modeling
Languages: Turning Domain Knowledge into Tools. Chapman &
Hall/CRC Innovations in Software Engineering and Software Develop-
ment Series, November 2016.

[28] D. Harel and B. Rumpe, “Meaningful modeling: What’s the semantics
of ”semantics”?” Computer, vol. 37, no. 10, 2004.

[29] E. Gamma, R. Johnson, R. Helm et al., Design patterns: elements of
reusable object-oriented software. Pearson Deutschland GmbH, 1995.

[30] S. Greiner, B. Wiesmayr, K. Feichtinger et al., “Dataset: Maturity Eval-
uation of Domain-Specific Language Ecosystems for Cyber-Physical
Production Systems,” 2023.

[31] IEC 61499-1: Function blocks - Part 1: Architecture. International
Electrotechnical Commission, 2012. [Online]. Available: https://
webstore.iec.ch/publication/5506

[32] IEC 61499-2: Function blocks - Part 2: Software tool requirements.
International Electrotechnical Commission, 2012. [Online]. Available:
https://webstore.iec.ch/publication/5507

[33] M. Oberlehner, V. Ashiwal, A. Zoitl, and J. H. Christensen, “Using
modules to manage the content of iec 61499 type libraries,” in Int. Conf.
on Industrial Informatics. INDIN 2022. IEEE, 2022.

[34] L. Sonnleithner, B. Wiesmayr, V. Ashiwal, and A. Zoitl, “Iec 61499
distributed design patterns,” in 2021 26th IEEE Int. Conf. on Emerging
Technologies and Factory Automation (ETFA). IEEE, 2021.

[35] K. Hölldobler, O. Kautz, and B. Rumpe, MontiCore Language Work-
bench and Library Handbook: Edition 2021, ser. Aachener Informatik-
Berichte, Software Engineering, Band 48. Shaker Verlag, May 2021.

[36] M. Broy, Specification and Development of Interactive Systems Focus
on Streams, Interfaces, and Refinement. Springer New York, 2001.

[37] B. Rumpe, “Formale Methodik des Entwurfs verteilter objektorientierter
Systeme,” in Ausgezeichnete Informatikdissertationen. B. G. Teubner
Stuttgart, 1997.

[38] A. Haber, MontiArc - Architectural Modeling and Simulation of Inter-
active Distributed Systems, ser. Aachener Informatik-Berichte, Software
Engineering, Band 24. Shaker Verlag, September 2016.

[39] M. Broy and B. Rumpe, “Development use cases for semantics-driven
modeling languages,” Communications of the ACM, vol. 66, no. 5, p.
62–71, 2023.

[40] C. Wohlin, P. Runeson, M. Höst et al., Experimentation in Software
Engineering. Springer, 2012.

[41] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[42] G. Czech, M. Moser, and J. Pichler, “Best practices for domain-
specific modeling. a systematic mapping study,” in Conf. on Software
Engineering and Advanced Applications. SEAA 2018. IEEE, 2018.

[43] G. Kahraman and S. Bilgen, “A framework for qualitative assessment
of domain-specific languages,” Software & Systems Modeling, 2015.

[44] M. Strembeck and U. Zdun, “An approach for the systematic develop-
ment of domain-specific languages,” Software: Practice and Experience,
vol. 39, no. 15, 2009.

[45] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), 2005.

[46] H. S. Borum and C. Seidl, “Survey of established practices in the life
cycle of domain-specific languages,” in Int. Conf. on Model Driven
Engineering Languages and Systems, 2022.

[47] Z. Drey and C. Teodorov, “Object-oriented design pattern for dsl
program monitoring,” in Int. Conf. on Software Language Engineering
(SLE), 2016.

[48] S. De Kinderen, “Using Grounded Theory for Domain Specific Mod-
elling Language Design: Lessons Learned from the Smart Grid Domain,”
in The Practice of Enterprise Modeling: IFIP WG 8.1. Working Conf..
PoEM. Springer, 2017.

[49] V. Zaytsev, “Grammar maturity model.” in ME@ MoDELS, 2014.
[50] N. Jansen, J. Pfeiffer, B. Rumpe et al., “The Language of SysML

v2 under the Magnifying Glass,” Journal of Object Technology, 2022,
european Conf. on Modelling Foundations and Applications. ECMFA.

[51] S. Erdweg, T. van der Storm, M. Völter et al., “Evaluating and
comparing language workbenches: Existing results and benchmarks for
the future,” Comput. Lang. Syst. Struct., vol. 44, pp. 24–47, 2015.

[52] A. Iung, J. Carbonell, L. Marchezan et al., “Systematic mapping study
on domain-specific language development tools,” Empir. Softw. Eng.,
vol. 25, no. 5, pp. 4205–4249, 2020.

[53] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau, “Mdd maturity
model: A roadmap for introducing model-driven development,” in Model
Driven Architecture – Foundations and Applications, A. Rensink and
J. Warmer, Eds. Springer, 2006, pp. 78–89.

[54] F. Tomassetti, M. Torchiano, A. Tiso et al., “Maturity of software mod-
elling and model driven engineering: A survey in the italian industry,”
in 16th Int. Conf. on Evaluation & Assessment in Software Engineering,
EASE 2012. IEEE, 2012, pp. 91–100.

[55] J. C. Mankins et al., “Technology readiness levels,” White Paper, April,
vol. 6, 1995.

[56] K. D. Shere and M. J. Versel, “Extension of the SEI software capability
maturity model to systems,” in 18th Annual Int. Computer Software and
Applications Conference, COMPSAC 1994. IEEE, 1994, pp. 195–200.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 09,2023 at 15:48:07 UTC from IEEE Xplore. Restrictions apply.

