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Abstract—Robotics started employing architecture description languages (ADLs) to model software architectures. While facilitating
software engineering, this introduces a gap when reusing solutions encoded in middleware modules. Existing robotics architecture
modeling focuses on domain challenges instead of tool modularity. Thus customizing robotics architecture modeling tool to generate
solutions conforming to a different middleware is challenging. This could lead to a multitude of incompatible 'vendor-locked’ tool
modeling chains and hamper reuse in robotics software engineering. We propose a modular architecture modeling method that rests
on the separation of model processing, model transformation, and code generation. This facilitates translating architecture models into
modules compatible to the middleware of choice. We present this method for the component & connector ADL MontiArcAutomaton,
which yields and extensible tool chain to translate software architecture models gradually into middleware modules. Using modular tool
chains to support architecture modeling enables reaping the benefits of ADLs while reusing solutions encoded in popular middlewares

and, ultimately, facilitates robotics software engineering.

Index Terms—Model-Driven Development, Architecture Description Languages, Modular Model Transformations, Code Generation

1 INTRODUCTION

OBOTICS is the most challenging domain for software
R engineering: successfully deploying even simple robotics
applications demands expertise from various domains and inte-
gration of heterogeneous software modules. Robotics success-
fully has adopted [1] model-driven development (MDD) [2],
[3], which facilitates integrating domain experts by lifting bet-
ter comprehensible, abstract models to primary development
artifacts. Parallel to their efforts, there is a large corpus of
robotics solutions encoded in general-purpose programming
language (GPL) artifacts that are specific to various robotics
middlewares (such as Orocos [4], CLARAty [5], or ROS [6]).
These are hardly accessible by MDD tools.

At the same time, the reuse promised by component-based
software engineering [7] has been deemed crucial to reusable
robotics architectures [8]. Similar to avionics [9] and automo-
tive [10], robotics-specific architecture description languages
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(ADLs) [11], [12] lift the notion of components to component
models (cf. BRICS [13], C-Forge [14], DiaSpec [15], Smart-
Soft [16], or V3CMM [17]).

Interfacing component models with the expertise encoded
in the middleware-specific implementations is a prerequisite
for efficient architecture modeling in robotics. However, many
ADLSs focusing on robotics are tied to hardly extensible MDD
tool chains (including parsers, editors, code generators, etc.).
Thus transforming the architectures’ component models into
artifacts compatible to a specific middleware unforeseen by
the tool chain is challenging.

Based on experiences in software architecture modeling
for automotive [18], cloud systems [19], and robotics [20],
we present an extensible architecture modeling method that
employs modular model-to-model (M2M) and model-to-text
(M2T) transformations to enable transforming robotic software
architecture models into implementations for arbitrary target
platforms. To this effect, this method separates the concerns
of architecture modelers from the concerns of model transfor-
mation developers and code generator engineers as depicted
in Figure 1.

The architecture designer knows the employed ADL and
creates a logical software architecture as required for the appli-
cation under development. The model processing infrastructure
parses the model and creates its internal representation. If the
architecture model contains elements not easily translatable
into target middleware modules (e.g., hierarchies or complex
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Fig. 1: Quintessential components, artifacts, and roles for
pervasive, modular architecture modeling for different target
middlewares illustrated on an example of the translation to
ROS [6].

data types), the transformation developer provides appropri-
ate model transformations. The M2M transformation engine
parses the transformation models and applies these to the
architecture. Ultimately, a middleware-specific code generator,
provided by a code generator engineer with expertise in
M2T transformations and target middleware, processes the
transformed models and produces middleware-specific GPL
artifacts.

This separation enables translating architectures into various
intermediate representations better amenable to analysis or
code generation. It also enables reusing architectures with
different code generators, middlewares, and GPLs. While the
MontiArcAutomaton infrastructure has been detailed in [20],
[21], this paper focuses on its modular development method
and its constituents: (1) modular, domain-specific model-to-
model transformations; (2) template-based code generation;
and (3) a case study for the translation of hierarchical Monti-
ArcAutomaton architectures to ROS [6].

This paper is an extension of the work presented in [22].
It details the already presented transformations, presents ad-
ditional M2M transformations, and explains the M2T trans-
formation infrastructure. To this end, Section 2 motivates
the benefits of modular architecture modeling by example,
before Section 3 presents preliminaries. Afterwards, Section 4
describes the modular M2M transformations and Section 5
describes M2T transformation to ROS. Section 6 discusses
observations and related work. Section 7 concludes.

2 EXAMPLE

Consider a company producing the software architecture for
a cleaning robot with two arms as depicted in Figure 2 (top).
The architecture CleaningRobot comprises components
providing functionality of various sensors, actuators, as well
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as pure software components. The actual functionality of two
arms is not realized in the architecture but can be easily
implemented by reusing existing middleware modules. The
components are either hierarchically composed (e.g., Local—-
ization) or atomic (e.g., Controller) and the ADL
distinguishes component types (e.g., Navigation) and their
instances (e.g., nav). Components exchange messages via
unidirectional connectors connected to their stable interfaces
of typed, directed ports only. Ultimately, the architecture
should be translated to (1) artifacts compatible to the Python
client implementation of the robot operation system ROS [6]
for execution; and (2) to Java for simulation [23]. For the
latter, the company already has a black-box code generator.
However, to ease comprehension and modeling, the ADL
supports hierarchical components, whereas neither the Java
simulator, nor ROS support hierarchies. As no modeling
tool chain supports these transformations off-the-shelf, the
company must develop appropriate transformations. To avoid
implementing the elimination of hierarchies as pre-processing
for the Java code generator and as part of the ROS code gen-
erator, this should be performed prior to code generation. For
this, they desire to include appropriate M2M transformations.
Moreover, this separation also enables to reuse existing ADL
tooling (such as well-formedness checking or visualization)
with the transformed architectures as well. After defining the
corresponding M2M transformation, translation to Java and
ROS requires less complex M2T transformations. They can
easily realize on top of the FreeMarker! template engine and
MontiArcAutomaton’s code generation framework [20]. The
resulting ROS nodes can easily interface with existing ROS
nodes to reuse the encoded expertise.

