
Journal of Object Technology | RESEARCH ARTICLE

Modeling Variability of Hierarchical Component-Based
Systems

Nico Jansen∗, Jérôme Pfeiffer†, Bernhard Rumpe∗, David Schmalzing∗, and Andreas Wortmann†

∗Chair of Software Engineering, RWTH Aachen University, Germany
†Institute for Control Engineering of Machine Tools and Manufacturing Units, University of Stuttgart, Germany

ABSTRACT The engineering of hierarchically decomposed component-based systems emphasizes the separation of concerns
to reduce development complexity through work distribution and component reuse. Variability further promotes reuse, as
system variants may be used in different markets or contexts. However, variability must be adequately managed as it introduces
another layer of complexity to system development. Consequently, modeling of hierarchical component-based systems should
support composition of variable components while simultaneously facilitating their formal analysis. To address this, we formally
define variable component types, propose a modeling language for specifying the variability of hierarchically composed systems,
and present a method to check the component variants’ well-formedness. We extend the semantically grounded architecture
description language MontiArc to realize the modeling of variable component-based systems supporting the well-formedness
of variable component types and late binding of variability. The resulting realization of variable component types enables the
specification of reusable and flexible components while making customization options explicit in the component interface and
maintaining the black-box view of components. This can ultimately reduce complexity in developing variable components and,
thus, facilitate the engineering of component-based systems.

KEYWORDS Architecture Description Languages, Software Architecture, Reuse, Variability

1. Introduction

Component-based software engineering (CBSE) (Heineman
& Councill 2001) is a software engineering methodology that
leverages reusable, off-the-shelf building blocks for software
construction. These software components hide their implemen-
tation details behind a stable interface that facilitates their com-
position. Therefore, the individual components are supposed to
be easier to reuse and evaluate and hence more mature. The be-
havior, composition, and communication of such software com-
ponents require implementing these in some general-purpose
programming languages (GPLs), which creates a conceptual gap
between the problem domain and the solution domain with the

JOT reference format:
Nico Jansen, Jérôme Pfeiffer, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. Modeling Variability of Hierarchical Component-Based
Systems. Journal of Object Technology. Vol. 23, No. 3, 2024. Licensed
under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.3.a9

respective GPL (France & Rumpe 2007). Models that describe
the complexity of a system at multiple levels of abstraction
and from different viewpoints, combined with model analysis
and transformation, can bridge this gap. With this, software
components are notated as component models that conform to
architecture description languages (ADLs) (Medvidovic & Tay-
lor 2000a). They combine the benefits of CBSE and MDSE and
have been developed for and applied to multiple challenging
domains, including automotive (Debruyne et al. 2004), avion-
ics (Feiler & Gluch 2012), and robotics (Adam, Butting, et
al. 2017; Adam, Hölldobler, et al. 2017). Once implemented,
component customization and hierarchical decomposition foster
model reuse and evolution. Enabling flexible reuse and evo-
lution of components requires an appropriate mechanism to
model commonalities and variability. Software product line en-
gineering (SPLE) (Apel et al. 2013) is a software development
paradigm that aims to increase software development productiv-
ity and the quality of products by increasing the level of reuse.
It investigates how to describe commonalities and differences

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.3.a9

in software and present these as a product line. Variability has
already been explored in ADLs in previous publications (Feiler
& Gluch 2012; Debruyne et al. 2004; Haber, Rendel, Rumpe,
Schaefer, & van der Linden 2011). However, these approaches
require additional external models, a white-box view of com-
ponents, or aligning product features with the component hi-
erarchy. Thus, these approaches lack flexibility and contradict
CBSE, where components are reusable building blocks, and
implementation details should remain hidden.

We present a method to define variable component types, ex-
tend the MontiArc ADL (Haber et al. 2012; Butting et al. 2017)
with modeling elements to specify a component’s variability
and present a method to access their well-formedness. Our
approach differentiates between component type declaration
and usage, i.e., configuration of the component type. Declaring
a variable component type includes defining the component’s
variability via explicit feature definitions. These features can
be referenced throughout the type declaration using a 150%
superset approach to include or exclude different elements of
the component. When instantiating such a component type,
the selected features are passed as parameters of the instance.
By establishing analyses tailored to our method, we ensure the
structural well-formedness of variable component models and
architectures. This approach offers three major benefits:

– Variable component descriptions can be composed, en-
abling the reuse of variable components and thus the cre-
ation of variable component libraries

– Variable components are configured during component
instantiation and can be used in different configurations
in the same architecture while maintaining the integrity of
defined feature constraints.

