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Abstract
Industry 4.0 integrates cyber-physical systems with the Internet of Things to optimize the complete value-added chain. Suc-
cessfully applying Industry 4.0 requires the cooperation of various stakeholders from different domains. Domain-specific
modeling languages promise to facilitate their involvement through leveraging (domain-specific) models to primary develop-
ment artifacts. We aim to assess the use of modeling in Industry 4.0 through the lens of modeling languages in a broad sense.
Based on an extensive literature review, we updated our systematic mapping study on modeling languages and modeling
techniques used in Industry 4.0 (Wortmann et al., Conference on model-driven engineering languages and systems (MOD-
ELS’17), IEEE, pp 281–291, 2017) to include publications until February 2018. Overall, the updated study considers 3344
candidate publications that were systematically investigated until 408 relevant publications were identified. Based on these,
we developed an updated map of the research landscape on modeling languages and techniques for Industry 4.0. Research
on modeling languages in Industry 4.0 focuses on contributing methods to solve the challenges of digital representation and
integration. To this end, languages from systems engineering and knowledge representation are applied most often but rarely
combined. There also is a gap between the communities researching and applying modeling languages for Industry 4.0 that
originates from different perspectives on modeling and related standards. From the vantage point of modeling, Industry 4.0
is the combination of systems engineering, with cyber-physical systems, and knowledge engineering. Research currently is
splintered along topics and communities and accelerating progress demands for multi-disciplinary, integrated research efforts.
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1 Introduction

Industrial revolutions always introduced step changes to
manufacturing. The first industrial revolution (eighteenth–
nineteenth century) advanced production from manual to
machine-driven manufacturing, introduced factories, and
enabled leveraging steam power for production [36]. The
second industrial revolution (1870–1914) introduced elec-
tric power to enable the mass production of goods using
the concept of interchangeable parts [108]. The third indus-
trial revolution (ca. 1980–2010) describes the transition
from analog to digital (mostly isolated) production systems.
Industry 4.0 is the fourth industrial evolution focusing on
integrating digitized cyber-physical production systems with
processes and stakeholders to optimize the complete value-
added chain. Originally, it has been announced as part of the
high-tech strategy of the German Federal Ministry for Edu-
cation and Research [27]. However, the essence of Industry
4.0 has become an international phenomenon as the Japanese
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Industrial Value Chain Initiative [146], the Advanced Man-
ufacturing Initiative in the USA [145], the Chinese Made
in China 2025 strategy [96], Manufacturing 3.0 in South
Korea [84], and the national Catapult research center onHigh
Value Manufacturing [65] in the UK indicate.

This “fourth industrial revolution” raises new challenges
for future manufacturing which are driven by four disrup-
tions: (1) data volumes, computational power, and connectiv-
ity; (2) the emergence of analytics and business-intelligence
capabilities; (3) new forms of human–machine interaction;
(4) and improvements in transferring digital instructions to
the physical world, such as advanced robotics and 3D print-
ing. The interplay of these four disruptions led to recognizing
four particular Industry 4.0 design principles [63]:

– Interoperability: connect production systems, devices,
sensors, and people.

– Information transparency: query data and connect digital
planning with the runtime data collected from sensors.

– Technical assistance: provide the right abstraction to
understand the complexity of Industry 4.0 systems and
processes.

– Decentralized decision making: enable autonomous sys-
tems.

All of these aim to enable more efficient production down to
the individualized the mass production of “lot-size 1” [42].

Model-based software development is one of the key
enablers for successfully engineering, integrating, and main-
taining complex systems of systems, which is indicated by
the increasing number of related publications in key confer-
ences and journals investigating these challenges, e.g., see
[29,49,62,97,129,143]. For successfully engineering Indus-
try 4.0 systems of systems, fostering research in modeling is
crucial to enable realizing the aforementioned design princi-
ples.

As a research area matures, there often is a significant
increase in the number of related reports and results. Thus,
it becomes important to summarize and to overview those
results. There are different methods for structuring a scien-
tific landscape, such as systematic literature reviews [24,76]
or systematic mapping studies [115]. Systematic literature
reviews are a “form of secondary study that use a well-
defined methodology to identify, analyze, and interpret all
available evidence related to a specific research question in
a way that is unbiased and (to a degree) repeatable” [76].
They aim to summarize the existing evidence concerning
the object of research (e.g., modeling languages) to identify
gaps in the current research. To this end, systematic literature
reviews follow an a priori defined review protocol of research
questions and a documented (hence, reproducible) search
strategy. Based on the obtained corpus of primary studies,
the research questions are answered. Systematic literature

reviews are common to software engineering [13,59], model-
based engineering [25,37], software product lines [32,47], or
domain-specific languages [53,82], etc., whilemapping stud-
ies are less common. A systematic mapping study (SMS)
structures a body of research through its reports by cate-
gorizing these. These often culminate in a visual summary,
the map, of its results. Such a map supports understanding
what has been addressed by the community for a particular
domain and its corpus can serve as the basis to answer in-
depth research questions of a subsequent systematic literature
review.

We investigate modeling in Industry 4.0 through the lens
of modeling languages and applied to the field’s diverse
challenges. Conducting a systematic mapping study onmod-
eling languages for Industry 4.0, hence, enables providing
guidance and feedback for the modeling community about
challenges for and reception of their contributions in the
domain of Industry 4.0.Moreover, it provides an overview for
the automation systems community about the contributions
to modeling languages and techniques in their domain and
which challenges these modeling languages and techniques
address. The resulting map enables identifying limitations
and challenges, as well as best practices in the field. Also,
it supports identifying new lines of research and provides a
corpus for future investigation.

In this paper, we present an extension of our SMS on
modeling languages in Industry 4.0 presented in [159]. The
previous study [159] included 1466 papers that were pub-
lished until April 2017. This contribution extends its investi-
gation with 1878 additional papers published until February
2018 to describe the use of modeling languages in Industry
4.0. Out of these, 186 additional papers were included in the
resulting map. With Industry 4.0 being a multi-disciplinary,
heterogeneous challenge, we consider modeling and model-
ing languages in a broad sense, i.e., we include 3Dmodeling,
knowledge representation, business process modeling, and
other modeling techniques into our study.

Following a detailed search strategy involving six digi-
tal libraries, we initially identified 3344 unique publications.
Out of these, 408 publications were selected and categorized
using a particular classification scheme focusing on the con-
tribution types, research types, Industry 4.0 concerns, and
modeling contributions. We present the concerns addressed
by research on modeling in Industry 4.0, how these concerns
are investigated, when and where the results are published,
and by whom. The resulting research landscape can help
to understand, guide, and compare research in this field. In
particular, this paper identifies the Industry 4.0 challenges
addressed by the modeling community as well as the chal-
lenges that seem to be less investigated. Through this, we
obtain a classification scheme and structure the research on
modeling languages and techniques for Industry 4.0. In sum-
mary, the contributions of this paper, hence, are:
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– Extension of the mapping study with 1878 novel and
unique primary studies published until February 2018 in
Sect. 4

– A detailed explanation of the research method used for
this extended systematic mapping study presented in
Sect. 3.3.

– Novel investigations on modeling for cyber and physical
concerns as well as on the use of standards in Sect. 4.3.

– The discussion and investigation of trends in modeling in
Industry 4.0 based on differences between the papers pre-
sented until April 2017 and the subsequently published
papers in Sect. 5.

– A vision on model-based DevOps for Industry 4.0 and its
relation to our findings in Sect. 5.3.

In the following, Sect. 2 discusses related mapping stud-
ies and literature reviews, before Sect. 3 details our research
method. Afterward, Sect. 4 presents our findings before Sect.
5 reports insights into modeling in Industry 4.0 and discusses
a vision of model-based DevOps for Industry 4.0 in the pres-
ence of our findings. Sect. 6 discusses threats to validity
before Sect. 7 concludes.

2 Related studies

Mapping studies are a common method to investigate
research trends in software engineering [115]. Current stud-
ies include, e.g., the classification of techniques for test-
set generation and selection [73], software development
effort and cost estimation [71], the use of experimen-
tal studies [135], object-oriented design [11], the use of
patterns [162], the usage of UML diagrams [121], the
empirical evaluation of software requirements specification
techniques [33], on software product lines [46,85], and
domain-specific languages [82]. Aside from investigating
different concerns, these mapping studies vary in the level
of analysis detail and in the number of included publications
(between 35 and 400). However, we found only a singlemap-
ping study on model-driven engineering [104]. That study
surveys existing research on aspect-oriented modeling and
code generation. However, several literature reviews and sur-
veys focus on the Industry 4.0 domain in general.

A recent systematic literature review of Industry 4.0
related research efforts [88] discusses the state of the art in
Industry 4.0, deficiencies in current research, and potential
research directions that culminate in a research agenda. In
this context, modeling is mentioned as a frequently used
technique for managing complex production systems as
well as products for both: development of new artifacts
and better understanding existing ones. XML, UML, and
AutomationML are mentioned as frequently used modeling
languages. However, a more in-depth study on the modeling

aspect is not provided that review focuses on giving a general
overview of Industry 4.0 literature.

Originally initiated in Germany in 2011, Industry 4.0 has
attracted much attention in recent literature. In their perspec-
tive on Industry 4.0, Vogel-Heuser and Hess identify a set of
challenges for the domain [154]. In particular, they identify
four key challenges for software engineering that are well
known to the modeling community:

1. Transition to modular and maintainable interfaces as a
fundamental basis for adaptable and evolvable systems.

2. Tracking of changes in hundreds of heterogeneous and
distributedmachines or plants on different operation sites
operated over decades.

3. Management while ensuring consistency of software
variants and versions, including self-adaptation and
reconfiguration at runtime.