Figure 2 depicts the results of both transformation activities:
First the M2M transformation (1) eliminates the hierarchical
components CleaningRobot and Localization and
reconfigures the connectors accordingly. The result again is
a valid architecture model that can be processed by ex-
isting tooling without modifications. Afterwards, the M2T
transformation (2) translates the remaining components into
ROS nodes and the connectors into individual topics. After
translating the architecture to ROS nodes, adding existing ROS
nodes to interface with the prepared topics is straightforward.
This separation enables architecture developers to use the
ADL of choice and connect the generated implementations
to any target middleware. It also liberates the code generator
developers from dealing with transformation challenges that
(a) are either common to multiple translations or (b) are better
expressible as M2M transformations.

3 PRELIMINARIES

The presented infrastructure for modular model-driven de-
velopment of robotics architectures relies on the MontiArc-
Automaton C&C ADL, its code generation infrastructure,

1. http://freemarker.org/
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Fig. 2: Component & connector software architecture of a
cleaning robot with two arms (top), after applying the M2M
transformations for hierarchy elimination (middle), and after
applying the M2T transformations producing ROS nodes and
topics (bottom).

and the MATrans transformation language generated from
MontiArcAutomaton. All of this is built with the MontiCore
language workbench.

3.1 The MontiCore Language Workbench

MontiCore [24], [25] is a language workbench [26] for the effi-
cient engineering of modular modeling languages. It comprises
a metamodeling language to define languages, a compositional
model checking framework, and a powerful code generation
infrastructure. The metamodeling language is an EBNF-like,
context-free grammar (CFG) that enables integrated definition
of concrete and abstract syntax [24]. To validate constraints
that are not expressible with CFGs, MontiCore features the
compositional context condition framework [25]. The context
conditions are well-formedness rules developed in Java, which
yields a greater flexibility than employing specific constraint
languages (such as the object constraint language (OCL)[27]).
From the CFG of a modeling language, MontiCore generates
the corresponding abstract syntax classes and infrastructure
to parse textual models into abstract syntax tree (AST) in-

stances. These instances represent the content of models in
a machine-processable way. For code generation, MontiCore
provides a template-based code generation framework based
on the FreeMarker template engine. This framework supports
translating AST instances into arbitrary target representations,
such as the Eclipse Modeling Framework, Mona, Java, or
Python [23].

To facilitate modeling language engineering, MontiCore
enables reusing language (parts) via inheritance, embedding,
and aggregation [25]. Inheritance enables reusing productions
from inherited grammars. This facilitates extending or special-
izing languages while reusing tooling (parsers, abstract syn-
tax classes, context conditions, code generators) existing for
the inherited language. With embedding, dedicated extension
points in the host grammar are implemented by productions
from embedded grammars. This enables reusing language
(parts) for well-defined concerns, such as action languages or
expression languages, in other languages. Aggregation loosely
couples languages for joint analysis of their models. To this
end, elements used in models of one language that reference
elements of models of another language (such as the names
referencing data types in an architecture language) are inter-
preted specific to the integration. As integration is external to
both languages, it does not require participating languages to
be aware of the integration.

3.2 MontiArcAutomaton

MontiArcAutomaton [20] is a modeling infrastructure for
software architectures with exchangeable component behavior
DSLs. It comprises the textual MontiArcAutomaton C&C
ADL [21], which enables modeling architectures as hierarchies
of components, and has been applied in industrial projects [28]
and academic robotics contexts [23]. Components are con-
nected via unidirectional connectors between the components’
stable interfaces of typed ports. The types of ports are defined
in UML/P [29] class diagrams, which is a variant of UML [27]
class diagrams optimize for model-driven engineering. Monti-
ArcAutomaton models distinguish between component types
and instances, supports component configuration, generic type
parameters, and inner components. Inner components resemble
anonymous classes in Java, i.e., they are defined within a
composed component can be instantiated only in this context.
The model of component Localization of Figure 2 is
depicted in Figure 3.

The component Localization has an outgoing port p
of data type Pose (l. 2), three subcomponents (Il. 3-5), and
two explicit connectors (Il. 6-7). Subcomponent declarations
consist of a component type name and a subcomponent
name. The latter can be omitted to reduce the developers’
cognitive load. Similarly, ports of the same name are connected
automatically, thus corresponding connectors can be omitted
as well.



01 | component Localization {

02 port out Pose p;

03 component PoseFusion; // The names of subcomponent
04 component LIDAR; // instances are derived

05 component GPS; // automatically

06 connect lidar.p -> poseFusion.lp;

o7 connect gps.p -> poseFusion.gp;

08 // Connector poseFusion.p -> p is derived also
29|}

Fig. 3: Textual model of the composed component Local-
ization with three subcomponents.

3.3 Model-to-Model Transformations with MontiArc-
Automaton

In model-driven development, M2M transformations are used
to evolve, refactor, and normalize models. They can be more
concise and better comprehensible than M2T transforma-
tions. We use the MATrans domain-specific transformation
language (DSTL) for MontiArcAutomaton [30] to transform
architecture models into representations better processable by
subsequent M2T transformation. MATrans enables describing
MontiArcAutomaton transformations in a problem-oriented
fashion, using established vocabulary [31], and without the
accidental complexity [2] of general transformation languages.
Figure 4 sketches the most important modeling elements
and properties of MATrans: Names beginning with “$” are
schema variables (1. 1), “$_" is an anonymous schema variable
(1. 7), and the replacement operator “: " (1. 11) replaces the
pattern on its left by the pattern on its right and is delimited by
double square brackets. Omitting the pattern on its left or on its
right entails unconditional adding or removing, respectively.
MATrans also supports specification of negative application
conditions in form of negative elements, i.e., elements that
are forbidden in the model. Negative elements start with
“not”, followed by a model element enclosed in double
square brackets (1. 10). While this example shows components
at the top-level of the pattern, this is no prerequisite: all
MontiArcAutomaton model elements can be pattern top-level
elements, which eases specification of transformations.

01 | component $source {

02 port out $type $name;

03|}

04 | component $target {

05 port in $type $name;

26 | }

07 | component $_ {

08 component $source $subS;

09 component $target $subT;

10 not [[ connect $subS.$name -> $subT.$name; ]]
11 [[ :- connect $subS.$name -> $subT.$name; ]]
12|}

Fig. 4: Excerpt of a transformation that automatically connects
ports of the same name in MontiArcAutomaton components.