– Variable components can be configured across multiple
hierarchy levels. Some of a subcomponent’s features can
be configured on one hierarchy level; others can become
part of the feature model of the enclosing component.

In the following, section 3 presents our definition of vari-
able component and connector architectures, section 2 explains
the MontiArc ADL as background, and section 4 presents our
method of variable component types and the language exten-
sions of MontiArc. Then, section 5 applies the presented method
and section 6 evaluates our implementation before section 7 dis-
cusses the approach and section 8 compares it to related work.
Finally, section 9 concludes.

2. Component & Connector Architectures
Component & Connector (C&C) ADLs (Medvidovic & Taylor
2000b) aim to describe software system architectures using com-
ponents as units for computations and connectors between their
interfaces to exchange messages. The fundamental elements
of architectural descriptions (Medvidovic & Taylor 2000a) are:
components, connectors, and configurations. Components are
the units of computation in an architectural model and yield
well-defined interfaces. Connectors connect the interfaces of
components to realize component communication. A configu-
ration is a graph of components and connectors that describes
component composition.

MA

composed component

LightCtrl(int fadeOutTime)

DoorEval

(fadeOutTime)

AlarmCheck

ac

Arbiter arbiter

cmd

SwitchStatus

OnOffRequest

BlinkRequestAlarmStatus

DoorStatus

OnOffCmd

subcomponent of type Arbiter and name arbiter

connector

outgoing port of type
OnOffCmd and name cmdincoming port

Figure 1 MontiArc architecture for a light control system
with three subcomponents

MontiArc (Haber et al. 2012; Butting et al. 2017) is a textual
C&C ADL and modeling infrastructure for the development
of distributed systems. Consequently, MontiArc provides a
small core of language features that are easy to learn yet pow-
erful enough to model complex software architectures. The
language’s infrastructure comprises code generators translating
models into arbitrary GPL realizations. Following the principles
of C&C ADLs, MontiArc facilitates modeling C&C software
architectures with hierarchically structured, interconnected com-
ponents. The interface of a component is defined by a set of
unidirectional, named, and typed ports. Components receive
messages via their incoming ports and emit messages via their
outgoing ports. Unidirectional connectors connect exactly one
source port to one or more target ports.

MontiArc distinguishes between component types and com-
ponent instances to facilitate component reuse. A component
type (denoted "component" in the following) defines the in-
terface of its instances by a set of ports and may comprise
subcomponents and connectors defining a configuration. If
a component contains subcomponents, it is called composed.
Otherwise, it is called atomic. Atomic components perform
the actual computations of a system. The behavior of a com-
posite component results from the composition and behavior
of its subcomponents. The behavior of an atomic component
has to be implemented by hand, i.e., by providing GPL code
implementations or embedded behavior descriptions.

MontiArc is a textual language. While research suggests that
graphical representations improve design-knowledge transfer in
software design (JSD+20 2020; Meliá et al. 2016) and feature
modeling (Jakšić et al. 2014), textual modeling usually is more
compact, promises to be more efficient(Meliá et al. 2016) and
is platform independent (Grönniger et al. 2007). Therefore, we
provide graphical representations alongside textual models for
illustration purposes only.