4. Adaptation of big data algorithms and technologies.

Following this paper, Mosterman and Zander [109] dis-
cuss the needs and challenges of developing and operating
cyber-physical systems (CPS) along with corresponding
technologies to address the challenges and their potential
impact. In the same trend, Turowski et al. identify the cur-
rent challenges on Industry 4.0 faced by companies through
a survey [79]. The survey aims to understand the stakehold-
ers expectations, requirements and the potential challenges
Industry 4.0 poses in real case studies. Complementary to
these works, Trappey et al. [151] provide a consolidated
reviewof the latest CPS literature. In this survey, they provide
a complete review of international standards and an analysis
of patent portfolios related to the CPS architecture model.
Hermann et al. identify design principles of Industry 4.0
based on quantitative text analysis and a qualitative litera-
ture review [64]. Their paper illustrates how the identified
design principles support practitioners in identifying Indus-
try 4.0 scenarios.

A recent literature reviewon technologies and applications
in Industry 4.0 investigated a corpus of 88 papers retrieved
via Web of Science and Google Scholar [92]. In this study,
the author uncovers three popular frameworks for the real-
ization of Industry 4.0, presents key technologies (such as 5G
or agent-based systems) and discusses popular applications
(smart factories, smart products, and smart cities). Overall,
that paper serves as a compact signpost guiding through a
small subset of Industry 4.0 literature.

Similar studies have been conducted regarding the appli-
cation and benefits of model-based software engineering in
embedded systems [3,89,150]. The first study [89] surveyed
112 software developers from different companies on the
reasons for applying model-based software engineering, its
effects, and shortcomings. The authors conclude that devel-
opment in embedded systems already leverages models as
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Fig. 1 The five phases of a systematic mapping study as proposed in [115]

primary development artifacts but that adopting MBSE still
is challenging and that the tools are still challenging as well.

A study on the use of UML and model-driven techniques
in the design of embedded software in Brazil surveyed 209
embedded software engineers and researchers [3]. Through
the study, the authors identify a lack of knowledge about the
application of UML and model-based techniques due to “the
lack of skills” and “the lack of coherent tools”. Moreover,
the authors found that modeling is mainly used for docu-
mentation, whereas model-driven techniques, such as code
generation, are hardly used. In contrast to this study,we inves-
tigate Industry 4.0 assuming that modeling is used. Through
our search terms and exclusion criteria,we especially exclude
sources not about modeling. Consequently, the research of
our study differs not only on the subject but also on the focus.

However, with similar aspirations as [3], another study
investigates the relevance ofmodel-driven software engineer-
ing in the Italian industry [150]. The authors surveyed 155
Italian software professionals and inquired, inter alia chal-
lenges for the adoption of model-driven techniques, the use
of code generators, interpreters, UML, and DSLs. In con-
trast to the results of [3] the authors uncovered that 68% of
the surveyed professionals “produce models”, whereas only
48% use model-driven techniques and almost all of the latter
leverage code generation. Similar to the first study, they iden-
tified “easier maintenance” and “higher quality” as the main
drivers for modeling. The study also finds the “typical anec-
dotal” challenges for adoption ofmodeling, such as requiring
a high effort to create models and lack of supporting tools.

Thus, while there is already work on summarizing the
research done in the field of Industry 4.0 and related fields,
none of these studies is particularly concernedwith the devel-
opment or application of modeling languages.

3 Researchmethod

A systematic mapping study identifies and classifies primary
studies of the field under investigation. Through this, it aims
to provide a systematic overview of the topics of research
contributed to this area and the formsof contribution.Wecon-
ducted this study following established guidelines [76,115]
and included useful practices and suggestions from similar

studies [26,44,80,82]. Ultimately, we employed the five-
phase process for conducting this study proposed in [115] and
depicted in Fig. 1: (1) define research questions; (2) search
for primary studies; (3) identify inclusion and exclusion cri-
teria and screen primary studies based on these criteria; (4)
classify primary studies through keywording; and (5) extract
and aggregate data.

In the first phase, we defined the scope of this study. In the
second phase,we created the initial corpus of potentially rele-
vant publications. In the third and fourth phases, we sanitized
and reduced this corpus to include only relevant publications
and classified according to research qualities derived from
the research questions. In the fifth phase, we extracted data1

from the publications to enable answering our research ques-
tions. This section describes the activities and decisions of
these phases.

3.1 Research questions

We aim to identify relevant publications on development and
use of modeling languages in Industry 4.0, which Industry
4.0 concerns are addressed with modeling techniques, how
research addressing these concerns is conducted, and which
modeling languages are used to contribute to these concerns.
Moreover, we investigate who is contributing to modeling
in Industry 4.0, where the contributions are published, and
when they occurred. This manifests in the following research
questions:

RQ1 What are the expected benefits of applying model-
ing languages to Industry 4.0? This question aims to
uncover the high-level benefits expected by applying
modeling languages to Industry 4.0.

RQ2 Which Industry 4.0 concerns are addressed through
modeling languages? With this question, we investi-
gate which concerns and challenges of Industry 4.0
are addressed through the different kinds of modeling
languages.

RQ3 Which kinds of modeling languages are used in Indus-
try 4.0 and which concerns do they address? This

1 Available from companion website http://gemoc.org/
modeling4Industry4.0/.
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Fig. 2 Logical search clause
defined to identify relevant
literature

(”digital factory” OR ”digital factories” OR ”smart factory” OR ”smart factories”
OR ”factory of the future” OR ”factories of the future” OR ”Industry 4.0”) AND
(”metamodel” OR ”DSL” OR ”UML” OR ”domain-specific language” OR ”modeling
language” OR ”modelling language”)

question investigates the use of modeling languages
in Industry 4.0 and relates the findings of RQ2 to the
solutions contributed to the research field.

RQ4 What are the most frequently applied research meth-
ods in the context of modeling languages for Industry
4.0? This question aims to understand how research
on modeling and modeling languages in Industry 4.0
is performed and how this relates to the concerns of
RQ2 and the tools of RQ3.

RQ5 Who researches modeling languages in Industry 4.0?
This question investigateswho has adopted this notion
and contributes to modeling in Industry 4.0.

RQ6 Where have the contributions been published? Simi-
lar to the RQ5, we like to uncover which venues are
relevant to publishing on modeling for Industry 4.0.

RQ7 When did the contributions on modeling languages to
Industry 4.0 occur?With this question, we investigate
whenmodeling started contributing to smartmanufac-
turing.

To answer these questions, we conducted the literature search
presented in the next section.

3.2 Search strategy and data sources

The search strategy guides the identification of relevant pub-
lications to answer the research questions. This includes
conceiving an appropriate search query and identifying rel-
evant libraries to apply this clause to. Industry 4.0, at its
core, focuses on manufacturing, production processes, and
ultimately the “factory of the future” [54,140] or the “smart
factory” [86,118]. Thus, in contrast to [92], we included these
terms in our search clause. Similarly, the second part of our
search clause focuses on the objects of modeling research,
its modeling language technology, instead of specific model-
ing languages. Thus, we search for publications mentioning
metamodels, DSLs, modeling languages, or UML as rele-
vant contributions tomodeling in our context. This ultimately
leads to the logical search clause depicted in Fig. 2.

Essentially, this is a conjunction of two disjunctions: The
first part of the conjunction captures terms related to Industry
4.0. The second part captures terms representing the objects
of modeling research. As we conducted a full-text search
with this clause, we omitted including synonyms for “DSL”
or “modeling language”. Papers contributing to modeling
should at least use these terms in either related work or
the referenced literature. Although we cannot exclude omit-

ting a small number of possibly relevant publications that do
not provide such discussions, searching this way yields bet-
ter results than just searching titles and abstracts. Moreover,
we also did not enforce any inferior year-limit and included
papers published until February 2018. Where such complex
logical conditions were not supported, we searched for parts
of the query and joined the results manually. For ACM Dig-
ital Library we could reuse the query as is (modulo minor
changes to its concrete syntax). For Google Scholar we used
its advanced search mode to separate to split the query into
five queries, each containing one exact phrase of the model-
ing terms (i.e., “modeling language”, “metamodel”, etc.) and
at least one of the domain terms (i.e., “Industry 4.0”, “digital
factory”, etc.). We extracted the results using Harzing’s Pub-
lish or Perish2 software to extract results. Due to its limitation
to ca. 1.000 citations per query, we downloaded the citations
in multiple parts using inferior and superior year limits. We
manually merged the resulting lists of citations and removed
the Scholar-internal duplicates obtained by our process man-
ually. Through this, we aim to minimize the issues of using
Google Scholar for structured literature retrieval [21] (e.g.,
non-commutativity of logical disjunctions) while benefiting
from its wealth of provided publications.

IEEEXplore enforces a limit of 40 search terms,which did
not affect our query and supports the use of nested Boolean
queries through its advanced search, and hence data retrieval
was straightforward. Similarly, retrieving citations fromSco-
pus, SpringerLink, and Web of Science did not require any
changes to the query as all three libraries support nested
Boolean queries through their advanced search. Applying
our query—with the explained operative modifications—to
ACM Digital Library, Google Scholar, IEEE Xplore, Sco-
pus, SpringerLink, and Web of Science yields the results
presented in Table 1.

