
Modeling Reusable, Platform-Independent Robot Assembly Processes

Arvid Butting1, Bernhard Rumpe1, Christoph Schulze1, Ulrike Thomas2, and Andreas Wortmann1
1 Software Engineering, RWTH Aachen University, Germany

2 Robotics and Human-Machine Interaction, Technical University Chemnitz, Germany

Abstract— Smart factories that allow flexible production of
highly individualized goods require flexible robots, usable in
efficient assembly lines. Compliant robots can work safely in
shared environments with domain experts, who have to program
such robots easily for arbitrary tasks. We propose a new
domain-specific language and toolchain for robot assembly tasks
for compliant manipulators. With the LightRocks toolchain,
assembly tasks are modeled on different levels of abstraction,
allowing a separation of concerns between domain experts and
robotics experts: externally provided, platform-independent
assembly plans are instantiated by the domain experts using
models of processes and tasks. Tasks are comprised of skills,
which combine platform-specific action models provided by
robotics experts. Thereby it supports a flexible production and
re-use of modeling artifacts for various assembly processes.

I. INTRODUCTION

Future smart factories require flexible production of highly
individualized goods in small and medium lot sizes, where
reconfigurations of systems occur with high frequencies. To
achieve this, such factories require flexibly usable assembly
line robots, which can work safely in shared environments
with humans. Flexible usage of such robots requires easy
programming for arbitrary tasks. Compliant manipulators
allow such interaction, but programming these robots is
more complex than programming rigid industrial robots.
Beside knowledge of a general-purpose programming lan-
guage (GPL), it also requires control specific knowledge
to adjust compliance parameters like stiffness and damping
for each motion. Thus, only robotics experts with sufficient
programming knowledge are able to program such compliant
manipulators. Furthermore, the re-usability of such control
specific programs is endangered due to their target specific
nature. Making these usable and re-usable in daily flexible
production requires tools for a more abstract development
of assembly tasks that are executable by shop floor workers
with none software engineering expertise.

In [1] we propose a new framework which consists of a
domain-specific language (DSL) and a toolchain to generate
specialized robot programs for assembly tasks. The recent
robot programming interface for the iiwa-LBR is based on
the compliance-frame concept introduced by Mason and
further developed with the task-frame-formalism by [2]. The
programming interface uses stiffness and damping definitions
for each Cartesian DOF while the robot moves towards

This research has partly received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement
n¡ 287787, SMErobotics.

a target pose. Stop conditions can be applied in order to
immediately stopping the motion and awaiting new specifica-
tions for the next motion. Fig. 1 illustrates the programming
specification necessary for the action shown at the right side
of the figure. The robot rotates about the x-axis in the task-
frame, while it pushes the object towards the top hat rail until
the torque about the x-axis exceeds a certain threshold. For
Cartesian force controlled robots the skill-primitive concept
has been suggested earlier [3], [4], which is also based on the
task-frame formalism. Skill primitives (SPs) are combined to
skill primitive nets [5], [6], [7] (SPNs) and their transitions
are ensured by preconditions and postconditions. Figure 2
shows a SPN consisting of three SPs, which describes the
placement of an object onto a table. The surface orientation
of the plane is not precisely known. Hence, a force-torque
sensor is attached to the robot hand flange. Therewith contact
forces and torques can be measured and evaluated during the
assembly process. According to contact forces and torques,
different SPs are selected for execution. In this example,
either a rotation along the object’s depths axis or its width
axis is carried out. When the stop conditions trigger, a
transition to one of the subsequent SPs, depending on the
measured values of the force-torque sensor, is performed.

Task-Frame:
(0mm,25 mm, 140mm, 0,0,0)

!
Motion:
(0mm, -25 mm, 0 mm, 45°,0°,0°)
!
Stiffness:
(300,2000,2000, 400,50,50)
!
Damping:
(0.7,0.7,0.7,0.7,0.7,0.7)
!
Stop Condition:
Torque x-Axis > 3 Nm

Task-Framezy
x

Fig. 1. Left side: Motion commands for the LBR-robot to establish the
task. Right side: Position of the task frame for the rotation about the x-axis
to assemble the socket onto the top hat rail.