Figure 1, for instance, depicts the graphical representation
of the component type LightCtrl. The component controls
the interior light of a car and provides behavior that depends on
received messages as well as time events. Figure 2 shows its
corresponding textual definition in MontiArc. The component
consists of four ports (l. 2-3), three subcomponents (ll. 5–7), and
seven connectors (ll. 9–15). Ports are defined after the keyword
port and always have a type. Putting a name is optional and, if
not given, is derived by uncapitalizing the type, e.g., the name
of the port with type SwitchStatus is switchStatus (l. 2).
Their direction can be either ingoing marked by the keyword

2 Jansen et al.

component LightCtrl(int fadeOutTime) {

port in SwitchStatus, in AlarmStatus, in DoorStatus,

out OnOffCmd cmd;

AlarmCheck ac;

DoorEval(fadeOutTime);

Arbiter arbiter;

arbiter.onOffCmd -> cmd;

switchStatus -> arbiter.switchStatus,

doorEval.switchStatus;

doorStatus -> doorEval.doorStatus;

alarmStatus -> ac.alarmStatus;

ac.blinkRequest -> arbiter.blinkRequest;

doorEval.onOffRequest -> arbiter.onOffRequest;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

MA

Figure 2 The component type LightControl consists of
three incoming ports, one outgoing port, three subcomponents,
and multiple connectors. Furthermore, it defines a configura-
tion parameter that is forwarded to one of its subcomponents.

in or outgoing indicated by the keyword out. Ingoing ports
receive messages from a connected outgoing port of another
component. Outgoing ports send messages and are connected
to incoming ports of another component. Subcomponents are
specified starting with a type and optionally a name. Similar to
the port definition, if not given, the subcomponent name is in-
ferred from the type name in lower case, e.g., the subcomponent
DoorEval (l. 6) can be referred to as doorEval (ll. 11-12).

Connectors are unidirectional and connect one sending port
with one or more receiving ports of compatible data types. The
incoming port switchStatus of component LightCtrl, for
instance, is connected to the same-named and type compatible
incoming ports of the subcomponents arbiter and doorEval
(l. 10 f.).

MontiArc already provides a point of variability, which are
component parameters. Parameters have to be assigned when
instantiating a component as a subcomponent. After that, the
value must not change. Component LightCtrl has a parameter
fadeOutTime (l. 1) that determines the fade-out duration of
the light after closing a door. The parameter is passed to the
subcomponent DoorEval, which then adheres to it. Parameters
are a mean for open variability and provide capabilities for cus-
tomizing component behavior on instantiation, especially for
atomic components, by directly affecting values in behavior de-
scriptions. While they also enable customization of composed
component behavior through parameter forwarding and sub-
component composition, they so far did not support structural
variability, that is, variabilities in the interface of components
or in the structure of a component’s topology.

Atomic components, i.e., components without subcompo-
nents, can define automata to specify their behavior. Figure 3
shows the component DoorEval that, depending on the door
and switch status, sends requests for turning the interior lights
on or off. The contained automaton defines this behavior (ll. 7-
19). An automaton specification always starts with specifying
its states and its initial state. Afterward, the transitions between
states state a guard, i.e., a boolean condition based on ingoing
ports, that determines when the transition is fired, and an action
statement determining what should happen in consequence of

component DoorEval(int fadeOutTime) {
port in SwitchStatus, in DoorStatus,

out OnOffRequest cmd;

int timer;

automaton {
initial state off;
state off, on, fading;

off -> on [switchStatus == ON || doorStatus == open] /
{OnOffRequest = ON};

on -> fading [switchStatus == OFF
|| doorStatus == closed] /
{timer = 0};

fading -> fading [timer <= fadeOutTime] / {timer++};
fading -> off [timer == fadeOutTime] /

{OnOffRequest = OFF};
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

MA

Figure 3 The atomic component type DoorEval consists
of two incoming ports, one outgoing port. Furthermore, it
defines a behavior automaton, that specifies when a request
for turning on or off the lights should be sent.

the transition firing. For instance, the automaton switches from
state off to on whenever the switch is turned on or the door is
opened (l. 11). In consequence, a request to turn the interior
lights on is sent (l. 12).

3. Variable Component & Connector Architec-
tures

3.1. Variability Composition
In composed-component hierarchies, components are composed
of topologies of connected subcomponents. We differentiate
between decomposed components that contain subcomponents
and atomic components that are not further decomposed. Intro-
ducing feature modeling to introduce variability in hierarchical
composition structures requires an extension of the component
model. This includes 1) a mean to model variabilities and com-
monalities of the internal structure of components, 2) parameter-
ization of components with a feature model, and 3) composition
of public feature models across hierarchies.