Due to includingGoogle Scholar, this search includes doc-
uments unsuitable to answer our research questions, such
as non-peer-reviewed publications, descriptions of curric-
ula, or patents. These were removed in the next phases as
illustrated in Fig. 3: First, we removed 1060 duplicate doc-
uments from the results, then we applied the criteria for
inclusion and exclusion to remove additional 1369 docu-
ments based on their title, keywords, and abstracts in the
screening phase (Sect. 3.3). Afterward, the results contain
1975 peer-reviewed, English, possibly relevant papers. We
reviewed each of these papers during the classification phase

2 Publish or Perish: https://harzing.com/resources/publish-or-perish.
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Table 1 Search results returned from the different digital libraries

Digital Library URL Papers

ACM Digital Library https://dl.acm.org 138

Google Scholar https://scholar.google.com 3133

IEEE Xplore https://ieeexplore.ieee.org 255

Scopus https://www.scopus.com/ 504

SpringerLink https://link.springer.com 342

Web of Science https://www.webofknowledge.com 32

Total (incl. duplicates) 4404

(Sect. 3.4) to understand whether these are relevant to our
study and applied the criteria for inclusion and exclusion to
the complete paper. In total, 408 papers remain in our cor-
pus. The next sections detail our criteria for inclusion and
exclusion as applied in the screening phase as well as in the
classification phase.

3.3 Screening papers for inclusion and exclusion

The inclusion of a study into the classification phase of a sys-
tematicmapping study usually is decided on its title, abstract,
and keywords. To reduce the corpus and enable reproduction

of the study, we established the following inclusion criteria
and exclusion criteria.

Inclusion criteria We identified potentially relevant docu-
ments based on the following three criteria:

1. Peer-reviewed studies published in journals, conferences,
and workshops.

2. Studies are accessible electronically.
3. From title, abstract, and keywords, we can deduce that

the paper focuses on developing or applying modeling
languages in Industry 4.0.

Exclusion criteria Documents fulfilling the inclusion criteria
may still be excluded based on the following four criteria:

1. Studies not available in English.
2. Studies not systematically peer-reviewed, such as books,

slides, websites.
3. Teasers and short papers of less than two pages, such as

calls for papers, editorials, or curricula.
4. Studies where Industry 4.0 ismentioned as a future appli-

cation, relatedwork, or broad context only, e.g., papers on
the Internet of Things (IoT) or CPS mentioning Industry
4.0 as a possible use case only.

Fig. 3 Data collection initially
produced 3344 unique
documents, out of which 408
were identified as relevant for
our study
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To align our understanding of Industry 4.0 and the clas-
sification scheme, each of the authors reviewed the first 20
(about 1%) documents of the corpus of 3344 unique docu-
ments on his own. We discussed results and built a shared
understanding of the documents as well as of our methodol-
ogy and goals. As a next step, the remaining 3324 documents
were filtered by the first author based on the unambiguous
criteria of being non-English, non-peer-reviewed, or teasers
only.

Removing 1593 documents left 1731 papers for review.
These were split into three corpora of 430 papers and one
corpus of 441 papers, which were reviewed and classified by
a single author each. To continuously align our shared under-
standing of the topic and our classification scheme, inclusion,
exclusion, and classification were discussed among the
authors in bi-weekly teleconference sessions. During these,
we excluded additional publications and refined our shared
understanding of the classification scheme. We did, how-
ever, not discard papers based on their comprehensibility or
venue alone.We also assigned each paper to themost suitable
research type facet to yield a clear partitioning of the data set
according to the categories in Table 3.Where the author read-
ing a paper was uncertain about its inclusion or classification,
we discussed this paper also among all authors. To prevent
classification fatigue, we performed classification in blocks
of at most one hour broken up by at least 15-minute breaks.

We then applied the criteria to titles, keywords, and
abstracts. Where this did not suffice to determine inclusion,
we temporarily included the publications for the classifica-
tion phase to prevent excluding relevant, but suboptimally
phrased publications. In that phase, the final inclusion or
exclusion could be decided based on the publication’s full
text. Hence, this phase only eliminates publications obvi-
ously not within our study’s scope and publications failing
on formal requirements (such as not being available in
English). In detail, we eliminated 1060 duplicates as well as
1369 publications outside this study’s scope, including non-
peer-reviewed publications (e.g., theses, technical reports,
websites, patents, project deliverables, etc.), non-English
publications, full proceedings (Google Scholar produces
complete conference proceedings as results), and teasers
(publications of two pages or less). Publications in lan-
guages other than English were excluded for this reason

alone. Concurring with [81], we did not conduct any addi-
tional quality evaluation, such as including papers published
at highly ranked conferences or workshops only. Hence, after
the screening phase, 1975 potentially relevant papers remain
in the corpus.

3.4 Classifying studies

In the classification phase, we reviewed the remaining 1975
papers to assign qualities of the dimensions derived from the
research questions. To this end, we followed [115] in consid-
ering at least the introduction and the conclusion. However,
for almost all most papers this was insufficient and we read
the complete paper for proper classification. This also is the
last phase in which publications were eliminated. Hence,
after further elimination of 1567 irrelevant papers, a total of
408 publications remained. We classified these papers along
the facets described in the following.

Contribution type facet

The first facet is inspired by [115] and classifies publications
according to the type of research they contribute (RQ4). We
adapted this to our study by employing the five contribution
types presented in Table 2. These contribution types are dis-
joint and each paper was classified to provide exactly one
contribution type. When a paper was suitable for more than
one contribution type, we discussed this and assigned the
most suitable contribution type.

Research type facet

Also inspired by [115], we classified the publications accord-
ing to the research type they contribute. This enables address-
ing RQ4 regarding the most frequently applied research
methods contributed to modeling in Industry 4.0. Again, we
adjusted these also to better fit to our study. In particular,
we eliminated the category of philosophical papers as such
papers did not occur. The resulting, disjoint, research types
are depicted in Table 3. Each paperwas classified to belong to
exactly one research type. Papers suitable for more than one
research type were discussed and assigned the most suitable
research type.

Table 2 Contribution type facets inspired by [115] and adjusted to our research questions and corpus

Analyses Papers contributing investigations without constructive contributions, such as [14,34,61]

Concepts Papers suggesting ways of thinking things, such as new metamodels or taxonomies (this was titled “models”
in [115], which is misleading in the context of this study), such as [113,124,144]

Methods Papers suggesting ways of doing things, for instance, [126,141,165]

Metrics Papers suggesting ways of measuring things, such as [72,152,155]

Tools Papers presenting novel software tools related to modeling in Industry 4.0, e.g., [78,114,164]
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Table 3 Research type facets also inspired by [115] and adjusted to our research questions and corpus as well

Evaluation Papers evaluating existing techniques, e.g., [35,50,161]

Experience Report of personal experiences, such as [17,18]

Solution A novel solution is presented and argued for with case studies, for instance [23,39,117]

Validation Papers presenting novel techniques and experimenting with them, such as [57,130,163])

Vision Non-disruptive research agendas, such as the vision of model-based logistics engineering presented in [7,69,93]

Table 4 Industry 4.0 concern facets defined for the corpus of 408 papers

Digital representation Publications on modeling systems, factories, or knowledge as well as the standardization of digital representations

Failure handling Publications focusing on failure management or safety aspects

Human factors Publications addressing the human side of Industry 4.0, such as worker localization or human–machine interaction

Information management Publications on accessing and distributing information

Integration Publications focusing on integrating CPS with something (other CPS, processes, the cloud) at design time and
runtime

Processes Publications on the modeling and management of processes

Product modeling Publications contributing to modeling (smart) products

(Re-)configuration Publications focusing on modeling configuration, monitoring, system resiliency, and self-* properties

Verification and validation Publications employing modeling to simulation and testing

Visualization Publications on using modeling to system visualization, such as 3D modeling, augmented reality, or virtual reality

Industry 4.0 concern facet

Wealso classified the publications along the Industry 4.0 con-
cerns addressed by the various publications. This addresses
RQ2 and aims to uncover which concerns are investigated
how often. During classification, keywording (cf. [115]) the
abstracts, introductions, conclusions, and, if necessary, of the
complete paper, we produced the following Industry 4.0 con-
cerns. In contrast to contribution types and research types,
these concerns are not disjoint and included papers can con-
tribute to multiple concerns (Table 4).

Modeling technique facet

To find answers to RQ3 regarding the modeling tools and
languages used in Industry 4.0, we also classified the publica-
tions along this dimension. Overall, we found various mod-
eling techniques (e.g., different CAD tools, UML dialects,
DSLs, knowledge representation languages, etc.) and many
papers addressed more than one modeling technique. To pre-
vent dissipating the resultswe sorted themodeling techniques
into groups (such as 3D modeling, architecture description
languages, or business process modeling techniques) and
isolated modeling techniques specific to Industry 4.0 (such
as AutomationML). This produced the 15 groups presented
in Table 5.

Moreover, we also investigated whether the included
publications report on real-world industrial applications.
Out of the 408 included publications, only 23 (5.64%)
reported such applications. The industrial domains include

automotive [38,68,78], avionics manufacturing [119,125],
packaging [155], production of white goods [8], oil produc-
tion [70,131], and production of windows and doors [6]. The
next section presents our main findings along the four clas-
sification dimensions.

4 Findings

This section presents our findings on the expected benefits
of applying modeling languages to Industry 4.0 as well as on
the contribution types, research types, Industry 4.0 concerns,
and modeling concerns for the included papers.