SPNs have proven useful for the programming of complex
robot tasks but lack abstraction, separation of concerns
between shop floor workers and robotics experts. As it can
be seen, the art of programming different robots in the
assembly domain, might be the same. Hence a concept is
necessary which is grounded on domain-specific languages

[BRS+15] A. Butting, B. Rumpe, C. Schulze, U. Thomas, A. Wortmann
Modeling Reusable, Platform-Independent Robot Assembly Processes
In: Proceedings of the Sixth International Workshop on Domain-Specific Languages and Models for Robotic Systems (DSLRob 2015), 2015
www.se-rwth.de/publications

Fig. 2. Excerpt of a SPN for placing an object onto a table despite
uncertainties about the orientation of table’s plane.

and allows the programming of different robots in an intuitive
way triggered by the problem domain rather than the robot
hardware. It motivated us to provide such a framework which
allows experts to exploit robotic hardware while non-experts
can use their results in an intuitive way.

Figure 3 illustrates how robot assembly tasks are mod-
eled as three-level networks with LightRocks [1] instead.
We have adapted the concept of SPs such that it can be
used for compliant manipulators. In order to increase the
level of abstraction we distinguish between assembly plans,
processes, tasks, skills, and actions: Assembly plans are
provided externally [8] and consist of assembly processes.
Each assembly process consists of tasks that consist of
skills. Assembly processes and tasks can be modified by
domain experts to adjust the assembly process to fit new
environmental conditions, e.g., because the robot uses an-
other gripper than assumed, a sensor does not work as
expected, or workpieces are placed differently than the expert
system assumed. Assembly skills consist of actions, which
are platform specific and provided by robot experts.

Start
Take&Plug

Object

Take&Plug

Object
Success

Failed

Start
Grasp

Object

Plug

Object
Success

Failed

Push

Object

Start
Open

Gripper

Approach

Object
Success

Failed

Close

Gripper

Process

Level

Task

Level

Skill

Level

GraspObject

Take&PlugObject

GraspObject

Domain

Expert

Robotics

Expert

network of actions

network of skills

network of tasks

Fig. 3. The LightRocks abstraction layers.

These levels of abstraction allow to separate robotics
expertise modeled within actions and skills from domain
expertise embodied in tasks and processes. It also allows
re-using recurring skills for different assembly tasks and re-
curring tasks for different assembly processes. The previous

version of LightRocks [1] was implemented as a profile of
the UML/P [9] Statechart (SC) language with the MontiCore
language workbench [10], [11]. The UML/P is a variant
of UML [12] for programming. While this allows re-use
of language infrastructure, description of domain types via
UML/P class diagram (CD) models [13], model analyses,
and code generators [14], the resulting modeling language
is less comprehensible than intended and requires domain
experts to comprehend the full expressiveness of UML/P
SCs. To liberate domain experts from this, we present a
collection of MontiCore DSLs for concise representation
of SPNs to facilitate development of re-usable, platform-
independent robot assembly tasks. In addition, the degree of
re-usability for each introduced abstraction layer regarding
different tasks, APIs, target platforms or robots is evaluated.

In the following, Sect. II illustrates LightRocks by exam-
ple before Sect. III discusses related work. Sect. IV describes
the new LightRocks DSLs and toolchain. Afterwards, Sect. V
outlines case studies and finally, Sect. VI debates future work
and summarizes the contribution.

II. EXAMPLE

The assembly task of placing a screw into a thread may
be composed by grasping the screw, moving it to the thread,
and tightening it into the thread. Figure 4 depicts a part of
the task GraspAndScrew that uses the gripper to pick up
a screw and tightens it into a thread. The task consists of
several skills and provides two outcomes: either the screw
is placed accordingly to the skill Screwing or it is not.
The skill Screwing inserts a screw into a thread after a
previously executed skill placed it accordingly. It consists
of four actions of which Spin and CloseGripper are
illustrated in Fig. 4.