Figure 4 matches three distinct components (1. 1-12), two
of which have compatible ports (1l. 2,5), and a composed
component containing subcomponents of the former (ll. 7-
12). The composed component must not contain a connector
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between the compatible ports of these subcomponents (11. 8-9)
as this transformation introduces it (1. 10).

3.4 The Robot Operating System (ROS)

ROS [6] is an infrastructure and framework for the efficient de-
velopment of robotics applications. It comprises development
tools and a messaging framework. Running ROS applications
are flat graphs of GPL nodes and topics. Nodes are processes
that perform computations and exchange the results via topics,
which resemble typed message buses. The data types of
topics are defined by rosmsg? models, which resemble a
very restricted variant of class diagrams. Nodes publish and
subscribe to topics in an event-driven fashion and may use
libraries, frameworks, and APIs to compute behavior. Nodes
have no types and can be reused as instances only. Topics are
not defined explicitly, but by the publishers sending messages
or the subscribers registering to these, i.e., whether a topic
exists is subject to the GPL code inside a node. Thus, without
in-depth knowledge of nodes and their publishers, developing
nodes that expect to receive messages from a specific topic is
impossible. This hinders black-box reuse of nodes.

With ROS being a framework, the classes representing
nodes must be implemented conforming to one of the ROS
client library implementations in C++, Python, Lisp, or Java.
Hence, software development with ROS nodes is subject to
the “accidental complexities” [2] and “notational noise” [32]
that arise from solving domain challenges with GPLs. Part of
these accidental complexities arises from uncontrolled com-
munication between nodes, which dynamically instantiate pub-
lishers and subscribers to interact with other nodes. However,
what a node can receive and process is not declared in its
interface, but part of its implementation only. Hence, node
developers cannot rely on interfaces to compose nodes, but
must investigate the source code of their implementations.
Using an ADL with components of stable interfaces [8] to
describe ROS graphs can facilitate this, but requires handling
various idiosyncrasies of ROS including handling run-time
connector reconfiguration as well as lacking generic data types
in rosmsg and hierarchical nodes.

4 C&C MODEL TRANSFORMATIONS

Model-to-model transformations [33] can facilitate architec-
ture modeling by adjusting architectures to specific require-
ments to (1) facilitate subsequent processing steps; (2) reduce
the cognitive load imposed on the modelers; and (3) instrument
architectures for further analyses. In the following, we present
M2M transformations identified useful for modeling robotics
software architecture with MontiArcAutomaton as well as to
facilitate code generation process from MontiArcAutomaton
to ROS. New transformations for MontiArcAutomaton can
be created and added easily as described in [30], [31]. As

2. http://wiki.ros.org/rosmsg
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the adjustment is defined as a sequence of transformation
rules (applied once or several times) the normalization is
modular and can easily be extended or modified by removing
transformation rules or adding new ones.

4.1

ROS describes software architectures as flat graphs of nodes
and topics, whereas MontiArcAutomaton and many other
C&C ADLs [11], [12] support describing hierarchical software
architectures. While sophisticated code generators can trans-
late hierarchical architectures into flat ROS artifacts, analysis
of errors resulting from such transformation in the resulting
GPL artifacts is subject to accidental complexities [2] and
notional noise [32] again. Proper pre-processing can support
analysis by flattening the architecture prior to code generation,
hence enabling analysis on more abstract architecture model
level instead.

Flattening architectures requires eliminating composed
components. In MontiArcAutomaton and many other C&C
ADLs, such components contain subcomponents and connec-
tors, hence we focus on these elements. We use a transfor-
mation to successively disconnect composed components and
reconnect their ports accordingly (i.e.,’lift’ their connections).
A subsequent transformation eliminates all unconnected com-
ponents.

Eliminating Hierarchies

01 | component $_ {

02 not [[ port $_ $_ ]]

03 component $interType $inter;

04 connect [[$inter.$iPort :- $atom.$aPort]] -> $_;
05 [[ :- component $atomType $atom; ]]

08 | component $interType {

09 port out $portType $iPort;

10 component $atomType $atom;

11 connect $atom.$aPort-> $iPort;
12|}

14 | component $atomType {
15 port out $portType $aPort;
16| }

18 | assign {
19 $atom = uniqueName($atomType);
20|}

Fig. 5: A transformation to disconnect intermediate compo-
nents prior to their elimination by a subsequent transformation.

The transformation first replaces connectors from subcom-
ponents through intermediate components to their specific
targets with a single connector from the subcomponent to
its targets directly. Second, it eliminates the resulting empty
hulls. The transformation depicted in Figure 5 takes care of
the former. It considers three component types: the top-most
component of the system architecture (ll. 1-6), the type of
the intermediate subcomponent instance $inter to eliminate
(1. 3), and the type of its atomic subcomponent $atom.
Each connector from $Satom to the interface of $inter to
something on the environment of $inter is hence replaced
by a connector from $atom to its target directly.

The transformation matches component types without ports
(1. 2), the types of their intermediate subcomponents (1. 3),
and related connectors (I. 4). The type of the intermediate
subcomponent (1. 8-12) yields an outgoing port (1. 9), contains
a subcomponent of the atomic type (I. 10), and connects
that subcomponent’s port to its own outgoing port (I. 11).
Afterwards, only the top-most architecture and atomic sub-
components exist. Please note that the complexity of this
transformation is not due the transformation language, but the
task at hand. Performing this transformation manually for a
multitude of subcomponents is tedious and error prone. Re-
implementing that for every code generator is costly as well.

4.2 Wrapping Port Data Types

Static C&C architectures, such as MontiArcAutomaton, fix the
configuration of connectors at design time. While reducing
flexibility, this establishes reliable communication in the sense
that components cannot send and receive messages other than
intended, which ultimately reduces development complexity.
At the same time, middlewares such as ROS enable reconfig-
uring a system’s architecture at runtime by flexibly rewiring
connections and instantiating as well as deactivating nodes. To
cope with this differences, the messages send between com-
ponents are enveloped and the sender information is attached
to the message. The generated ROS nodes accept messages
from subscribed topics only, if the messages sender matches
what was modeled in the architecture. The corresponding
transformation depicted in Figure 6 takes care of this by
replacing the type of each incoming port (1. 1) that is not yet
wrapped by the wrapper type defined in the assign block
(1. 3-5). A similar transformation is applied to outgoing ports.