4.1 Expectations on the impact of modeling
languages on Industry 4.0

WithRQ1 (“What are the expected benefits of applyingmod-
eling languages to Industry 4.0?”), we address the expected
impact of contributing research in modeling to Industry 4.0
challenges. To this effect, we extracted these expectations
whenever these were made explicit. Out of the 408 publica-
tions included after classification, only 55 (13.48%) papers
explicitly described the authors’ expectations on the impact
of their contribution. The expectations include reducing the
cost of production system integration [52], saving energy
on production system reconfiguration [102], and remaining
internationally competitive in high-wage countries [141].We
classified the expectations into expectations on
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Table 5 Modeling language facets

3D Modeling Techniques for representing geometric properties, e.g., for factory planning or augmented reality systems, including
AutoCAD [43] and CATIA 3D [163]

ADL Techniques employing architecture description languages [103], e.g., [30,31]

AML Techniques employing the AutomationML [41] plant engineering data exchange format, such as [20,128]

BPM Techniques for business process modeling in the context of Industry 4.0, for instance [75,142]

CMSD Approaches based on Core Manufacturing Simulation Data (CMSD), such as [106]

DSL Domain-specific languages, e.g., EDDL [127] or SDL [136]

ER Entity-relationship modeling, cf. [9,125]

Formal Modeling Automata-based and mathematical modeling approaches, including Petri Nets [90] or Priced Timed Automata [102]

GPL Techniques employing general programming languages (GPLs), for instance, to model the services provided by a robotic
manufacturing system [67]

KR Knowledge representation languages, using, for instance, OWL [91]

Meta Various metamodeling techniques, such as [31,83]

Simulink Approaches using MATLAB/Simulink, e.g., [48,98]

SysML Techniques employing SysML, including [12,138]

UML UML and UML profiles, such as [95,123]

XML XML-based modeling techniques, for example [99,148]

– reducing time (development time, time-to-market),
– reducing costs (of development, integration, (re-)
configuration),

– improving sustainability, and
– improving international competitiveness.

Overall, the included publications explicated 59 expec-
tations. Out of these, most publications expected modeling
to either reduce cost (26x mentioned) or time (22x). Only a
few publications propose modeling to improve sustainability
(4x), increase international competitiveness (3x), to facili-
tate learning (2x), or to enhance the quality of products (2x).
However, as the number of papersmaking the expectations of
contributing modeling in Industry 4.0 explicit is rather small,
these motivations cannot be generalized.

4.2 Industry 4.0 concerns addressed withmodeling
languages

With RQ2 (“Which Industry 4.0 concerns are addressed
through modeling languages?”), we investigate which con-
cerns of Industry 4.0 are addressed using modeling tech-
niques and how they are addressed in terms of contribution
types (Table 2) and research methods (Table 3).

Investigating this, we found that most publications on
modeling in Industry 4.0 contributemethods to challenges in
digital representation (considered by 120 publications), inte-
gration (113), and processes (73). Out of the 614 concerns
addressed by the included publications, these three combi-
nations of contribution types and concerns make up 49.84%
of concerns addressed by papers of our corpus. Overall, the
majority of contributions are methods (69.71%) or concepts

(13.52%),whereas tools (9.61%), ormetrics (0.49%) are con-
tributed significantly less often.

With contributions claiming to reduce costs and time
(cf. Sect. 4.1), the lack of papers contributingmetrics to track
these claims is surprising. However, the new papers included
after April 2017 do not investigate metrics at all. The results
concerning contribution types—as inquired by RQ4 (“What
are the most frequently applied research methods in the con-
text of modeling languages for Industry 4.0?”)—are depicted
on the left part of Fig. 4 and these findings are reflected by
the research type contributions on its right part. Most con-
tributions are solution proposals (i.e., application of existing
techniques to solve particular problems) that focus either on
digital representation or on integration challenges. It is also
surprising that only a few publications investigate modeling
for the (smart) product, which is supposed to control its pro-
duction processes in many visions of Industry 4.0.

With respect to the publications’ research types, we found
that solution proposals make up 123.04% of the publica-
tions. These also most often address digital representation
(addressed in 141 publications), integration (123), and pro-
cesses (84). Out of the 614 concerns addressed by the
publications included in our corpus, these three combinations
of research types and concerns make up 49.84% of addressed
concerns (Fig. 5).

Other research contributions are significantly less com-
mon. Evaluation reports contribute only 12.25% of the
included papers, validation papers only 6.86%, vision papers
only 5.88%, and experience reports only 2.45% of the
included papers are contributed significantly less often. That
most solution papers also are method papers might reflect
the very constructive research typical to modeling. However,
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Fig. 4 Industry 4.0 concerns by research type and contribution type

the large number of method papers over papers contribut-
ing new concepts, validating new techniques, or proposing
visions implies that research mainly approaches Industry 4.0
with established methods and techniques. This is supported
by our findings on the modeling techniques contributed to
Industry 4.0 presented in the next section.

Moreover, we investigated whether research on modeling
languages in Industry 4.0 focusesmore on the cyber (i.e., soft-
ware) elements of automation or on its physical elements. To
this end, we noted whether the publications explicitly men-
tion which kind of parts the contributions are applied to. We
found that 252 (61.76%) explicate this. They provide con-
tributions focusing on cyber elements, physical elements,
activities, or a combination thereof. Overall, 59 (14.46%)
publications focus solely on cyber elements, 36 (8.81%)
focus solely on physical elements, and 29 (7.11%) focus
on activities that are not specified whether being cyber or
physical. Of the remaining publications, 106 (25.98%) focus
on cyber-physical elements, 10 (2.45%) on purely physical
activities, and 12 (2.94%) on activities incorporating cyber
and physical elements.

While research on modeling languages for Industry 4.0 is
very balanced between contributing to handling cyber ele-
ments and physical elements, modeling physical elements or
processes operating with them is important to modeling in
Industry 4.0.

4.3 Modeling languages applied to Industry 4.0

Regarding RQ3 (“Which kinds of modeling languages are
used in Industry 4.0 and which concerns do they address?”),
out of the 408 publications included in our classification,
a total of 86 (86.03%) publications explicitly specified the
(meta)modeling technique the authors applied to Industry
4.0. Examining these publications produced 124 different
modeling techniques. Most notably among these are:

– Variants of UML, such as DiSpa [16], Mechatronic
UML [134], UMM [100], and UML4IoT [149];

– The systems modeling language (SysML) [147] and
its variants, such as SysML4Mechatronics [48] and
SysML4Modelica [19];
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Fig. 5 Modeling language facet by research type and contribution type

– Knowledge representation techniques, mostly employ-
ing the Web Ontology Language (OWL) [60,110] or the
Semantic Web Rule Language (SWRL) [66,129].

– Metamodels specific to Industry 4.0 challenges, such as
the industrial metamodel for automation systems [107]
or AutomationML [83].

– Metamodeling techniques, such as ADOxx [45,156],
MetaEdit+ [30,31], or Xtext [55,77].

– Various DSLs, such as the EXPRESS DSL for product
data modeling [39], the virtual factory data model [74],
the Industry 4.0 process modeling language [116], the
graphical modeling language for value networks [133],
or the graphical modeling framework for production pro-
cesses [94].

Overall, out of the 408 classified papers, 85 (20.83%) con-
tribute or apply DSLs to specific to Industry 4.0 challenges
and total of 74 (18.14%) papers employ UML (including
variants). We also observed that leveraging UML and DSLs
is not mutually exclusive in Industry 4.0 as 8 of the publica-
tions, such as [5,56,139], employ both.A total of 74 (18.14%)
papers employ knowledge representation techniques, 29

(7.11%) papers use AutomationML [41], and 25 (6.13%)
papers use SysML to address Industry 4.0 challenges. We
also found 42 (10.29%) publications that discuss some form
of conceptual metamodeling, i.e., describing the entities and
their relations, of a specific aspect of Industry 4.0. Out of
these only eight papers explicitly identified the metamodel-
ing techniques used to define software languages for Industry
4.0 challenges. These either employed language work-
benches, such as Xtext [77,105,112] or MetaEdit+ [30,31],
or generic metamodeling frameworks, such as MOF [86],
and Ecore [83]. Overall, 127 (31.13%) of the overall con-
tributions address Industry 4.0 challenges with new DSLs
or metamodeling techniques. This could hint at modeling
challenges that cannot be properly addressed by established
modeling techniques.

To answer RQ3, we also investigate which modeling
languages are applied to address the different Industry 4.0
concerns. The results, depicted in Fig. 6, show that UML
is used mostly to solve challenges in digital representation
(39 publications) and integration (35 publications), which is
consistent with identifying these as the most important chal-
lenges addressed by included publications. Consequently,
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Fig. 6 Individual Industry 4.0 concerns and modeling techniques addressing these

these also are the two concerns most often addressed with
knowledge representation techniques, DSLs, SysML, and
AutomationML as well. For process modeling, another
important aspect if Industry 4.0, DSLs are most popular (17
publications), followed by the application of knowledge rep-
resentation techniques (35) publications), formal methods
(13) publications), and UML (also 13) publications)

Overall, the concerns digital representation and integra-
tion—addressed by either AutomationML, various DSLs,
knowledge representation techniques, SysML, or UML—
represent 33.43% of the 700 concerns addressed with mod-
eling languages. Together, these are a major focus of the
field’s research activities. While the usage of UML and
DSLs is almost equally distributed between both concerns,
knowledge representation techniques lean toward digital rep-
resentation challenges.

The results also show that neither validation and veri-
fication, nor the human factors crucial to the success of
Industry 4.0 or product modeling are investigated as much
as integration and digital representation. Whereas the former
might require solving digital representation and integration
(to some degree) first, the lack of research on the latter two
is elusive. Unless the smart factory of the future is fully
automated, human interaction and control are necessary and
should be considered appropriately.

We also observe that standards are crucial bases on shared
understanding in the context of Industry 4.0. And while
many papers apply techniques implementing standards to

Industry 4.0, out of the 408 papers, 66 (5.64%) papers explic-
itly discuss, relate to, or challenge 54 different standards
defined by the International Organization for Standardization
(ISO), theAmericanNational Standards Institute (ANSI), the
International Electrotechnical Commission (IEC), the Sim-
ulation Interoperability Standards Organization (SISO), the
American Society of Mechanical Engineers (ASME), and
the National Institute of Standards and Technology (NIST).
The standards are addressed in the context concerns identi-
fied as research contributions of the corpus, including digital
representation, human factors, integration, metamodeling,
processes, and visualization. But they also address cross-
cutting concerns, such as the environment, quality issues,
safety, and security.