Variability in decomposed components includes variability
in the topological structure of subcomponents, e.g., subcompo-
nents may only be included in certain variants, or connectors
between these may vary. For such structural variabilities to be
defined, a suitable means of expression must be provided. Step
1 is fairly obvious: for introducing variability in a component
hierarchy, we must also support variabilities in the component
structure, i.e., varying subcomponents and communication links.
To provide an appropriate means of expression, a wide range
of solutions are conceivable. However, their technical details
have no impact on the fundamental idea behind compositional
variability, which is the focus of this discussion. We, therefore,
do not elaborate on this variability mechanism here; it is suffi-
cient to assume that we have some technical concept at hand
to express such variabilities in a component’s internal structure.
Steps 2 and 3 are more significant in our context because this
is where variability management is designated to become com-

Modeling Variability of Hierarchical Component-Based Systems 3

positional. As one of their key characteristics, all component
models identify in detail the information that constitutes the
public interface of a component. They all provide something
like ports through which information is transmitted to or from
the component; some provide means for specifying precise
communication protocols using state machines, for example.

To deal with variability, we extend this interface specifica-
tion by a feature model called the public feature model of the
component. The purpose of this feature model is to specify the
entire variability within its corresponding component in a form
suitable for publication to the component’s clients. Besides this
extension to the public interface, we also introduce, in step 3,
an extension to the internal structure: in each variably defined
component, i.e., each component that provides a feature model
in its public interface, a mapping is defined from this public
feature model to the variants of its internal structure (step 1)
and the public feature models of the directly contained subcom-
ponents (step 2 w.r.t. the subcomponents). “Mapping” in this
sense means that by applying this information, it is possible to
derive a configuration of the component’s internal structure and
the public feature models of the contained lower-level compo-
nents. Thus, the mapping states how to internally configure a
component depending on the configuration of its public feature
model. The precise internal realization of some variability pre-
sented in the public feature model (e.g., as an optional feature),
in particular, whether it is realized by structural variability or by
a variable subcomponent, is completely concealed from clients.
In addition, how this internal variability is actually configured
when an individual variant of the containing component is cho-
sen is also hidden. This is perfectly in line with information
hiding, the basic idea behind all public interface specifications.
Therefore, the public feature model can be viewed as an equal
constituent of a component’s public interface, and the term con-
figuration hiding can be used for this concealment of variability
and configuration-related information.

In addition to information being hidden from the environ-
ment, another important analogy to interfaces and information
hiding, in general, should be noted here. Just as the method sig-
natures in a class in object-oriented programming abstract from
the concrete behavior implementation, the public feature model
of a component is independent of how the variability is inter-
nally structured. The variability of contained subcomponents as
defined by their public feature models can be packaged and pre-
sented completely orthogonally in the containing component’s
public feature model.

3.2. Definition of Variable Component Types
Component models consist of hierarchies of connected com-
ponents. To support the reuse of components, we distinguish
between component definitions, i.e., the type of a component
and its instantiation. Components of the same type can be in-
stantiated multiple times in the same system. While reuse is
an essential aspect in system development, effective utilization
of component types also requires flexibility in their definition.
An example is the definition of generic component types that
provide a service, such as buffering or filtering of messages, for
an arbitrary data type. A generic definition does not have to be

developed anew for various data types but instead can be reused
with little effort. Besides interface flexibility, however, one may
also require flexibility in the behavior of a component. A com-
mon mechanism for behavior customization is parameterization,
which enables setting various variables and thus customizing
component behavior on initialization. In component and connec-
tor (C&C) architectures, flexibility in the behavior also requires
flexibility in the structure, at least when considering composed
components, as the interconnection of subcomponents defines a
composed component’s behavior. Structural flexibility is also re-
quired when considering interface flexibility apart from generic
data types. With flexible component definitions, individual com-
ponent types do not define a single computation function, but
instead describe a set of behaviors from which one is selected
on initialization of the component through parameterization.
In the following, we introduce variable component type defini-
tions that provide a template for instantiation and customization
of respective component variants. The formalization shows
the generalizability of our concept and is designed to apply to
other C&C architecture description languages that have similar
concepts.