01 | port in [[ $type :- $wrapper<$type> 1] $_; N
02 Illii

03 | assign {
04 $wrapper = "Envelope";

07 | where {
08 | $type != $wrapper

Fig. 6: Wrapping port types

This wrapping employs the data type Envelope, which
yields a generic type parameter for the type of the message’s
payload, and instantiates it with the wrapped port’s original
data types. While helpful to add message meta-information
easily, many middlewares, including ROS, do not support such
generic type parameters.

4.3 Eliminating Generic Types

The type system of MontiArcAutomaton supports generic type
parameters for component types and data types. This allows for
greater flexibility than ROS. While ROS-specific refinements
could be part of the code generation, encapsulating these into



a single M2M transformation (a) yields better comprehensible
artifacts and (b) enables its reuse with multiple code genera-
tors. For instance, generic data types for ports and component
configuration parameters in MontiArcAutomaton (similar to
generics in Java or templates in C++) improve flexibility,
however, subsequent translation into rosmsg types requires
their replacement with specific types. Transformations can
prepare architectures properly and provide developers a better
overview on the resulting architecture than inspecting the
produced ROS artifacts. The corresponding transformation re-
places subcomponents whose component types rely on generic
type parameters. As with generics in Java, subcomponents are
parametrized with the actual types to be used at instantiation
time. Hence in the actual software architecture, all generic
type parameters have been assigned specific type arguments.
To eliminate component types using generic type parameters
from the architecture, the component types of such instances
are be replaced by references to synthetic inner component
types, where the generic types have been removed and replaced
by the types assigned during instantiation.

01 | component $name<$_> ComponentBody $BODY
o MATR

03 | component $_ {

04 component [[ $name<$kind> :- $cName ]] $_;

05 [[ :- component $cName ComponentBody $PLAIN_BODY ]]
06 not [[ component $cName ComponentBody $PLAIN_BODY ]]

09 | assign {

10 $cName = $name + "Of" + $kind;

11 $PLAIN_BODY = replaceGenerics($BODY, $kind);
12|}

Fig. 7: Replacing the types of subcomponents yielding gener-
ics by new component types with the generics eliminated.

Consequently, the transformation depicted in Figure 7
matches component types with generic type parameters in-
dicated by angle brackets (l. 1) that are used in composed
components (1. 3-7) and replaces their types. It replaces
their component types, which are parametrized by generic
arguments (1. 4), with new inner component types (ll. 5-6). To
this effect, it calculates a new component type name (1. 10) and
a new component body (1. 5-6), where occurrences of generic
type arguments are replaced by the types the component was
instantiated with (1. 4).

4.4 Automatically Connecting Ports

MontiArcAutomaton provides means to automatically connect
ports under specific conditions (such as implicitly connected
event ports in AADL [9]). Connectors are simple (i.e., they
do not have constraints or semantics aside from message
passing) and connecting ports of adjacent subcomponent can
be completed automatically if the ports have the same type.
To this effect, MontiArcAutomaton provides two key phrases:
1) autoconnect port automatically connects the ports of
subcomponent instances of a composed component based on
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their names and types. 2) autoconnect type similarly
connects ports of subcomponent instances of a composed
component based on their types only. The behavior of au-
toconnect port is illustrated in Figure 2. Here, Clean-—
ingRobot contains two subcomponents Controller and
Navigation with matching ports that are not connected ini-
tially. This transformation connects these ports by an explicit
connector (cf. bottom part of Figure 2). Figure 8 shows the
transformation for the autoconnect port statement.

01 | component $source {
02| port out $type $sName;
03|}

05 | component $target {
06 port in $type $tName ]];

07|}

08

09 | not [[ component $ambiguous {
10 port in $type $_;

1} 1]

13 | component $_ {
14 autoconnect type;

15 component $source $subS;

16 component $target $subT;

17 not [[ component $ambiguous $_; ]]

18 [[ :- connect $subS.$sName -> $subT.$tName; ]]

19}

Fig. 8: Excerpt of a transformation that automatically connects
ports of the same type in MontiArcAutomaton components.

In addition, MontiArcAutomaton provides shortcuts for con-
nectors between ports of subcomponents. Instead of defining
each connector between two subcomponents’ ports individ-
ually, it is possible to define a connector between those
subcomponents. In this case, all pairs of compatible connectors
(i.e., ports of identical type) are connected automatically. The
transformation rule is depicted in Figure 9. It matches two
subcomponent instances (ll. 10-11), their related component
definitions containing the ports (Il. 1-7), and a connector
between the subcomponent instances (1. 12). Then it introduces
connectors between ports of the same type if not already
present. After this, a subsequent transformation rule removes
all subcomponent connectors.

01 | component $sType {
02 port out $pType $sPort;
03|}

05 | component $tType {
06 port in $pType $tPort;
07|}

09 | component $_ {

10 component $sType $source;
11 component $tType $target;
12 connect $source -> $target;

14 not [[ connect $source.$sPort -> $target.$tPort; ]]
15 [[ :- connect $source.$sPort -> $target.$tPort; ]]
16| }

Fig. 9: Excerpt of a transformation that automatically connects
ports of MontiArcAutomaton subcomponents.
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4.5 Normalizing Simple Connectors

MontiArcAutomaton allows modelers to attach connectors
directly to subcomponent instance definitions. A simple con-
nector is defined in square brackets right after the instances’
name and connects a port of the instance with the defined
target, e.g., component lidar [p—->poseFusion.p].
However, this is a shortcut for defining a normal connector
and can thus be normalized before code generation.

01 | component $_ {

02 component $_ $instance [

03 [[ $source -> $comp.$port :- ]]

04 1;

05 [[ :- connect $instance.$source -> $comp.$port; ]]
06 | }

Fig. 10: Transformation to replace simple connectors with
normal connectors.