With integration being one of the Industry 4.0 concerns
investigated most often, the most popular standards regard-
ing modeling for Industry 4.0 also focus on integration as
well. The standard for the exchange of product model data
(“STEP”, ISO 10303) is consideredmost often and discussed
12 times. It is followed by the standard for the integration of
lifecycle data for process plants including oil and gas produc-
tion facilities (ISO 15926), which is mentioned 9 times, and
the standard on enterprise-control system integration, men-
tioned 7 times (IEC 62264). The standard defining a data
model for computerized numerical controllers (“STEP-NC”,
ISO/TS 14649) also was mentioned 5 times. Other stan-
dards discussed at least once in the context of integration
include the standards on data element types with associated
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classification scheme (IEC 61630), the parts library stan-
dard (“PLIB”, IEC 13584), Core Manufacturing Simulation
Data (“CMSD”, SISO-STD-008), manufacturing message
specification (“MMS”, ISO 9506), industrial manufacturing
management data (“MANDATE”, ISO15531),metadata reg-
istries (ISO/IEC 11179), or the metamodel framework for
interoperability (ISO/IEC 19763). Overall, integration is the
main driver for the standardization of modeling techniques
in Industry 4.0.

Other important drivers for discussing, challenging, or
relating to standards are (1) processes and process modeling
which is addressed by the standards ANSI/ISA-88, ISO/DIS
18828-5, IEC 61499, ISO 22400, ISO 60848, ISO 6983,
ISO/IEC 19510, and ISO/IEC 6523; (2) digital representa-
tion in the context the standards IEC 61346, ASMEB5.59-2,
ISO 42010, ISO/IEC 10746 ISO/IEC 14662, and ISO/IEC
19501; and (3) visualization with the related standards ISO
10628, ISO 15519, ISO 3511, ISO 1219, ISO/PAS 17506,
ISO 14306, ISO 14739. Overall, this indicates that standard-
ization is in line with the general research direction in the
field.

Out of the 54 standards, at least 13 standards address top-
ics of direct interest for the modeling community in software
engineering, as these directly specify, imply, require, or con-
strain (meta) modeling techniques. These include standards
prominent in software engineering, such as Unified Mod-
eling Language (UML) in version 1.3 (ISO/IEC 19501),
the Business Process Model and Notation (BPMN, ISO/IEC
19510), or the Meta Object Facility (MOF, ISO/IEC 19502),
or architecture description (ISO/IEC 42010). Themajority of
modeling-related standards in Industry 4.0, however, appear
to be less prominent in the modeling community in software
engineering. We assume that this indicates a gap between
both communities, modeling in automation systems engi-
neering and modeling in software engineering.

4.4 Countries and institutions contributing to the
field

Investigating RQ5 (“Who researches modeling languages in
Industry 4.0?”), we found that 184 (45.1%) of the publica-
tions were contributed by teams including German authors,
followed by teams including authors from the USA (35
publications), Austria (29 publications), and France (28
publications) as depicted in Fig. 7. Overall 53 countries
contributed to research on modeling languages for Industry
4.0 in 521 contributions (papers with authors from multi-
ple countries count as multiple country contributions). Out
of these, the 10 most actively publishing countries produce
392 (75.24%).Among these 392 contributions, 325 (82.91%)
contributions are from Europe. This suggests that modeling
in Industry 4.0 still largely is a European research project

despite starting related initiatives in many countries across
the globe.

Aside from the contributing authors’ countries, we also
identified the institutions most actively engaging in research
on modeling languages for Industry 4.0. Overall 358 institu-
tions contribute to the field. Due to Industry 4.0 being coined
in Germany and 45.1% of the included publications hav-
ing German co-authors, it is unsurprising that out of the
10 most active institutions in this field, 6 are from Ger-
many (as depicted in Fig. 8). It is, however, interesting
that among these most active institutions are two national
research institutions, the USA’s National Institute of Stan-
dards and Technology (NIST) and the National Research
Council of Italy, whereas for Austria, Germany, and Spain
the most active institutions are universities or companies.
Multi-national institutions were assigned the country of their
headquarter.

Out of the 358 overall contributing institutions, 235
(65.64%) are universities, 72 (20.11%) are companies, and
51 (14.25%) are other kinds of research institutes, such as
the Department of Energy of the USA, the Greek ATHENA
Research and Innovation Centre, or the German Fraunhofer
institutes. While this might indicate that—despite being a
business-driven paradigm (cf. Sect. 4.1)—research on mod-
eling in Industry 4.0 could be driven by academic researchers,
our initial data collection also produced 235 (7.03% out of
the 3344 potentially relevant unique publications) patents
via Google Scholar. These indicate that there is industrially
driven research on Industry 4.0 that does not necessarily lead
to scientific publications.

4.5 Popular venues for publications onmodeling
languages for Industry 4.0

Regarding RQ6 (“Where have the contributions been pub-
lished?”), we found that most papers are published at con-
ferences (249, 61.03%), followed by journals (137, 33.58%),
and workshops (22, 5.39%).We also identified the most pop-
ular journals, conferences, and workshops of this particular
field of research, to answer RQ6 on the most popular venues
for modeling research in the context of Industry 4.0.

Figure 9 presents the 10 most popular journals, where
(15.26%) of the related journal papers are published. Where
journals produced the same number of publications, they are
represented in alphabetical order according to their name.
Notably, no publications of the Transactions on Industrial
Informatics (no. 4) or the International Journal of Produc-
tion Research (no. 5) were included in the dataset until
April 2017. However, the small numbers of publications in
these most popular journals, do not support conclusions over
their importance. As the Industry 4.0 matures, future studies
maybe could draw such conclusions based on larger corpora
of relevant publications.
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Fig. 7 The 10 most actively
publishing countries with
authors contributing to modeling
in Industry 4.0 are largely from
Europe and contribute 82.91%
of the publications

Fig. 8 The 10 most active
institutions engaging in research
on modeling for Industry 4.0

Fig. 9 Most popular journals
for publications on modeling for
Industry 4.0

The 10 most popular conferences regarding modeling in
Industry 4.0, depicted in Fig. 10, publish, with 38.15%, also
a large part of the related conference publications. Again,
conferences yielding the same number of publications are
represented in alphabetical order according to their full name.
The large number of conference publications supports the
conclusion that the conference on Emerging Technologies

and Factory Automation (ETFA)—publishing 31 (12.45%)
of included conference papers—is themost important confer-
ence for publications on modeling in Industry 4.0. The nine
other most popular conferences published between 4 and 15
papers on the topic. With some distance to ETFA, the Inter-
national Conference on Industrial Informatics (INDIN), the
CIRP Conference on Manufacturing Systems (CIRP CMS),
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Fig. 10 Most popular conferences for publications on modeling for Industry 4.0

and the conference of the IEEE Industrial Electronics Society
(IECON) are the next most popular conferences for model-
ing in Industry 4.0. Together, they publish a similar share
(14.05%) of related papers.

Overall, the 10 most popular journals and conferences
publish 32.6%of the included papers,which hints at a healthy
distribution of publications over multiple venues. This is
reflected by the 22 workshop papers included in the clas-
sification, which were published at 20 different workshops.
In this context, no trends on workshop popularity can be
observed.

4.6 Publication activities over time

Regarding RQ7 (“When did the contributions on modeling
languages to Industry 4.0 occur?”), we found that modeling
for Industry 4.0was already addressed as early as 1991 [158],
although the term “Industry 4.0” was not coined yet. Over
half (219, 84.56%) of related publications were published
starting in 2016 and 345 (84.56%) of the publications are
from 2011 (the year the term “Industry 4.0” was coined) or
later (cf. Fig. 11) and later.We also observe that the number of
papers increased by (31.82%) on average per year since 2011.
Whether this trendwill continue requires future investigation.

5 Trends and perspectives onmodeling for
Industry 4.0

Updating our previous mapping study provided the unique
opportunity to investigate publication trends between April

2017 and February 2018.While we are aware of this compact
time frame, comparing both data sets produced interesting
observations. Subsequently, this section presents perspec-
tives on potential future trends of research in modeling for
Industry 4.0.

5.1 Trends inmodeling for Industry 4.0

We extended the mapping study with papers published
between April 2017 and February 2018. Through this, we
included 186 (an increase of 83.78%) additional papers
into our observations, which corresponds to the increase of
addressed concerns of 76.94%. Comparing both data sets
yields insights into differences between publications until
April 2017 and afterward.

Considering changes in contribution types with respect
to addressed Industry 4.0 concerns, we found significant
increases regarding methods (450%) for product modeling,
validation and verification (183.33%), and failure handling
(150%), as well as regarding tools for validation and ver-
ification (150%). Concerning the research types of the
publications in the updated corpus, we found that solu-
tions for product modeling (183.37%), for validation and
verification (146.67%), and for information management
(135.67%) increased the most. The absolute numbers of
increases regarding contribution types and research types are
depicted in Fig. 12.