Notation. In the remainder of this paper, we assume that math-
ematical objects beginning with capital letters are sets while
others are individuals. Moreover, we use the”dot-notation”, i.e.,
p.x means that p is a tuple and x ∈ Name identifies a field of
the tuple, e.g., for Point ⊆ {x : N × y : N}, p.x identifies the
first value of a p ∈ Point.

– Name. . . a universe of names,
– Type. . . a universe of data types,
– B. . . = {true, false},
– P(S). . . powerset of S,
– S1 × . . . × Sn. . . cartesian product over S1, . . . , Sn,
– CTDe f s a universe of component type definitions

Definition 1 Variable component types: A variable com-
ponent type definition is a 8-tuple Comp = (CType ×
CPorts × CParams × CF × CSubCmps × CCons × ∆ × Γ)
∈ CTDe f s with CType ∈ Name is the name of the component
type.

Definition 2 Port definition: CPorts ⊆ P(Ports) with
Ports = (dir : {IN, OUT} × name : Name × type : Type)
is the set of typed, directed ports of all variants of compo-
nent type CType defining the component’s interface. Each
port p ∈ CPorts has a name p.name, a type p.type, and
a direction p.dir. For some variable component type comp,
with CPortsIN = {p ∈ comp.CPorts | p.dir = IN} and
CPortsOUT = {p ∈ comp.CPorts | p.dir = OUT} we de-
note the set of incoming and outgoing ports, respectively.

Definition 3 Connector definition: CCons ⊆ P(Cons) with
Cons = (srcCmp : Name × srcPort : Ports × tgtCmp :
Name× tgtPort : Ports) is the set of connectors of all variants
of component type CType. Each connector con ∈ CCons has
a source component con.srcCmp, a source port con.srcPort, a
target component con.tgtCmp, and a target port con.tgtPort.

4 Jansen et al.

Definition 4 Parameter definition: CParams ⊆ Params with
Params = (name : Name × type : Type) is the set of pa-
rameters of component type CType. Each parameter param ∈
CParams has a name param.name and a type param.type.

Definition 5 Feature definition: CF ⊆ Name is the set of
features of the variable component type CType.

Definition 6 Subcomponent definition: CSubCmps ⊆
P(SubCmps) with SubCmps = (name : Name × type :
CTDe f s × Φ) is the set of subcomponent instances of all vari-
ants of component type CType. Each subcomponent instance
sub ∈ CSubCmps has a name sub.name, a type sub.type, and
a component configuration Φ

Definition 7 Component configuration: We call Φ = Π ×
Ψ a component configuration and by PΦ denote an element
of a component type definition under the application of the
component configuration Φ.

Definition 8 Parameter assignment:
Π = ×param∈type.CParams{CParams → param.type}

Definition 9 Feature configuration:
Ψ = × f∈type.CF{CF → B}

Definition 10 Configuration application: ∆ : Φ →
P(CCons)×P(CPorts)×P(CSubCmps) is the mapping of
component configurations, denoting the elements of the compo-
nent type under the application of the component configuration.

Definition 11 Constraining variability: Γ : CParams ×
CF → B is a constraint predicate over parameters and features
that restricts the set of valid variants of the component type.

In contrast to component definitions, variable component def-
initions do not define a single component type with fixed wiring,
but a component with various characteristics or configurations.
However, the definition is subject to further constraints on well-
formedness. Instead of being based on a fixed configuration, the
well-formedness rules here are extended so that the rules of a
single component definition must apply to all configurations of
a variable component type. That is, a variable component type
is well-formed, if all of its valid configurations are well-formed.
Thus, the following well-formedness rules apply with respect to
all valid parameter assignments and feature configurations Φ of
the component type:

Well-formedness rule 1 Ports and variables within a
component type definition have unique names, that is
∀CPortsΦ ⊆ CPorts : ∀e1, e2 ∈ CPortsΦ ∪ CParams :
e1.name = e2.name ⇔ e1 = e2

Well-formedness rule 2 Each port has at most one in-
coming connector, that is ∀con1 ∈ CConsϕ¬∃con2 ∈
CConsϕ : con1 ̸= con2 ∧ con1.tgtCmp = con2.tgtCmp ∧
con1.tgtPort = con2.tgtPort

Well-formedness rule 3 Each subcomponent has a unique
name different from CType, that is ∀sub ∈ CSubCmpsϕ :
sub.name ̸= CType ∧ ∀sub1, sub2 ∈ CSubCmpsϕ :
sub1.name = sub2.name =⇒ sub1 = sub2.