Spin CloseGripper

Tool t =

Factory.get(GRIPPER)

Tool t;

Frame target;

CartesianMotionParam p;

t.close()

Skill Screwing

End

t=Factory.get(GRIPPER)

target=(0,0,20,π,0,0);

m.vel=0.2;

m.stiffness=(6,6,12,6,2,2)

parameter
assignments for

action Spin

parameter
definitions

StartStart

iCartesianMotion(tgt, p);

X: TorqueZ ≤ 32

Y: TorqueZ > 32

Z: ForceX > 10

|| ForceY > 10

MoveToScrewPose

Frame target

Start Reached

Screwing

Frame target

Start

!Screwed

Screwed

Task GraspAndScrew

precondition

postconditions

!Reached !Screwed

Screwed

!Screwed

Screwed

Fig. 4. Excerpts of task GraspAndScrew and skill Screwing.

The developer modeled the skill following human behav-
ior: after initially grasping the screw and holding it over the
thread, the robot spins the screw (action Spin). If a certain
torque is reached, the screw is fixed and the skill finishes.
Otherwise the robot releases the gripper, rotates back, grasps
the screw again (cf. action CloseGripper), and spins it

again. Note that the action Spin yields two further outcomes
to detect whether something besides the robot manipulated
the workpiece. Such multiple outcomes allow modeling
flexible skills that can deal with uncertainties. The action
CloseGripper references the type Tool, which is part of
the robot interface of the domain model, via t.close().

LightRocks uses MontiCore to validate such models and
to generate proper GPL implementations of these models.
The resulting robot behavior is illustrated in Fig. 5.

(a) Locating the screw (b) Grasping the screw

(c) Putting into

thread

(e) � until

tightened
(d) Spinning the

screw

Fig. 5. A KUKA LBR robot finding and tightening a screw using
LightRocks

III. RELATED WORK

Recently, multiple DSLs for imperative or event-driven
robot behavior [15], [16], [17], perception tasks [18], and
software architecture with state-based behavior descrip-
tions [19], [20], [21] have been presented. While not focused
on assembly tasks, these behavior modeling languages are
related in the common aim to facilitate robot programming.

Current approaches to robot behavior modeling aim at
robotics software engineers, not domain experts. To this end,
these approaches either provide less abstraction [15], [16],
[17] or require knowledge on automata semantics to describe
behavior [19], [20], [21]. Even previous LightRocks [1] and
closely related approaches [22], [23] expect certain degrees
of software engineering knowledge from the domain experts.
With current LightRocks, this is relieved further as well-
formedness rules prohibit tasks and skills to reference the
robot’s API. Thus, domain experts only need to comprehend
task composition, skill composition and domain parameter
assignment.

Rethink developed an industrial robot called Baxter which
can be trained manually by ordinary line workers [24]. Dif-
ferent kind of tasks, like performing a blind pick or placing
an object in a grid pattern, can be configured by interacting
with the UI and teaching positions and areas by moving the

robot’s end effector directly. As described in subsection V-
A LightRocks supports manual teaching of different poses,
too. Unlike LightRocks the approach provides a user-friendly
UI to define tasks only, while the proposed skill level is
hidden to the end user and consequently new skills can not
be defined by the customer directly.

IV. LIGHTROCKS LANGUAGES AND TOOLCHAIN

LightRocks is developed as an integrated collection of
MontiCore [11] languages which comprises of a process
language, a task language, a skill language, and an action
language. In this collection, each language comprises of (i)
a context-free grammar (CFG) [25], (ii) well-formedness
checks, to check properties not expressible with CFGs,
and (iii) symbol tables [26], [13], which give information
about imported models of the same and other languages to
enable language integration. The latter, for instance, enable
integration with UML/P CDs to reference the models rep-
resenting domain types and type checking between models.
Models of LightRocks are textual [27], which allows easy
comprehension even of large models by software engineering
experts, liberates these from layouting efforts, and enables
processing models with their accustomed tools.

Processes and tasks represent the logical structure of re-
usable assembly process knowledge. To this effect, processes
contain a net of tasks and tasks contain a net of skills. Both
may refer only to domain types. Skills contain nets of ac-
tions. Actions, however, may reference a single method of the
underlying domain model only. The domain model describes
the interfaces of sensors, tools, the types of movement that
can be used (e.g., linear or rotational), and the available
domain types in terms of a UML/P CD language profile that
restricts class diagrams to interfaces. Using different CDs
for domain types and robot interfaces separates concerns and
enables to re-use both with arbitrary manipulators, as long
as a code generator from CD to the manipulator’s GPL is
present. Ultimately, it grounds the assembly processes via
actions to the robot and allows validating the models.