Nonetheless, we also found that analyses (54.55%), meth-
ods (53.85%), tools (27.27%) for digital representation
showed a disproportionately lower increase. This might indi-
cate that some techniques for digital representation have
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Fig. 11 Number of publications
per year until February 2018
(missing numbers identify years
without related publications)

Fig. 12 Numbers of addressed Industry 4.0 concerns relative to the different contribution types and research types contributed by the 186 publications
included since April 2017

become a stable basis for other research to build upon. Over-
all, contributions investigating product modeling (300%),
validation and verification (186.67%), and information man-
agement (135.70%) increased the most. This change of focus

from digital representation and integration, as found in [159],
to validation and verification and processes could be in line
with building on top of established representation and inte-
gration techniques.
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Fig. 13 Numbers of applied modeling techniques relative to the different contribution types and research types contributed by the 186 publications
included since April 2017

Regarding the technologies addressed by the included
publications, we found that, relatively, the use of metamodel-
ing techniques (425%), formalmethods (169%), anddomain-
specific languages (158%) for Industry 4.0 increased the
most. This could be an effect of a wave of early approaches
investigating applying more general or established model-
ing techniques, based, e.g., on UML or XML [159], abating.
Moreover, this underlines the importance ofmodeling knowl-
edge in Industry 4.0.

In contrast, the use of pure XML or Simulink increased by
27% and 50%, respectively, only. However, with their abso-
lute numbers—as presented in Fig. 13—of publications con-
sidering pureXMLor Simulink being low to beginwith, their
relative small increases might not imply any trends (Fig. 14).

Investigating trends regardingmodeling techniques applied
to Industry 4.0 concerns, we found that the application of
the different metamodeling techniques to processes (800%)
and integration (633%), as well as the application of knowl-
edge representation techniques to information management
(600%) increased the most. In contrast, the overall applica-
tion ofADLs (0%) andCMSD (13%),XML (25%), Simulink

(44%), and AutomationML (48%) increased the least. How-
ever, the low number of publications on metamodeling
found initially [159] explains their relatively sharp increase,
whereas the low numbers of publications applying ADLs,
UML, or XML-based techniques emphasize the trend toward
novel and specific modeling languages for Industry 4.0.

Considering the different venues relevant to publishing on
modeling for Industry 4.0, it is notable that no publications
of the International Journal of Production Research or the
Transactions on Industrial Informatics were included in the
dataset until April 2017.

5.2 Different perspectives onmodeling

In line with our findings of standardization activities, the
identified publication venues also indicate a gap between the
different modeling communities (automation engineering,
software engineering, etc.) related to Industry 4.0. From our
experience, this also is visible in some of the topics relevant
to modeling in Industry 4.0, such as 3D modeling, knowl-
edge representation, or simulation that seem to attract fewer
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Fig. 14 Numbers of Industry 4.0 concerns addressed by the different modeling techniques as contributed by the 186 publications included since
April 2017

publications in the software engineering modeling commu-
nity (e.g., the MODELS or ECMFA conferences). This also
is reified by the different standardization or specification
bodies of the different communities. While the OMG con-
siders automation engineering standards, as well as software
engineering standards, or cross-cutting standards (e.g., on
environment, safety, or quality), there are modeling-related
standards by standardization bodies not primarily consider-
ing software engineering, such as the Core Manufacturing
SimulationData (CMSD) standardizedbySISO(SISO-STD-
008) or the related standards by IEC (e.g., IEC 61630 or IEC
62424).

Moreover, there are various standards addressing issues
relevant to the software engineering modeling community,
such as (1) the standard for the “exchange of product model
data” (“STEP” [120]) reified in ISO 10303, which comprises
the EXPRESS [120] modeling language, the standard data
access interface, or the STEP-NC [160] machine tool control
language; (2) the standard for “industrial automation systems
and integration - Parts library” (“PLIB”) reified in ISO13569,
which defines theOntoMLontologymarkup language; or the
(3) the process specification language of ISO 18629. Hence,
we suggest for software engineering researchers to consider
these standards when contributing to modeling in Industry
4.0.

Moreover, with AutomationML [14], research and indus-
try have started a promising initiative on modeling automa-

tion systems for Industry 4.0 that features research groups for
all participating communities. However, the underlying tech-
nologies that define models and languages (e.g., XML) can
significantly improve from research conducted in the com-
munity around model-driven software development.

We also found that research on modeling languages for
Industry 4.0 to a large extent addresses challenges either
typical to software and systems engineering, such as digital
system representation and integration, or typical to arti-
ficial intelligence, such as representing knowledge about
processes and resources and reasoning about these (cf. Fig.
6). Despite these challenges being central to computer sci-
ence research, themost popular venues (cf. Sect. 4.5) suggest
that this research is not discussed in computer science, but in
journals and conferences related to automation engineering
instead. Whether this is due to the contributing researchers’
backgrounds is subject to ongoing research and cannot be
answered from the data on contributing institutions alone
(cf. Sect. 4.4).

Research on modeling languages for Industry 4.0 focuses
on constructive contributions, i.e., methods solving specific
problems (cf. Sect. 4.2), while there are few experience
reports, validation research, or evaluation papers. Similarly,
metrics and analyses, expected to be prominent for such a
business-driven research agenda, are very rare. This is in line
with the observation that only a few papers conduct empirical
evaluations in industrial settings (5.64%) and might suggest
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that the majority of solutions provided to the field are not
mature enough for to be evaluated in the field, or that there
is a significant amount of research not targeted at industrial
needs. Also, there is a noticeable lack of vision papers on
modeling for the newly coined research agenda of Industry
4.0, which might contrast the hypothesis that research on
modeling for Industry 4.0 is of insufficient maturity.

5.3 Looking ahead onmodeling for Industry 4.0

We are currently striving for new opportunities, but at the
same time facing a dramatically increasing complexity in
the development and operation of systems with the emer-
gence of Cyber-Physical Production Systems (CPPS) [153]
in Industry 4.0. This demands for more comprehensive and
systematic views on all aspects of systems (e.g., mechanics,
electronics, software, and network) not only in the engineer-
ing process but in the operation process as well [22]. More-
over, flexible approaches are needed to adapt the systems’
behavior to ever-changing requirements and tasks, unex-
pected conditions, as well as structural transformations [87].
Modeling languages are traditionally more focused on the
development phases as also indicated by our literature study.
However, the reference architecture of Industry 4.0 explicitly
targets themanagement of the complete lifecycle, going from
development (i.e., type level) to operation (i.e., instance level)
in addition to vertical and horizontal integration require-
ments. In this context, the later phases of the lifecycle may
become a new playground for existing modeling languages.
Although some of the surveyed languages already provide
some support for type and instance level such as UML,
typically the instance level modeling did not receive much
attention compared to the type level.

To tackle the challenges of Industry 4.0, such as the flexi-
ble and resilient adaption of CPPS to changing requirements,
the operation processes of CPPS, as well as their interplay
with the engineering processes and vice verse, has to be taken
into consideration also by the employedmodeling languages.
This raises the question of how model-based DevOps prac-
tices for CPPS can be achieved. Such practices are currently
highly needed to reduce the time between identifying the
necessity for a change and putting the appropriate change
into production. Definitely, we have to go beyond the current
support offered by current Product Lifecycle Management
(PLM) tools [1].

Furthermore, current DevOps practices have to be com-
pleted to be applicable not only for code-based artifacts but
for a larger variety of artifacts such as models, engineering
documents, CAD drawings, simulation data, etc.

In the following, we present a vision for model-based
DevOps as well as challenges related to the development of
the next-generation modeling languages that have to be tack-
led to realize model-based DevOps for Industry 4.0. Finally,

we conclude with the potential benefits of model-based
DevOps but also enumerate potential barriers tomodel-based
DevOps.

5.3.1 Model-based DevOps: a vision

While current DevOps practices apply to code integration,
deployment and delivery, we envision the application of the
very same practices at the model level. In such a vision, the
various domain-specific development models are seamlessly
integrated with operations, either models at runtime (e.g.,
model-based MAPE-K loop or digital twins) or a combina-
tion of software and hardware components within a given
environment. In the last two decades, the MDE community
developed a rich and useful toolset for implementing such
a vision through the efficient development, usage, main-
tenance, and evolution of modeling languages. Figure 15
presents some of the modeling techniques that can be used
across the DevOps cycle.

5.3.2 Model-based DevOps: What is needed frommodeling
language research?

Integration of the MDE Technologies with DevOps Tech-
nologies In the past decade, a plethora of different modeling
languages for design, validation, verification, evolution, and
transformation ofmodels have been proposed.However, how
these languages may be bundled into a pipeline for continu-
ously integrating, building, testing, and deploying models
into production environments is less explored. The only
exception is the work by García and Cabot [51] who married
continuous deployment technologies and model-driven tech-
nologies. Some approaches toward leveraging MDE in the
context of PLM that might serve as a vantage point for mov-
ing from PLM with MDE to model-based DevOps include
model- and standards-based data integration [101], increas-
ing virtualization [2,30], or domain-specific languages tai-
lored to the industry’s processes [105].

Integration of different artifact kindsWhile currentmodel-
based technologies provide common services for model-
based artifacts, other artifact kinds such as software compo-
nents or hardware descriptions cannot be directly integrated
with models. However, this demands integration techniques
on the language level that support a progressive integration
of models starting in the engineering process and extend-
ing into the deployment process even going to the operation
processes. Activities in this direction include, e.g., inte-
grating geometric tolerance information into STEP (ISO
10303) [132] or integrated representations of products, pro-
cesses, and resources [10] to model system changes over its
lifecycle.

Aligning operational data and design models A major
challenge is the back-propagation of operational data (e.g.,
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Fig. 15 A vision of model-based DevOps that aims to facilitate addressing the challenges of the CPPS of Industry 4.0 through pervasive modeling
across their complete lifecycle

measures about performance, energy consumption, masses,
costs, etc.) into the documentation provided on top of hetero-
geneous designmodels—whichmaybe software engineering
models, formal models of physical processes, knowledge
bases, CAD, or something else. Currently, most of the mod-
eling languages identified in our study lack a dedicated
viewpoint for operations. Extensions to these languages are
required to link to operational data or to store summaries of
operational data in models (cf. [54,122]).