The transformation rule for this transformation is shown in
Figure 10. If first matches the simple connector (I. 3). This
allows matching and removing the whole connector inside
the replacement operator. The connector source and target are
matched as well in order to introduce an equivalent normal
connector (1. 5).

4.6 Completing Names

MontiArcAutomaton supports syntactic sugar and shortcuts
regarding names. These can be reduced to other base concepts
prior to code generation to reduce the complexity of the
generator. For instance, enabling omitting superfluous names
reduces notational noise [32] and supports developers in focus-
ing on the important challenges. This pattern applies to many
typical modeling elements of ADLs such as subcomponents,
interface elements, configuration parameters, or constraints.
With MontiArcAutomaton, an architecture modeler may omit
the names of subcomponent instances in case there is just one
subcomponent instance of its type in the containing component
and ports if there is just one port of the corresponding type in
the same component.

For instance, component PoseFusion; (1. 3 of Fig-
ure 3) will be assigned the derived instance name pose-—
Fusion, which can be used in the model without being
made explicit, e.g., for connectors (I. 6). Thus, the first two
transformations add explicit default names, i.e., the uncapi-
talized name of the subcomponent’s or port’s type, for each
subcomponent instance or port, if not present. Both use the
auxiliary method uncapitalize () to derive names in
their assign blocks. Figure 11 depicts a realization of the
transformation to add subcomponent instance names using
MATrans. The transformation rule matches a subcomponent
(11. 1-3) that has no explicit name. This is ensured by the
application constraint specified in the where block (1l. 7-9). In
that case, a name for this subcomponent is added. The name is
derived from the components type by uncapitalizing the first
character. This is calculated in the assignment block (Il. 4-6).

o1 | $sc [[ \
02 component $type [[ :- $name ]]; MATR
03| 1]

04 | assign {

05 $name = uncapitalize($type);

07 | where {
08 $SC.getInstanceNames().isEmpty()
09|}

Fig. 11: Deriving default names for subcomponent instances.

Figure 12 depicts the transformation for incoming ports.
First, an incoming port is matched (I. 1). The application
constraint expressed in the where block ensures that this port
has no explicit name yet (Il. 5-7). In that case, a name for
this port is added, which is derived from the ports type by
uncapitalizing the first character. Again, this is calculated in
the assignment block (1l. 2-4).

01 | port $PL [[
02 | assign {

03 $name = uncapitalize($type);
04|}

05 | where {

06 $PL.getName().isEmpty()
07|}

in $type [[ :- $name ]] ];

Fig. 12: Deriving default names for incoming ports.

With MATrans, inner MontiArcAutomaton components
(similar to anonymous classes in Java) can be easily instanti-
ated automatically: if no instance of the corresponding type
exists, such an instance is added to the comprising parent
component. Figure 13 depicts this transformation. Monti-
ArcAutomaton furthermore allows naming inner components
explicitly which is a shortcut for defining an inner component
and declaring an instance of it. A further transformation
normalizes this by adding an explicit instance of the named
inner component with the specified name and removes the
name from the inner component.

01 | component $_ {
02 component $typeName { /* ... */ }
03 not [[ component $typeName $_; ]]

04 [[ :- component $typeName $instanceName; ]]
o5 | }

06 | assign {

07 $instanceName = uncapitalize($typeName);

08 | }

Fig. 13: Instantiation of inner components.

4.7 Adding Run-time Inspection Infrastructure

We also support automated integration of run-time inspection
infrastructure via M2M transformations. The corresponding
transformations 1) adds a monitor subcomponent to every
composed component, 2) adds outgoing ports to all subcom-
ponents of each composed components, which emit messages
describing the subcomponents’ states, and connects their in-
stances to the monitoring component. 3) This enables moni-



toring subcomponents as described in [30] without integrating
all these components, ports, and connectors manually.

To this end, this transformation iterates over all components
of a software system and applies three transformation rules.
The first transformation rule is shown in Figure 14. It adds a
state ports to all components (1. 2) if not present yet (. 3). The
name of this port is composed of the name of the component
and the suffix State (Il. 5-7).

01 | component $name {
02 port [[ :- out $sp state ]],
03 not [[ out $_ state ]];

05 | assign {
06 $sp = $name.concat("State");
07|}

Fig. 14: Adding state ports to components.

The second transformation rule is depicted in Figure 15. It
adds a monitoring component (I. 2) to components that have
subcomponents (1. 4) if not already present (1. 3). The type of
the monitor is composed of the name of the component whose
subcomponents are monitored and the suffix Monitor (Il. 6-
8).

01 | component $name N
02 [? - componen‘E $type monitor {}]]
03 not [[ component $_ monitor {} ]]

04 component $_ $sub {}

o5 |}

06 | assign {

07 $type = $name.concat("Monitor");

08 |}

Fig. 15: Adding a monitoring component.

Finally the third transformation rule (depicted in Figure 16)
connects the monitoring component to the state ports intro-
duced in the upstream transformation rules. To this end, for
every subcomponent (1. 2) the transformation rule adds an
incoming port to the monitoring component (ll. 3-5). The
name and type of the port is calculated in the assign-block
(11. 8-11). Furthermore, a connector connecting the state port
of the subcomponent with the newly introduced state port of
the monitoring component is added (1. 6).

01 | component $_ {

02 component $_ $name;

03 component $_ monitor {

04 port [[ :- in $type $sp]];

os| }

06 [[ :- connect $name.state -> monitor.$sp; 1]

07|}

08 | assign {

09 $type = $name.concat("State");
10 $sp = uncapitalize($type);
1|}

Fig. 16: Connecting the monitoring component.
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5 TRANSFORMING COMPONENT & CONNEC-
TOR ARCHITECTURES TO ROS

Model-to-Text transformations foster model-driven develop-
ment by aligning platform-agnostic software architectures with
executable software systems. In many complex domains, such
as robotics, distributed system architectures must be 1) tailored
to include expertise encoded in middlewares, 2) implemented
in supported GPLs, and 3) adjusted to specific runtime en-
vironments. Bridging the gap between logical design con-
cepts and middleware-specific implementation concepts is
challenging for M2T transformations. In the following, we
investigate challenges for M2T transformations, elaborate on
expenditure reduction for code generator development, and
provide as proof-of-concept a M2T transformation from C&C
architectures to the Python implementation of ROS Groovy.