We implemented previous LightRocks as a profile of
UML/P SC where tasks, skills, and actions were handled
uniformly as states. This led to “notational noise” [28], e.g.,
unintuitive language elements, and increased the “accidental
complexity” [29] by forcing domain experts to learn SCs
instead of using an assembly domain specific language.
The new stand-alone LightRocks languages clearly separate
between language elements for domain experts and language
elements for robotics experts. This reduces noise and com-
plexities. Listing 1 shows the textual model of the action
Spin as depicted in Fig. 4.

The textual syntax is straightforward and consists of
the keyword action followed by a name (l. 1), a
parameters declaration block (ll. 3-7), which defines how
the action can be parametrized, an execution block (ll. 9-
11) that may reference the robot API, and a set of entry and
exit rules (ll. 13-16) to define preconditions and postcondi-
tions of the action. Parameters are assigned via incoming

Action

1 action Spin {
2

3 parameters {
4 Tool t;
5 Frame target;
6 CartesianMotionParam p;
7 }
8

9 execution {
10 iCartesianMotion(target,p);
11 }
12

13 entry Start;
14 exit X: t.torqueZ()<=32;
15 exit Y: t.torqueZ()>32;
16 exit Z: t.forceX()>10 || t.forceY>10;
17 }

Listing 1. Model of the action Spin as show in Fig. 4.

transitions and locally visible in task, skill, or action. Tasks
and skills additionally propagate their parameters to the
contained topology.

Based on the grammars of LightRocks languages, Monti-
Core generates language processing infrastructure including
FreeMarker-based1 code generation sub-frameworks and text
editors [30]. The LightRocks toolchain utilizes these to parse
models, process these, and ultimately transform these into
executable code. Figure 6 depicts the toolchain with the
related roles, according to [31].

As current and previous LightRocks are functionally
equivalent, retaining compatibility with existing models,
tooling, and code generators is straightforward: task, skill,
and action models are transformed into SC representations
compatible with previous LightRocks which can be pro-
cessed by existing tooling. The current LightRocks toolchain
parses process models provided by the application modeler.
Robotics experts acting as skill library providers may provide
the latter. Current code generators retain the structural sep-
aration into tasks, skills, and actions, which interact with a
run-time system that, for instance, defines how to execute
transitions. The LightRocks toolchain provides extension
points for code generators to enable code generation for
arbitrary target platforms with minimal effort. Code genera-
tors and run-time system (RTS) are not specific to a certain
robot but to the programming language to be used and non-
functional requirements (e.g., restrictions to the amount of
memory to be used). Thus, code generator developers and
RTS developers require software engineering expertise, but
no robot expertise. Platform-independence of code generators
and RTS ultimately enables their re-use and further facilitates
robot task development with LightRocks.

We also have developed a combined graphical and textual
editor for convenient modeling of assembly tasks by factory
floor workers, domain experts, and robotics experts. The edi-
tor provides two views: one for modeling and one for model
execution. It further allows parallel textual and graphical
modeling, parsing, and well-formedness checking of tasks

1FreeMarker template engine: http://www.freemarker.org

generated

comp. impl.
generated

comp. impl.

environment: robot API,

frameworks, UIs

skill library
provider

run-time system
developer

models

code generator
developer

generated

task impl.

generated

comp. impl.

A

P

I

generated

comp. impl.

A

P

I

generated

action impl.

A

P

I

run-time system

LightRocks

M2TM2M

code generators
skill

libraries

application
modeler generated

skill impl.

Fig. 6. The LightRocks toolchain translates assembly processes consisting
of tasks, skills, and actions via Statecharts to executable code.

and their constituents. The editor is built with MontiCore’s
text editor generation features, hence the text editor itself is
generated: a corresponding editor grammar allows to define
keywords, outline elements, filters, and other features from
which text editor plugins for Eclipse2 are generated. The
graphical editor is also implemented as an Eclipse plugin
and uses the Standard Widget Toolkit3 (SWT) to render tasks,
skills, and actions.