Visualizing operational data in designmodelsOperational
data is becoming huge in size for complex systems. Even
if operational data is aligned with design models, current
modeling languages most often fail short in visualization
support for non-2D-diagram-based data. Additional require-
ments for visualization of designmodels occur such as how to
visualize the underlying quality of the data such as uncertain-
ties. Integrating sophisticated visualization techniques [4] are
required to provide an understanding of operation-enriched
design models.

Exploiting runtime models for continuous improvement
of design models Runtime models have gained considerable
attention in MDE, mostly in the context of self-* systems.
Interpreting runtime models for continuous improvement of
the design models (possibly through additional predictive
models) would enable reasoning about the next versions of a
system. Runtime models would indeed be very helpful here:
for instance, assume the transform of the runtime models
back into traces which can be replayed by simulators for ani-

mation, exploration, etc., on the designmodels.We, however,
found that most publications focus on modeling languages
to describe design-time models or runtime data is analyzed
without a deeper connection to the design models.

5.3.3 Perspectives of model-based DevOps for Industry 4.0

The path toward model-based DevOps for Industry 4.0
yields specific benefits and challenges. For instance, con-
sidering business concerns, as presented in the BizDevOps
approach [58], requires reasoning over the global system at
the business level - the highest vertical level in the reference
architecture of Industry 4.0. This level would benefit from
the application of the DevOps principles at themodel level as
models are closer to the application domain and can provide
a comprehensive representation of the system, including its
environment and possible extra-functional properties related
to business concerns.

Moreover, promoting DevOps principles at the model
level enables leveraging it earlier in the development pro-
cess. Hence, DevOps principles would not only apply to the
integration, deployment, delivery, and operation of the global
system, but could also apply at a finer level of granularity
for the different concerns addressed during the develop-
ment processes of plants, production systems, and products
their various abstraction levels. This could lead to power-
ful development processes where automation and continuous
feedback are not only available at the level of the global sys-
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tem, but also at the level of the different concerns and across
the various levels of abstraction. This, for instance, could
facilitate operating (partly) virtual factories [28,74] earlier
and support factory and CPPS integration planning as well
as simulation of manufacturing novel products.

Based on our findings, obstacles to the adoption of model-
driven DevOps in Industry 4.0 might arise from a gap
between the modeling communities of Industry 4.0 and soft-
ware engineering.AsDevOps is a set of software engineering
practices, it largely focuses on cyber (i.e., software) ele-
ments, a DevOps for Industry 4.0 must also incorporate its
physical parts (cf. Sect. 4.2) and leverage associated model-
ing languages. Where DevOps, i.e., introducing change, for
pure software elements is manageable, e.g., by over-the-air
updates at runtime, changing physical elements at runtime
is complicated to impossible. Similarly, software generally
can be released and monitored more easily than the physical
elements of Industry 4.0. Moreover, a DevOps for Indus-
try 4.0 must comply with relevant industry standards and
regulations (see Sect. 4.3). This is especially critical where
(manual) certification prior to deployment is required as
this can hamper the DevOps loop. Finally, while modern
software engineering tools are providing open APIs to be
integrated into DevOps pipelines which allow for automa-
tion and traceability, classical PLM tools for managing the
lifecycle of physical components by virtual representations
are often closed environments with proprietary data formats.

To sum up, with both communities generally leveraging
differentmodeling techniques, standards, and tools, realizing
DevOps for Industry 4.0 demands for concentrated efforts to
bridge this gap. Otherwise, realizing the reference architec-
ture of Industry 4.0 becomes a utopia.

6 Threats to validity

For identifying the threats to the validity of our SMS, we
follow the four basic types of validity threats according to
Wohlin et al. [157]. Our study is subject to threats to construct
validity (research design), internal validity (data extraction),
and conclusionvalidity (reliability). Threats to external valid-
ity (generalizability) are irrelevant as the results of this study
can neither be generalized to problems domains other than
Industry 4.0 nor to solution domains other than modeling.

Regarding threats to research design, the presented find-
ings are valid only for our sample of papers. Hence, it is
crucial to ensure the inclusion of as many relevant papers as
possible. To achieve this, we included the Google Scholar
digital library and only very carefully excluded publications.
We are aware that a great number of subsequent exclusions
for formal reasons (e.g., non-peer-reviewed materials) are
due to querying Google Scholar. However, its inclusion was
useful to capture venues not published in the other libraries.

Overall, using Google Scholar led to including 207 papers
that would have otherwise been omitted.

Moreover, we did not restrict our search to publications
mentioning “Industry 4.0” explicitly, but also included the
related terms of the search clause’s first disjunction. Simi-
larly, the search clause’s second disjunction included terms
closely related to modeling, without narrowing it to the
exact terms. Instead, we used terms one can expect from
relevant contributions to be included in the full text. This
enabled capturing related publications without focusing on
the very specific, partly ambiguous, modeling terminology.
Our search clause also might entail a bias toward Euro-
pean research by explicitly mentioning “Industry 4.0”, i.e.,
the name of a European initiative on smart manufacturing,
whereas the names of other national initiatives (e.g., the
Japanese “Industrial Value Chain” or the “Advanced Man-
ufacturing Initiative” of the USA) are not part of the search
clause.

Another threat to research design validity arises from the
definition of the criteria of inclusion and exclusion. During
the screening, only title, abstract, and keywords were con-
sidered. To prevent excluding relevant publications based on
the lack of investigation, we included papers we were uncer-
tain of temporarily. In the subsequent classification phase,
the complete papers were read and inclusion or exclusion
were decided ultimately.

Of course, our mapping study also is subject to the so-
called publication bias, i.e., it can report on published results
only. As publications focus on positive results, we cannot
derivewhichmodeling languages are not applicable from our
data sources. Also, we restrict our research to work applied
to Industry 4.0, instead of also considering potential appli-
cations to it. Due to its diversity, a study on the latter must
include at least publications focusing on robotics, the Internet
of Things, production planning, enterprise systems, human–
computer interaction, and much more. However, including
all these fields would dilute the validity of such a study.

Threats to conclusion validity arise drawing wrong con-
clusions and from the study’s replicability. Regarding the
former, we have discussed various issues that could lead
to wrong conclusions in the context of threats to internal
validity. For replicability, we detailed the complete research
method in Sect. 3, which enables replicating every phase of
this mapping study. Regarding some conclusions, such as the
most active institutions ormost relevant journals, our study is
by construction biased toward institutions and journals pub-
lishing in English.

7 Conclusion

We conducted a systematic mapping study to investigate the
state of research onmodeling languages for Industry 4.0. The
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study revealed that digital representation of cyber-physical
production systems, i.e., their interfaces and datamodels, and
their integration and (re-)configuration are the prime Industry
4.0 concerns addressed through modeling languages.

The number of papers explicating the authors’ expec-
tations of applying modeling languages to Industry 4.0 is
rather small. There also are no papers or benchmarks that
investigate evaluating the expected benefits through experi-
ments. This is in line with uncovering a lack of experience
papers and experience reports. Moreover, there appears lit-
tle published research on metrics and benchmarks to test
the explicated expectations. This might hint that research
on modeling languages for Industry 4.0 is still focusing on
foundational challenges and maturing the discipline could
produce these necessary validations. This also is indicated
by the high number of publications focusing on methods
and solutions, instead of validation research. Where eval-
uation research is reported, it mostly focuses on case studies
or lab-sized systems at universities possibly using industrial
components. To fully investigate the benefits of modeling on
Industry 4.0, more evaluation research in industrial settings
is necessary.

It is also startling that—despite the huge costs that pro-
duction system failures might entail—there is relatively little
research on validation and verification. However, with Indus-
try 4.0 being business-driven and aiming to reduce cost
and time, such contributions might arise once the field has
maturedmore. Recent trends indicate that validation and ver-
ification already are becoming a more important concern for
the field.

We found that domain-specific languages and UML
(including variants) are themodeling languages appliedmost
often, followed by knowledge representation techniques. The
use of metamodeling and DSLs, as well as UML profiles
or other extension mechanisms, might suggest that specific
challenges are not supported by current modeling languages.
However, in the 23 publications reporting an industrial eval-
uation of their contributions, this assumption is not reflected.
As expected, these publications report on applying more
established modeling languages, such as AutomationML (cf.
[40]), OWL (cf. [129,137,139]), or UML (cf. [119,129]).
Nonetheless, even among the publications with industrial
evaluation, we found contributions introducing novel meta-
models (cf. [70]) or extensions of established ontologies (cf.
[111]).

Also, with the majority 76% of contributions related to
DSLs being published since 2014—and in an increasing
number since then—we expect more research contributing
modeling techniques specifically tailored to Industry 4.0
in the future. The significantly growing number of papers
related to metamodeling and DSLs in the last year alone
suggests that the community on modeling for Industry 4.0
invests increasing efforts in tailoring specific modeling tools.

This matches the number of modeling standards and exten-
sions to these standards as well. Most notably, Computer
Aided Engineering Exchange (CAEX) [15] acts as a model-
ing language and metamodeling language which is used by
AutomationML [41] and enables its extension with domain-
specific concepts.

While integration still is a major challenge in Industry 4.0,
there seem to be trends to shift research from a mostly digi-
tal representation of CPPS toward information management
and process modeling. Moreover, research shifts away from
applying established (e.g.,UML-based)modeling techniques
toward specific and tailored modeling techniques. The latter
might be an effect of increasing adoption of modeling stan-
dards (such as ISO 10303 or IEC 62264) specific to Industry
4.0, which are worthwhile to investigate for everybody aim-
ing to contribute to the field.

Especially modeling knowledge about processes operat-
ing on established digital representations seems to become
increasingly important. To this end, integration of software
engineering and knowledge representation (e.g., on the inte-
gration of ontologies and class diagrams or SPARQL and
OCL) demands further research that supports its deploy-
ment in the Industry 4.0 field. Moreover, there also is less
research on modeling for (smart) products of Industry 4.0
than expected.