Well-formedness rule 4 Each connector con ∈ CConϕ satis-
fies one of the following four cases:

– The component directly forwards input as output, that is
con.srcCmp = con.tgtCmp ∧ con.srcPort.dir = IN
∧ con.tgtPort.dir = OUT.

– The component forwards input to a subcomponent, that is
con.srcCmp = CType ̸= con.tgtCmp
∧ ∃t ∈ Name : (con.tgtCmp, t) ∈ CSubCmpsϕ

∧ con.srcPort.dir = IN ∧ con.tgtPort.dir = IN.
– The component forwards output of a subcomponent, that is

con.srcCmp ̸= CType = con.tgtCmp
∧ ∃t ∈ Name : (con.srcCmp, t) ∈ CSubCmpsϕ

∧ con.srcPort.dir = OUT ∧ con.srcPort.dir = OUT.
– Two subcomponents are connected, that is
∃t1, t2 ∈ Name :
(con.srcCmp, t1), (con.tgtCmp, t2) ∈ CSubCmpsϕ

∧ con.srcPort.dir = OUT ∧con.tgtPort.dir = IN.

Based on the parameter assignment, the configuration of
the component is selected. Well-formedness is required of the
component type, and thus, all component instances received are
ensured to be well-formed. Component parameterization intro-
duces structural variability, and especially variability in com-
ponent interfaces. The well-formedness of variable component
types must be considered in the context of component parame-
terization, thus is not solely dependent on the component types
used. The definition requires that connectors between subcom-
ponents only exist with respect to their (current) configuration.
Furthermore, all configurations of a variable component type
must be well-formed, ensuring that no invalid configurations
can be selected on component initialization. Not covered by the
definition is the differentiation between atomic and composed
components. The latter required at least one subcomponent
and otherwise well-formedness, whereas all components with-
out subcomponents are considered to be atomic components
providing some other form of behavior definition not covered
here.

4. Realization of Hierarchical Variability Model-
ing in Montiarc

4.1. Variable Component Types in MontiArc
For defining the set of a component’s features in MontiArc, a
component type definition can contain a set of explicit features.
Each feature has a name through which it is referenceable when
it is used. A feature definition starts with the keyword feature
followed by one or more feature names. Figure 4 shows a
component WindowSystem that controls the winders of a car’s
windows. It defines two features, namely rearWindows and
roofWindow (l. 4), which provide control capabilities for rear
and roof window, respectively.

Modeling Variability of Hierarchical Component-Based Systems 5

component WindowSystem(int timer) {
port in WinderRequest req,

out WindowStatus status;
feature rearWindows, roofWindow;

Winder frontWinder
WatchDog watchdog(timer);

req -> frontWinder.req;
//more connectors

varif (rearWindows) {
Winder rearWinder;
req -> rearWinder.req;

} else { … }

varif (roofWindow) {
port in WinderRequest roofReq;
Winder roofWinder;
roofReq -> roofWinder.req;

}

constraint(!roofWindow || rearWindows);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

MA

feature constraint

feature
definition

feature usage

Figure 4 The WindowSystem defines two features rear-
Windows and roofWindow, which are used in this component
type to activate certain subcomponents, ports, and connectors.

Constraints in MontiArc are formulated via expressions over
a set of available features and component parameters. Con-
straints in MontiArc start with the keyword constraint fol-
lowed by an expression. The expression is a boolean formula
over features and component parameters. For instance, the
component WindowSystem constrains that selecting the feature
roofWindow implies that also feature rearWindows has be
configured (l. 23).