Figure 7 shows the editor’s execution view with the
textual editor top middle and the graphical editor bottom
middle. The graphical editor displays the currently edited
network of tasks parallel to the corresponding textual model.
Model parsing, context condition checks, outline and syntax
highlighting of the text editor are directly re-used from the
LightRocks toolchain. The model execution framework takes
care of monitoring and representing the currently executed
parts of the model. The contents of textual and the graphical
editor are synchronized directly, by either informing the
textual or the graphical editor about any modifications of
the model. Once the developer starts modeling, the graphical
editor invokes MontiCore to either parse the changed textual
model or prints the changed model into the displayed text
editor. Layout data are stored separately and do not pollute
the textual model.

The right part of the editor shows the three assembly
process levels and their execution states at run-time. The
editor highlights the currently executed action and its parents.
The top section shows the process level and highlights the
active task, the middle section shows the task level and
highlights the active skill, and the bottom section shows the
skill level and highlights the active action. Currently, the
editor does not support on-line editing of LightRocks models
at run-time. While desirable, we yet need to ascertain the
requirements on valid run-time changes and the implications
on error handling mechanisms.

V. CASE STUDIES

We have evaluated LightRocks with KUKA LBR robots
and Lego Mindstorms robots. With the former, we modeled

2Eclipse project: http://www.eclipse.org/
3SWT website: http://www.eclipse.org/swt/

http://www.freemarker.org
http://www.eclipse.org/
http://www.eclipse.org/swt/

graphical editoroutline

execution viewtext editor process of tasks

task of skills skill of a single action

current execution

Fig. 7. The model execution view shows the currently executed action and
its parents parallel to graphical and textual editors.

classical assembly tasks. Due to hardware restrictions of
the Lego robots, we examined whether modeling of non-
assembly tasks is feasible with LightRocks. To our satisfac-
tion, modeling of re-usable logistics tasks with these robots
was straightforward as well. The following sections briefly
report on both case studies.

A. KUKA LBR Assembly Tasks

First case studies were performed as typical assembly
tasks with a KUKA LBR manipulator. These modeled tasks
included screwing, picking, stacking, plugging, and different
kinds of movements (e.g., force controlled). The domain
model for this case study comprised of 13 interfaces for var-
ious concepts of domain and robot. Figure 8 shows the LBR
successfully stacking blocks as modeled with LightRocks.
The process modeled to grasp and stack a tower of four
blocks consists of one task, which in turn consists of four
skills of between one and six actions.

(a) Locating a block

(b) Picking up the block (c) Stacking the block

Fig. 8. A LBR robot stacking colored blocks.

Another typical assembly process is plugging workpieces
onto another. We therefore modeled a task for the LBR to
plug safety sockets on a top-hat rail [1]. Figure 9 shows
the performance of the LBR. The executed process model

consists of a single task that is repeated once per safety
socket. The task itself consists of five skills of up to five
actions. Modeling assembly processes for the LBR was
straightforward and we could re-use tasks, skills, and actions
intuitively. We also observed that most re-use took place on
skill level, where - from a human perspective - simple behav-
ior was composed from actions. Skills regarding movement
and grasping were re-used most often.

(a) Locating (b) Grasping (c) Moving to rail (d) Pressing against

top-hat rail

(e) Plugging onto

top-hat rail

(f) Moving to the left of the

plugged object�

(g) �and pushing.

Fig. 9. A LBR plugging safety sockets on a top-hat rail.

B. Lego NXT Logistics Tasks

We also deployed LightRocks to Lego Mindstorms NXT
robots to evaluate its usage in different use cases. The
Lego robots are designed for education and easy access
to robotics. Consequently, their hardware is restricted: out
of the box, there are neither laser scanners, nor compliant
manipulators. As LightRocks is not tied to platforms pro-
viding such hardware, we designed a clean up scenario and
modeled the processes accordingly. In this scenario, a robot
explores a fixed area while searching for colored blocks.
Whenever a block is detected, it is gripped and collected
in a container. The robot consists of a base with four wheels
and a manipulator (Fig. 10). The base uses a light sensor to
ensure moving within the defined area’s boundaries, a front-
mounted distance sensor to detect blocks, and a manipulator
to collect blocks. The manipulator uses a color sensor to
detect the blocks’ colors.