5.1 Challenges for M2T Transformations

Architecture models conform to particular ADLs. Each ADL
is designed for a specific purpose supporting specific features.
Nonetheless, there is some consensus [11] in common ADL
modeling elements [11] that originates from their common
background of component-based software engineering [7].
This includes providing modeling elements for components,
connectors, and configurations. Preserving the semantics and
properties of the modeling elements in M2T transformations is
challenging. Especially, when the ADL design concepts differ
significantly from the concepts of the targeted middleware or
GPL, the required M2T transformations often become very
complex.

Code generators implement such M2T transformations and
represent a systematic approach for automated M2T transfor-
mations. However, code generators are tailored to a specific
middleware and usually are not reusable for different target
platforms. With multiple target platforms, each transformation
step has to be developed for each code generator (which
could even employ different implementation technologies). For
instance, the MontiArcAutomaton ADL supports hierarchical
components, whereas its Java implementation for embedded
systems as well as ROS support flat graphs only.
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node names derived follow the
subcomponents they represent

topic name derived from the ports
the connector it represents targets

‘ /lp_p | | /s_ls | | /rp_p | | Js_rs |

Fig. 18: ROS graph of the cleaning robot architecture depicted
in Figure 2.

all topics, publishers, and subscribers
adhere to MontiArcAutomaton's typed,
unidirectional 1 to N communication

Implementing generators for both target platforms requires
defining structure flattening transformation steps for each code
generator separately. To reduce implementation effort, it is
beneficial to lift the flattening operation to the model level
beforehand.

However, such pre-processing M2M transformations must
ensure that the output model conforms to the underlying ADL
again.

5.2 Generator Engine for M2T Transformations

We employ the FreeMarker template engine and the Monti-
ArcAutomaton code generation framework [20] to transform
MontiArcAutomaton architecture models to ROS nodes, top-
ics, and configuration artifacts.

Figure 17 illustrates an overview of the generation pro-
cess. Starting with an MontiArcAutomaton architecture model
for a cleaning robot, the MontiCore language workbench
parses the model into abstract syntax tree (AST) instances,
which represent the content of the models in a machine-
processable form. In MontiArcAutomaton, each element of
the AST represents a specific architectural element. While
M2M transformations are applied on the AST beforehand, the
Generator Engine accesses the transformed AST and its
elements. This separation of M2M and M2T transformations
foster engineers to develop multiple generator engines (each
for a different middleware) on basis of a common model
representation. For instance, we employed a generator engine
for Java and ROS Python on the provided AST. Both generator
engines consists of three kinds of elements: a dedicated main
template, subtemplates (e.g., Component and Port), and
Java artifacts. The main template defines the required subtem-
plates, Java artifacts, as well as additional properties required
for the generation process. To this effect, the AST is accessible
to the generator developer in the main template. Elements
of the AST might be passed to relevant subtemplates and
Java artifact calls. For instance, the AST subtree of an atomic
MontiArcAutomaton component is passed to the Component
subtemplate. The Java artifacts operate on different elements

Models
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models complex data types.
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Fig. 19: Overview of the generated infrastructure.

of the AST. Intended side-effects, such as inferred values that
occurred within the template or Java artifact call, are stored in
a Java artifact and accessible for the generator developer within
the templates. Whereas templates defined in the generator
engine are specific to middleware and target language, the
Java artifacts are specific to the AST and can be reused by
different generator engines.

5.3 Transforming C&C Architectures to ROS

The prime concerns of transforming C&C architectures to ROS
are 1) translating the atomic and composed component types
to ROS nodes with publishers and subscribers; 2) translating
connectors to ROS topics; 3) translating the class diagram
data types that are used for ports to rosmsg models; and
4) creating the configuration files required for ROS projects.
The intended result of transforming the CleaningRobot
software architecture (cf. Figure 2) with our generator engine
is presented in Figure 18. Components and connectors are
translated to nodes and topics. Node names are derived follow
the subcomponent instances they present. Topic names are
combinations of the connector names and the participating
source and target ports. Each topic, publisher, and subscriber
adhere to MontiArcAutomaton’s typed, unidirectional commu-
nication. For instance, the subcomponent poseFusion of
type PoseFusion is translated to a Python class artifact that
defines a ROS node and a single publisher to the topic p_p,
whose name and type are derived from the connector between
the poseFusion and controller component instances.

Deploying the architecture on ROS and simultaneously
preserve the presented ROS graph requires to generate var-
ious artifacts as depicted in Figure 19: From the MontiArc-
Automaton architecture and class diagram models, we produce
the necessary configuration artifacts (Makefile, CMake-
Lists, Manifest) to initialize the ROS building process,
the artifacts representing the architecture in ROS Python, and
the rosmsg artifacts. The following sections elaborate on the
generated artifacts and their relation to ROS.
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Fig. 20: Example of ROS message artifacts derived from types
defined in UML/P class diagrams.

5.3.1 ROS Messages

MontiArcAutomaton architectures operate in the context of
UML/P [29] class diagrams, hence these must be translated as
well. MontiArcAutomaton supports the full expressiveness of
UML/P class diagrams, e.g., interfaces, abstract classes, and
generic type parameters. ROS nodes operate in the context
of simpler rosmsg models, which do not support these.
Consequently, class diagram port types using these features
are prohibited for translation to ROS and our code generator
takes care of rejecting such models. Aside from these chal-
lenges, the classes are as follows: primitive attributes becomes
rosmsg properties, attributes of complex types become nested
properties, 1-to-n relations become arrays of variable length.

Figure 20 illustrates exemplary derived ROS message arti-
facts from complex types defined in an UML/P class diagram.
The depicted Pose data type is, for instance, used between the
poseFusion and the controller component instances
(cf. Figure 2). To this effect, this type is transformed during
the M2M transformation to the Envelope<Pose> data type
and, subsequently, translated into the EnvelopePose.msg
artifact, which is a ROS specific message type. While the
Pose data type is wrapped in an Envelope type, the gener-
ator does not wrap the associated types (e.g., Quaternion
and Point) into Envelope types but translates them to
ROS specific messages types. Each containing primitive ROS
messages types. Ultimately, the ROS build system generates
client specific artifacts that can be used in the generated
component type artifacts.