Defining the mapping of features to component constituents,
MontiArc introduces if-statements. For better distinguishability,
they are identified by the keyword varif in component defini-
tions and the keyword if in automata. Such a statement then
references one or more features and component parameters of
a component and combines them as a boolean expression. The
body of the statement comprises the component constituents
depending on the fulfillment of the expression’s boolean for-
mula. In composed components, constituents that can depend on
features are ports, connectors, subcomponents, and inner com-
ponents. For instance, in Figure 4, if the feature rearWindows
is selected (l. 12), a new subcomponent rearWinder is added to
the component (l. 13), and the WinderRequest is forwarded to
its port req (l. 14). In the case of the roofWindow, a new com-
ponent and connector are also created, as well as an additional
port that is dedicated only to the roof winder (ll. 17-21).

The formalism below defines the component WindowSystem
(cf. Figure 4) using the notation from subsection 3.2.

– cType = WindowSystem
– CPorts = {(IN, req, WinderRequest), (IN, roo f Req,

WinderRequest), (OUT, status, WindowStatus)}
– CParams = {(timer, int)}
– CF = {rearWindows, roo f Window}
– CSubCmps = {(f rontWinder, Winder), (rearWinder,

component Car {

DriverControle driver;

WindowSystem windows(false, true, 5);

driver.req -> windows.req;

//…

}

1

2

3

4

5

6

MA

component initialization
& feature configuration

Figure 5 The configuration of the component WindowSystem.
Feature rearWindows is deselected and feature roofWindow
is selected. Furthermore, the parameter timer is set to 5.

component CmdConsole {

port in Cmd fL, fR, cL, cR;

port out WinderRequest req,

feature roofWindow, logging;

varif (roofWindow) { port in Cmd roof; }

varif (logging) { port out Status status; }

automaton {

initial state idle;

state closeW, openW;

idle -> openW [fL == OPEN && roofWindow] / {

req = OPEN_LEFT;

if (logging) status = OPEN_REQ;

}

if (roofWindow) {

state closeR, openR;

idle -> openR [roof == OPEN]

/ { req = OPEN_ROOF; }

}

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

MA

variability in actions
through statements

variability of states
& transitions

variability in guards through
boolean expressions

Figure 6 The atomic component CmdConsole defines two
features, which modify its behavior.

Winder), (roo f Winder, Winder), (watchdog, WatchDog,
timer− > Timer)}

– CConns = {(req, f rontwinder.req), (req,
rearWinder.req), (roo f req, roo f Winder.req)}

– ∆ = {(rearWindows → {{(req, rearWinder.req)}, ∅,
{(winder, Winder)}}), (roo f Window → {{(roo f Req,
roo f Winder.req)}, {(IN, roo f Req, WinderReq)},
{(roo f Winder, Winder)}})}

– Γ = {(!roo f Window||rearWindows)}

In atomic components, constituents that can be activated
through feature configurations are ports, variables, automata,
states, transitions, guards, and actions. In contrast to all other
constituents, guards of transitions can reference a feature or
parameter they depend on directly because guards are already
conditions.

Figure 6 shows an atomic component CmdConsole, which
defines a feature roofWindow and a feature logging (l. 4). If
the feature roofWindow is selected, an additional port is added
to the component (l. 6). In the automaton, the transition from
state idle to state openWindow is only possible if the feature
roofWindow is selected (l. 16), which evaluates to the boolean
value true. Besides, the feature selection of roofWindow also
adds two new states to the automaton and adds a new transition
(ll. 16-19). In case, that the feature logging is configured, a

6 Jansen et al.

new port status is added to the component (l. 7), and in the
action of the transition from idle to openWindow the request
is assigned to the port status (l. 14).

Features are configured at the time of instantiation of the com-
ponent definition as subcomponent. The configuration is passed
as an argument to the subcomponent similar to component pa-
rameter values. Configurations start with the list of features
followed by the list of values of the parameters. A feature can
either be selected (true) or not (false), that is, features are
readable as boolean variables in constraints. Depending on a
component’s feature configuration, a component’s constituents
may be enabled and disabled at component instantiation. Fig-
ure 5 shows the configuration of the component WindowSystem
(l. 3). The configuration activates feature rearWindows and
disables the feature roofWindow. This is valid, because the
components constraint defines that the roofWindow implies
the rearWindow. In addition, the value 5 is passed for the pa-
rameter timer. Besides directly initializing all features of a
variable component, features can instead be propagated along
the hierarchy of components. This propagates the possibility for
feature selection to the next level of the component hierarchy.
However, we do not allow passing values other than parameters
and features. Values of parameters and features are configured
at design time only.