The LightRocks process to clean up colored blocks con-
sists of three tasks, six skills, and 14 actions. Figure 11 de-
picts the structure of the process CollectBlueObjects,
which contains a task LookForObjects, and a skill
DriveToNextObject. Skills and actions interface robot
hardware via the leJOS Java operating system4 as robot API.

Due to lack of memory on the Mindstorms robots, re-
using the code generator used with the LBR robot was not
feasible: the code generated for the LBR produced too many
artifacts for the Mindstorms robot’s memory to hold. Instead,
we developed a new code generator for the same RTS.
Due to the modularity of LightRocks, (a) integrating code

4leJOS NXJ website: http://www.lejos.org/

http://www.lejos.org/

blue
block

gripper

color
sensor

ultrasonic
sensor

light
sensor

block
container

NXT
computation

units

Fig. 10. The Lego Mindstorms robot to perform clean up tasks.

generators is straightforward and (b) the transformation from
LightRocks models into SCs is independent of subsequent
code generation. Therefore, the new code generator only
translates SCs to Java. However, the current Mindstorms
version EV3 provides enough memory to re-use the same
code generator as used with the LBR.

Task LookForObjects

Skill DriveToNextObject

Process CollectBlueObjects

Start LookForObjects GraspBlueObject CollectObject

Start MoveToLookerPose DriveToNextObject Success

Start MoveFwd IsWallHit

Turn

ApproachObject Success

IsObjectSeen

LowerGripper

Fig. 11. Process CollectBlueObjects with contained task
LookForObjects and skill DriveToNextObject.

C. KUKA iiwa Assembly Tasks

We also applied LightRocks to assembly tasks with a
KUKA iiwa robot in a case study with 10 participants. The
3 female and 7 male participants were between 20 and 59
years old and had different degrees of expertise with model-
driven engineering, robot programming, LightRocks, tablet
computer usage and the iiwa robot. For instance, 60% of
the participants had “no” previous experience with the iiwa
robot and 20% had “little” previous experience with it.

The participants were given a task and had to answer a
questionnaire afterwards. To fulfill the task, the participants
had to pick up a lightbulb from its initial position, move it
to a thread, screw it into the thread, and activate it via a
switch. Figure 12 shows the initial setup with both lightbulb
positions. To achieve this, the participants were introduced

to the concepts of LightRocks, the iiwa, and tablet UI before
they started modeling the task’s solutions. The introduction
took between 10 minutes and 1 hour, depending on the
participant’s previous knowledge.

Initial light
bulb position

Final light
bulb position

Fig. 12. The case study setup with the lightbulb’s initial position on top-left
and the target thread bottom-right.

To model the required process and tasks, the participants
used a graphical editor displayed in Figure 13 on a tablet
computer. In this setup, all skills and actions were provided to
the participants, thus no robot API knowledge was required.
This corresponds with the idea, that the robot expert provides
skills and tasks, and the factory floor worker combines
these only. In the end, all participants completed the task.
The fastest participant required 45 minutes to complete the
complete case study, which included comprehending task
description and available skills, teaching relevant poses to the
robot, and solving the task. The slowest participant required
2 hours.

Emergency stop

Currently
executed task

Available models Process model topologyParametrized transition

Fig. 13. The tablet-based editor used to model the process and tasks to
pickup, deliver, and screw the lightbulb.

This case study was focused on applying LightRocks
instead of developing low level skills or actions for it and
reflected its usage as intended with factory floor workers.

The study however is biased as 40% of the participants had
at least mediocre or good programming skills. As expected,
these participants finished faster than the others. In conse-
quence, a future case study will work with participants with
little or no programming knowledge only. Nonetheless, even
participants without programming knowledge were confident
as their feedback included that LightRocks allowed “easy
robot programming” and even “enabled untrained users to
use robots as tools”.

VI. DISCUSSION AND CONCLUSION

LightRocks is a high-level robot programming toolchain
feasible for both domain experts and robot experts. Due
to the abstraction of LightRocks, processes and tasks can
easily be re-used with different robots. Skills and actions
are tied to specific platforms but can easily be re-used for
different assembly processes. If the new platform represents
the same kind of robot (e.g. a LBR with seven degrees of
freedom), only the parametrization of the used actions needs
to be reconfigured at model level. The LightRocks toolchain
furthermore enables re-use of code generators and run-time
systems with compatible robots and supports development
and execution of assembly tasks with powerful editors. Code
generators can be re-used as long as target specific technical
restrictions, like available memory or target language are
fulfilled. The adaption of provided robot API has to be
performed per robot / API version used. Referring to Figure 6
the skill library provider and the code generator developer
need to perform target-specific adaption, while the run-time
system developer and the application modeler can focus on
a target-independent development.