5.3.2 ROS Nodes

Transforming MontiArcAutomaton models to ROS nodes is
more challenging. Its various concepts, such as component
types, instances, parameters, ports, and connectors, must be
translated to concepts available to ROS Python. For instance,
MontiArcAutomaton realizes component-based software engi-
neering by enforcing that components are black-boxes unaware
of their environment aside from messages passed to their
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inputs. Consequently, its component instances are unaware of
their communication partners. Instead, the containing com-
ponents define connectors between their subcomponents. In
ROS, nodes exist in flat graphs, i.e., there is no containing
component, and they are aware of their environment in terms
of topics that can be subscribed and published to — which ham-
pers reuse. Hence, the transformation of MontiArcAutomaton
components into ROS nodes must integrate this information
into their implementations. However, as MontiArcAutomaton
components may be used in different contexts — and hence with
different communication partners — encoding the subscribed
and published topics into the generated Python artifacts is not
feasible.

ROS specific Python client library
and message types are imported

default node name is overridden by the
instance name defined in the launch file

01 | import rospy
02 | import std_msgs.msg
03 | from maa_types.msg import EnvelopePose

05 | class PoseFusion():

topics are queried from node

7 def __init_ (self): =
specific parameters

08 rospy.init_node('PoseFusion')

9 if not rospy.is_shutdown():

10 self.pTopic = rospy.get_param("p")

11 self.pPub = rospy.Publisher(self.wTopic, EnvelopePose)

publisher for outgoing ports are initialized _
with the respective topics and message types

Fig. 21: Excerpt of a generic PoseFusion component type
implementation. Violet marked code represent ROS specific
relations.

Instead, each MontiArcAutomaton component type (e.g.,
the PoseFusion component type in Figure 21) becomes a
Python class with generic publish and subscribe mechanisms
(1. 10,11), which initializes a single node (1. 8), defines
a single publisher for each outgoing port (I. 11), a single
subscriber for each incoming port, and defines parameters for
each component configuration parameter. Node name, topic,
and parameters can be defined at constructing instances of
this class and hence allow to reuse it similar to MontiArc-
Automaton components in different communication contexts.
To this effect, the node name defined in class (1. 8) is a default
name that will be overridden by the instance name defined in
a launch file. ROS specific client libraries and message types,
as well as generated message type, are provided for ports
and topics (I1l. 1-3). These classes also implement rejecting
enveloped messages received from senders other than config-
ured in the architecture model. With this in place, connectors
are translated into topics, such that each topic realizes the
connection of exactly one source port to one target port of the
architecture model.

The information on instance specific node names, connected
topics, and available parameters is generated into roslaunch?
configuration files. These are also generated from the Monti-
ArcAutomaton architecture and take care of instantiating the

3. http://wiki.ros.org/roslaunch/XML
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node declaration instance name generic component type

01 | <launch>

02 <node “cwd="node" name="poseFusion" type="PoseFusion.py">
03 <param name="p" value="p_p"/>

04 wl== & ==»

05 </node>

06 <= -

07 <node cwd="node" name="controller" type="Controller.py">
08 <param name="p" value="p_p"/>

09 al=z SNy

10 </node>

11 | </launch>

parameter declaration port name  topic name for publishing or subscribing

Fig. 22: Excerpt of the derived roslaunch file from the
architecture depicted in Figure 2. Violet marked code represent
ROS specific declarations.

generated Python classes according to the architecture model,
i.e., they name, connect and parametrize the node instances as
governed by their related component instances. For instance,
Figure 22 illustrates an excerpt of the derived roslaunch
artifact from the architecture depicted in Figure 2. Each node
declaration starts with a node tag containing parameters,
such as name and type (ll. 2,7). Both are derived from the
associated component instance. As the generated component
type artifacts are generic to the subscribed and published
topics, the node declaration encloses node specific parameters
composing a name and a value. For instance, the component
instance poseFusion publishes via its port p to topic p_p
(1. 3). Contrary to the poseFusion instance, the con-
troller component instance subscribes to the same topic.
Both component types infer their node parameters at instantia-
tion time via ROS and are able to allocate the parameter values
for their respective incoming and outgoing ports. Parameters
for component instance are defined analogously. To ensure
that there are no duplicated parameters, port and parameter
names must be unique, which is ensured by previous M2M
transformations.

5.3.3 ROS Build Configuration

The overall concept of ROS is to develop robotics applications
by executing and sharing coherent code units. These units are
grouped in packages, integrated in ROS, and accessible for
further packages in form of dependencies. To this effect, the
integrated build system of ROS (named rosbuild) enables
developers to establish new ROS packages and to integrate
them into ROS by means of three configuration files: Mani—
fest.xml, CMakeLists.txt, and MakeFile. Each of is
produced by the generator engine and the information derived
from the projects architecture.

For instance, the Manifest .xml in Figure 23 declares the
ROS package for the architecture including the required pack-
age information and the dependencies to other ROS packages.
The ROS package declaration within the Manifest.xml
artifact contains package specific information (Il. 2-6), such as
a brief description, the author of the packages, the license, the
review status, and the URL for further package descriptions.

ROS package declaration

01 | <package> <—/

02 <description brief= "CleanRobot">CleanRobotProject</description>

03 <author>Chair of Software Engineering</author>
04 <license>BSD</license>
05 <review status="" notes=""/>

06 <url>http://www.monticore.de/robotics/montiarcautomaton/url>
o7 <depend package= "rospy"/><"“‘~\\\\
08 <depend package= "std_msgs"/>

09 <depend package= "ma_types"/>

10 | </package>

dependency to the generated )
message artifacts

dependency to the Python
client library for ROS

dependency to the primitive
ROS message types

Fig. 23: Generated Manifest.xml artifact. Violet marked
code represent ROS specific dependencies.

While these elements are required in the Manifest.xml
artifact, the subsequent package dependency definitions (11. 7-
9) are in general optional in the Manifest .xml but required
in our package declaration. The generator engine extracts
the information about the target language from the Main
template and integrates a dependency to the target language
specific ROS library client, for instance, the Python client
library rospy (I. 7). This library enables to orchestrate
ROS from within Python artifacts (e.g., establishing nodes,
subscribing and publishing to topics, and receiving/passing
parameters from/to nodes). In addition, the generator engine
adds dependencies to the packages for primitive ROS message
types (1. 8) and more complex data types (1. 9) derived from
the UML/P class diagram.