Future work on investigating the contribution of modeling
languages to Industry 4.0 should investigate details on the
modeling techniques applied to Industry 4.0, such as their
forms, integration, and usage. The dataset produced through
our systematic mapping study enables this.
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F., Lukáč, G., et al.: Heterogeneous applications, tools, and
methodologies in the car manufacturing industry through an IoT
approach. IEEE Syst. J. 11(3), 1412–1423 (2017)

79. Khan, A., Turowski, K.: A survey of current challenges in
manufacturing industry and preparation for Industry 4.0. In:
Proceedings of the First International Scientific Conference on
Intelligent Information Technologies for Industry (IITI’16), pp.
15–26 (2016). https://doi.org/10.1007/978-3-319-33609-1_2

80. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bai-
ley, J., Linkman, S.: Systematic literature reviews in software
engineering—a systematic literature review. Inf. Softw. Technol.
51(1), 7–15 (2009). Special Section—Most CitedArticles in 2002
and Regular Research Papers

81. Kitchenham, B.A., Budgen, D., Brereton, O.P.: The value of map-
ping studies: a participant-observer case study. In: Proceedings of
the 14th International Conference on Evaluation and Assessment
in Software Engineering, EASE’10, pp. 25–33. BCS Learning &
Development Ltd., Swindon, UK (2010)

82. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a
systematic mapping study. Inf. Softw. Technol. 71, 77–91 (2016)

83. Kovalenko, O.,Wimmer,M., Sabou,M., Lüder, A., Ekaputra, F.J.,
Biffl, S.: Modeling AutomationML: semantic web technologies
vs. model-driven engineering. In: 2015 IEEE 20th Conference on
Emerging Technologies & Factory Automation (ETFA), pp. 1–4.
IEEE (2015)

84. Korea-Manufacturing Technology-Smart Factory. https://
www.export.gov/article?id=Korea-Manufacturing-Technology-
Smart-Factory. Accessed 4 June 2018

85. Laguna, M.A., Crespo, Y.: A systematic mapping study on soft-
ware product line evolution: from legacy system reengineering to
product line refactoring. Sci. Comput. Program.78(8), 1010–1034
(2013)

86. Lahire, P., Parigot, D., Tundrea, E.: SMARTFACTORY—an
implementation of the domain driven development approach.
In: SACI2004, 1st Romanian-Hungarian Joint Symposium on
Applied Computational Intelligence, p. 6 (2004)

87. Lee, E.A.: Cyber physical systems: design challenges. In: Pro-
ceedings of the 11th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), pp. 363–
369 (2008)

88. Liao, Y., Deschamps, F., de Freitas Rocha Loures, E., Ramos,
L.F.P.: Past, present and future of Industry 4.0—a systematic lit-
erature review and research agenda proposal. Int. J. Prod. Res.
55(12), 3609–3629 (2017). https://doi.org/10.1080/00207543.
2017.1308576

89. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.:
Assessing the state-of-practice of model-based engineering in

the embedded systems domain. In: International Conference on
Model Driven Engineering Languages and Systems, pp. 166–182.
Springer, Berlin (2014)

90. Long, F., Zeiler, P., Bertsche, B.: Potentials of coloured petri
nets for realistic availability modelling of production systems in
Industry 4.0. In: Proceedings of the ESREL 2015 Conference,
07.09.-10.09. 2015, Zürich, Switzerland, pp. 4455–4463 (2015)

91. Loskyll, M., Heck, I., Schlick, J., Schwarz, M.: Context-based
orchestration for control of resource-efficient manufacturing pro-
cesses. Future Internet 4(3), 737–761 (2012)

92. Lu, Y.: Industry 4.0: a survey on technologies, applications and
open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)

93. Lütjen, M., Kreowski, H.J., Franke, M., Thoben, K.D., Freitag,
M.: Model-driven logistics engineering-challenges of model and
object transformation. Procedia Technol. 15, 303–312 (2014)

94. Lütjen, M., Rippel, D.: GRAMOSA framework for graphical
modelling and simulation-based analysis of complex production
processes. Int. J. Adv. Manuf. Technol. 81(1–4), 171–181 (2015)

95. Ma, Z., Hudic, A., Shaaban, A., Plosz, S.: Security viewpoint
in a reference architecture model for cyber-physical production
systems. In: 2017 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), pp. 153–159. IEEE (2017)

96. Made in China 2025. https://www.merics.org/sites/default/files/
2017-09/MPOC_No.2_MadeinChina2025.pdf. Accessed 6 June
2018

97. Mahdavi-Hezavehi, S., Durelli, V.H., Weyns, D., Avgeriou, P.:
A systematic literature review on methods that handle multiple
quality attributes in architecture-based self-adaptive systems. Inf.
Softw. Technol. 90, 1–26 (2017)

98. Matei, M.M., Popescu, D.: Extend IT services in process control
domain for onshore oilfields. In: 10th International Conference
on Dynamical Systems and Control (CONTROL15), December,
pp. 12–14 (2015)

99. Mätzler, S., Wollschlaeger, M.: Interchange format for the gen-
eration of functional elements for industrie 4.0 components. In:
Industrial Electronics Society, IECON 2017-43rd Annual Con-
ference of the IEEE, pp. 5453–5459. IEEE (2017)

100. Mazak, A., Huemer, C.: A standards framework for value net-
works in the context of Industry 4.0. In: 2015 IEEE International
Conference on Industrial Engineering and Engineering Manage-
ment (IEEM), pp. 1342–1346. IEEE (2015)

101. McMillan, A.J., Swindells, N., Archer, E., McIlhagger, A., Sung,
A., Leong, K., Jones, R.: A review of composite product data
interoperability and product life-cycle management challenges in
the composites industry. Adv. Manuf. Polym. Compos. Sci. 3(4),
130–147 (2017)

102. Mechs, S., Grimm, S., Beyer, D., Lamparter, S.: Evaluation of
prediction accuracy for energy-efficient switching of automation
facilities. In: Industrial Electronics Society, IECON 2013-39th
Annual Conference of the IEEE, pp. 6928–6933. IEEE (2013)

103. Medvidovic, N., Taylor, R.N.: A classification and comparison
framework for software architecture description languages. IEEE
Trans. Softw. Eng. 26, 70–93 (2000)

104. Mehmood, A., Jawawi, D.N.: Aspect-oriented model-driven code
generation: a systematic mapping study. Inf. Softw. Technol.
55(2), 395–411 (2013). Special Section: Component-Based Soft-
ware Engineering (CBSE) (2011)

105. Merkumians, M.M., Baierling, M., Schitter, G.: A service-
oriented domain specific language programming approach for
batch processes. In: 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), pp. 1–
9. IEEE (2016)

106. Michaloski, J., Proctor, F., Arinez, J., Berglund, J.: Toward the
ideal of automating production optimization. In: ASME 2013
International Mechanical Engineering Congress and Exposition,

123

https://doi.org/10.1007/978-3-319-33609-1_2
https://www.export.gov/article?id=Korea-Manufacturing-Technology-Smart-Factory
https://www.export.gov/article?id=Korea-Manufacturing-Technology-Smart-Factory
https://www.export.gov/article?id=Korea-Manufacturing-Technology-Smart-Factory
https://doi.org/10.1080/00207543.2017.1308576
https://doi.org/10.1080/00207543.2017.1308576
https://www.merics.org/sites/default/files/2017-09/MPOC_No.2_MadeinChina2025.pdf
https://www.merics.org/sites/default/files/2017-09/MPOC_No.2_MadeinChina2025.pdf


92 A. Wortmann et al.

p. V02AT02A089. American Society of Mechanical Engineers
(2013)

107. Miguel Gutierrez-Guerrero, J., Antonio Holgado-Terriza, J.:
iMMAS an industrial meta-model for automation system using
OPC UA. Elektronika ir Elektrotechnika 23(3), 3–11 (2017)

108. Mokyr, J.: The second industrial revolution, 1870–1914. Storia
delleconomia Mondiale, pp. 219–45 (1998)

109. Mosterman, P.J., Zander, J.: Cyber-physical systems challenges:
a needs analysis for collaborating embedded software systems.
Softw. Syst. Model. 15(1), 5–16 (2016)

110. Negri, E., Fumagalli, L., Garetti, M., Tanca, L.: Requirements
and languages for the semantic representation of manufacturing
systems. Comput. Ind. 81, 55–66 (2016)

111. Negri, E., Perotti, S., Fumagalli, L., Marchet, G., Garetti, M.:
Modelling internal logistics systems through ontologies. Comput.
Ind. 88, 19–34 (2017)

112. Niggemann, O., Maier, A., Jasperneite, J.: Model-based develop-
ment of automation systems. In: MBEES, pp. 45–54 (2010)

113. Onori, M., Semere, D., Barata, J.: Evolvable assembly systems:
from evaluation to application. In: Innovation in Manufacturing
Networks, pp. 205–214. Springer, Berlin (2008)

114. Pedrazzoli, P., Alge, M., Bettoni, A., Canetta, L.: Modeling and
simulation tool for sustainable MC supply chain design and
assessment. In: IFIP International Conference on Advances in
Production Management Systems, pp. 342–349. Springer, Berlin
(2012)

115. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic
mapping studies in software engineering. EASE 8, 68–77 (2008)

116. Petrasch, R., Hentschke, R.: Process modeling for Industry 4.0
applications: towards an Industry 4.0 process modeling language
andmethod. In: 201613th International JointConference onCom-
puter Science and Software Engineering (JCSSE), pp. 1–5. IEEE
(2016)
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