Case studies indicate that LightRocks helps to improve
development of robotic (assembly) processes. Nonetheless,
the case studies pointed out issues: currently, neither syn-
chronous execution of tasks and skills, nor parametrization
of tasks with skills are supported. We will address the issue
of synchronous execution of tasks and skills and examine
whether such parametrization is useful without raising ad-
ditional complexities. Actions currently reference a single
method of the robot’s interface. While facilitating re-use, this
also leads to an increased number of actions. In the future, we
also will perform further case studies with different robots
and differently skilled users.

While the combined graphical and textual editor is helpful
at modeling tasks, it currently uses SWT to render tasks.
Unfortunately, we have experienced performance issues for
large (more than 40 nodes) assembly processes. We therefore
will switch to a new rendering engine and we will also
examine whether on-line modeling as mentioned in Sect. IV
can be realized. Reasoning with tasks and skills will be
examined as well. With the strong formalism of precondi-
tions and postconditions, reasoning about the next action
to be executed seems useful to assist factory floor workers
in modeling robot tasks. Therefore we will examine how
to integrate LightRocks with a model of the environment,
which, together with the actions, serves as the knowledge
base for assembly process reasoning. With these models, the

robot may react more dynamically to events and thus increase
the flexibility of assembly processes.

REFERENCES

[1] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann,
“A New Skill Based Robot Programming Language Using UML/P
Statecharts,” in Proceedings of the 2013 IEEE International Confer-
ence on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013.

[2] J. D. Schutter and J. V. Brussel, “Compliant Robot Motion I. A
Formalism for Specifying Compliant Motion Tasks,” The International
Journal of Robotics Research, vol. 7, no. 4, pp. 3–17, Aug. 1988.

[3] T. Hasegawa, T. Suehiro, and K. Takase, “A model-based manipulation
system with skill-based execution,” Robotics and Automation, IEEE
Transactions on, vol. 8, no. 5, pp. 535 –544, Oct 1992.

[4] U. Thomas, M. Barrenscheen, and F. M. Wahl, “ Efficient Assembly
Sequence Planning Using Stereographical Projections of C-Space
Obstacles,” in IEEE International Symposium on Assembly and Task
Planning, 2003, pp. 96–102.

[5] U. Thomas, B. Finkemeyer, T. Kroeger, and F. M. Wahl, “Error-
tolerant execution of complex robot tasks based on skill primitives,”
in IEEE International Conference on Robotics and Automation, 2003,
pp. 3069–3075.

[6] T. Kroeger, B. Finkemeyer, U. Thomas, and F. M. Wahl, “Compliant
motion programming: The task frame formalism revisited,” in IEEE
International Conference on Mechatronics and Robotics, 2004, pp.
1029–1034.

[7] J. Maass, S. Molkenstruck, U. Thomas, J. Hesselbach, and F. M.
Wahl, “Definition and execution of a generic assembly programming
paradigm,” Emerald Assembly Automation Journal, 2008.

[8] U. Thomas, Automatisierte Programmierung von Robotern für Mon-
tageaufgaben (in German). Braunschweig, Germany: Shaker Verlag,
2008.

[9] B. Rumpe, Modellierung mit UML, 2nd ed., ser. Xpert.press. Springer
Berlin, September 2011.

[10] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel,
“MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung
domänenspezifischer Sprachen,” Software Systems Engineering Insti-
tute, Braunschweig University of Technology, Tech. Rep. Informatik-
Bericht 2006-04, 2006.

[11] H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a framework for
compositional development of domain specific languages,” in Inter-
national Journal on Software Tools for Technology Transfer (STTT),
vol. 12, 2010, pp. 353 – 372.

[12] Object Management Group, “OMG Unified Modeling Language
(OMG UML), Superstructure Version 2.3 (10-05-05),” May 2010,
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/.