01 | cmake_minimum_required(VERSION 2.4.6)
02 | include($ENV{ROS_ROOT}/core/rosbuild/rosbuild.cmake)
03
04 | rosbuild_init()
05 | rosbuild_genmsg()<

T

initial ROS messages generation initial the ROS build

Fig. 24: Generated CMakeLists artifact. Violet marked code
represent ROS specific macros.

As the ROS build system uses CMake* to build its packages,
a CMake specific configuration (CmakeLists.txt) is gen-
erated for each architecture. Figure 24 illustrates the generated
artifact that must contain the information about the required
minimum version of CMake (1. 1) and an include statement
(1. 2), which enables to use ROS build specific macros, such as
rosbuild_init () (1. 4) and rosbuild_genmsg (l. 5).
The first macro is used to configure default input/output direc-
tories and the compilation process. The latter macro processes
our generated ROS message definitions by means of a client
library specific code generator to make them accessible, for
instance, to the nodes and topics.

Ultimately, an engineer that wants to invoke the ROS build
process must use the rosmake command in a ROS supporting
terminal. As this process still uses make to build the packages,
a MakeFile has to be provided that invokes CMake.

4. https://cmake.org/
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5.4 Evaluation of the M2T Transformations

The resulting code generator enables translating MontiArc-
Automaton architecture models to ROS Python nodes. Com-
bining the benefits of integrating existing solutions encoded in
middleware artifacts with the benefits of architecture modeling
therefore becomes straightforward: Architectures can feature
components with unconnected ports. Via translation to topics,
the publishers and subscribers resulting from transformation
can easily interact with middleware artifacts for which no
component models exist (for instance, via configuration in
roslaunch files). Thus the encoded expertise can be reused
without giving the employed ADLs benefits (such as up
stable interfaces or hierarchical component topologies). To
evaluate our ROS Python generator, we implemented a similar
code generator to translate MontiArcAutomaton components
into plain Java artifacts [23]. The Java generator encodes all
transformation steps in Java and FreeMarker and consequently
the ROS Python generator is significantly less complex. As
illustrated in Table 1, the Java generator comprises more
than twice as many FreeMarker templates and Java classes.
However, the templates of both code generators are, in average,
of the same lengths and the ROS Python generator’s Java
classes are only a little larger.

TABLE 1: Artifacts of two similar generators: translation to
ROS Python uses M2M transformations, the other does not.

Generator # Templates Avg. LOC # Classes Avg. LOC
ROS Python 18 39.6 14 106.8
Plain Java 40 40.7 24 90.6

All of this is enabled by six M2M transformations for-
mulated in a language that closely resemble the MontiArc-
Automaton ADL. We thus believe that decoupling code gener-
ation from ADL development and usage via appropriate model
transformations can greatly facilitate development of robotics
modeling tool chains and, ultimately, robotics software.

6 DiscussioN AND RELATED WORK

Applying the presented method requires expertise in various
challenging fields, including software language engineering,
model transformation, and code generator development. It
is, however, not primarily aimed at architecture modelers,
but at tool chain providers developing architecture modeling
solutions with code generation capabilities, such as Smart-
Soft [16] or DiaSpec [15]. In such contexts, expertise in
language engineering and model transformation already exists.
However, with the proposed separation of concerns, the chal-
lenge of providing a middleware-specific code generator can
be separated into (1) creating less complex, yet middleware-
specific M2T transformations and (2) providing proper, ADL-
specific M2M transformations suitable for code generation.
This enables reusing expertise encoded in existing middleware
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modules easily. Our approach differs from the OMG’s model-
driven architecture [34] in focusing on tool chain modularity:
it does not prescribe that the transformed architecture models
are more platform-specific.

Related architecture modeling infrastructures in robotics
focus on domain challenges over infrastructure modular-
ity and reuse of middleware-compatible artifacts, such as
ROS [6] nodes or Orocos [4] components. For instance, the
DiaSpec [15] infrastructure comprises an ADL with differ-
ent component kinds, but does neither support exchangeable
model transformations nor exchangeable code generators. The
SmartSoft [16] infrastructure also comprises an ADL, inte-
grated model transformations, means for behavior modeling,
contingency planning and — based on Xtext — generally enables
integration of further code generation capabilities. However, it
also does not support exchanging its M2M transformations and
integration of further code generation is not investigated yet.
The authors of [35] propose modeling self-adaptive software
with components and translating it to Fractal [36] component
implementations that neither supports extensible M2M, nor
exchanging the code generators. RobotML [37] is a UML
profile for modeling structure, behavior, and communication of
robot software architectures implemented with as a UML pro-
file for the Papyrus® modeling environment. It uses Acceleo®
for code generation and, thus, should in principle support
exchangeable code generators as well. It, however, does not
support extensible M2M transformations.

7 CONCLUSION

We have presented a model-driven method for separating the
concerns of architecture modelers from the technical concerns
of code generator developers. This method leverage modular
domain-specific M2M transformations and relies on gradually
transforming the architecture under development into represen-
tations better processable by subsequent transformation tools
such as code generators. This greatly reduces the effort of
developing code generators to interface with specific middle-
wares and ultimately facilitates model-driven development of
robotics architectures by enabling to reuse expertise encoded
in middleware artifacts, such as ROS nodes.

We applied this method to the transformation of MontiArc-
Automaton components into nodes of the Python implemen-
tation of ROS Groovy. To this effect, we presented the em-
ployed reusable M2M transformations and showed how they
facilitate generator development by comparison to a generator
producing Java implementations without using M2M transfor-
mations. The resulting ROS Python generator is significantly
less complex than the Java generator, which indicates that
separating concerns by employing M2M transformations is
beneficial in creating middleware-specific code generators. We

5. https://eclipse.org/papyrus/
6. http://www.eclipse.org/acceleo/
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believe, this separation can produce better extensible model-
driven tool chains in robotics and, hence, ultimately facilitate
model-driven development in robotics.
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