[13] M. Look, A. Navarro Perez, J. O. Ringert, B. Rumpe, and A. Wort-
mann, “Black-box Integration of Heterogeneous Modeling Languages
for Cyber-Physical Systems,” in Proceedings of the 1st Workshop on
the Globalization of Modeling Languages (GEMOC), Miami, Florida,
USA, 2013.

[14] M. Schindler, Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P, ser. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012.

[15] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On reverse-
engineering the KUKA Robot Language,” in First International Work-
shop on Domain-Specific Languages and Models for ROBotic Systems,
2010.

[16] J.-C. Baillie, A. Demaille, Q. Hocquet, and M. Nottale, “Events!
(Reactivity in urbiscript),” in First International Workshop on Domain-
Specific Languages and Models for ROBotic Systems, Oct. 2010.

[17] A. Angerer, R. Smirra, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif, “A Graphical Language for Real-Time Critical Robot Com-
mands,” in Proceedings of the Third International Workshop on
Domain-Specific Languages and Models for Robotic Systems (DSLRob
2012), 2012.

[18] Hochgeschwender, Nico and Schneider, Sven and Voos, Holger, and
Kraetzschmar, Gerhard K., “Towards a Robot Perception Specification
Language,” in Fourth International Workshop on Domain-Specific
Languages and Models for ROBotic Systems, November 2013.

[19] C. Schlegel, A. Steck, and A. Lotz, “Model-Driven Software Devel-
opment in Robotics : Communication Patterns as Key for a Robotics
Component Model,” in Introduction to Modern Robotics, D. Chugo
and S. Yokota, Eds. iConcept Press, 2011.

[20] Klotzbücher, M and Smits, Ruben and Bruyninckx, Herman and De
Schutter, Joris, “Reusable hybrid force-velocity controlled motion
specifications with executable domain specific languages,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, September 2011, pp. 4684–4689.

[21] J. O. Ringert, B. Rumpe, and A. Wortmann, “From Software Architec-
ture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems,” in Software Engineering 2013 Workshopband, ser.
LNI, Stefan Wagner and Horst Lichter, Ed., vol. 215. GI, Köllen
Druck+Verlag GmbH, Bonn, 2013, pp. 155–170.

[22] J. Baumgartl, T. Buchmann, and D. Henrich, “Towards easy robot
programming: Using dsls, code generators and software product lines,”
8th International Conference on Software Paradigm Trends (ICSOFT-
PT’13), 2013, keywords: Model-Driven Development; DSL; Code
generation; Robot; Easy Programming; Software Product Lines.

[23] Vanthienen, Dominick and Klotzbuecher, Markus and De˜Laet, Tinne
and De˜Schutter, Joris and Bruyninckx, Herman, “Rapid application
development of constrained-based task modelling and execution using
Domain Specific Languages,” in Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Tokyo,
Japan: IROS2013, 2013, pp. 1860–1866.

[24] C. Fitzgerald, “Developing Baxter,” in 2013 IEEE International Con-
ference on Technologies for Practical Robot Applications (TePRA),

April 2013, pp. 1–6.
[25] H. Krahn, B. Rumpe, and S. Völkel, “Integrated Definition of Abstract

and Concrete Syntax for Textual Languages,” in Proceedings of
Models 2007, 2007, pp. 286–300.

[26] S. Völkel, Kompositionale Entwicklung domänenspezifischer
Sprachen, ser. Aachener Informatik-Berichte, Software Engineering
Band 9. 2011. Shaker Verlag, 2011.

[27] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel,
“Textbased Modeling,” in 4th International Workshop on Software
Language Engineering, 2007.

[28] D. S. Wile, “Supporting the DSL Spectrum,” Computing and Infor-
mation Technology, vol. 4, pp. 263–287, 2001.

[29] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Future of Software Engineering
2007 at ICSE., 2007, pp. 37–54.

[30] H. Krahn, B. Rumpe, and S. Völkel, “Efficient Editor Generation for
Compositional DSLs in Eclipse,” in Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling 2007, 2007.

[31] ——, “Roles in Software Development using Domain Specific Mod-
elling Languages,” in Proceedings of the 6th OOPSLA Workshop on
Domain-Specific Modeling 2006. Finland: University of Jyväskylä,

2006, pp. 150–158.