4.2. Implementation of Variable Component Descriptions

We realized a prototypical implementation of a modeling lan-
guage for conceiving, developing, and maintaining the vari-
ability in the architecture of distributed systems on top of the
architecture description language MontiArc (Haber et al. 2012;
Butting et al. 2017) while reusing its modeling elements of com-
ponents, ports, and connectors. Consequently, like MontiArc,
this modeling language is realizing in the same technological
space (Ivanov et al. 2002), i.e., with the language workbench
MontiCore (Hölldobler & Rumpe 2017; Hölldobler et al. 2018).
Its implementation entails the language’s concrete syntax, ab-
stract syntax, and well-formedness rules (context conditions).
The latter are implemented the conformity checks using Monti-
Core’s Java-based language context condition framework and
Java-SMT (Karpenkov et al. 2016; Baier et al. 2021), an API
for accessing various SMT Solvers in Java. Hence, the result-
ing toolchain consists of a MontiCore grammar that extends
MontiArc with novel modeling elements to express variability,
a parsing infrastructure (parser, lexer, symbol table) generated
from this grammar, and more than 70 context conditions rules
checking the well-formedness of models conforming to this
grammar. With this in place, the well-formedness of models can
be checked whenever they have been parsed deliberately and
completely, i.e., MontiCore does not parse models partially.

Syntax We achieve the reuse of existing modeling elements
by leveraging MontiCore’s language composition mechanism,
explicitly language extension. In MontiCore, language exten-
sion begins with extending a language’s concrete and abstract
syntax, which are defined via a Context-Free Grammar (CFG).
The extension entails conceiving new grammar productions for
structural variability and feature models (constraints) and em-

bedding these into the body of component definitions, which we
achieve by implementing a provided grammar production inter-
face. The grammar productions for constraint and the condition
of the varif -statement each embed an expression grammar pro-
duction from a provided library. This enables constraints and
conditions to contain extensive expressions consisting of condi-
tional operators, assignments, and method calls. In addition, the
block spanned by a varif -statement corresponds to a component
body, whereby it can contain any architectural elements.

From the CFG extension, MontiCore generates a basic lan-
guage infrastructure in Java, including an ANTLR-based parser.
The parser can already parse textual descriptions of variable
component types into an object structure of the typed abstract
syntax tree in accordance to the defined grammar productions.
In addition to the parser, the provided language infrastructure
consists of symbol table management, visitors with traversal
of the AST, interfaces for context-condition checks and a code
generator engine. All further functionality is implemented on
top of this infrastructure.

Well-formedness Conditions Because the generated parser is
conceived from a CFG, it processes models unaware of their
context. We implement context-condition checks on top of the
parser to check the validity of models with regard to their con-
text. For the variability extension, there are two kinds of checks
to consider. Namely, those that are independent of the vari-
ability context and those that depend on it. The former means
conceiving context conditions for newly introduced language
features. and the latter means introducing variable context to all
context-condition checks that depend on it.

Constraints and conditions must be boolean expressions. As
MontiArc is static-typed and already provides type-checking
capabilities, we can simply reuse the existing type-check and
reapply it to the new language features. However, while most ex-
pressions in MontiArc are afterward translated to program code
and executed there, constraints and conditions should already
be evaluated during compile time. By evaluating constraints,
we would determine whether the configuration of a component
is valid to the given feature model.

We evaluate constraints during compile time by integrating
an SMT solver. We chose Z3 (De Moura & Bjørner 2008) as
it is widely used and one of the most powerful SMT solvers.
Furthermore, we utilized Z3-TurnKey 1 to be able to ship our
application with Z3 native libraries. The integration was im-
plemented by transforming the constraint and symbols, i.e., the
available variables, into Z3 Expressions and Z3 Context, respec-
tively. We apply the transformation and check for satisfiability
after the type check and while executing the context condition
checks. Constraints for which the SMT solver cannot find an
assignment are reported as errors.

There are also some limitations for expressions that can be
used in constraints and conditions of varif -statements. Both are
part of the static architecture. Evaluation of these expressions
should therefore be side-effect-free. However, the expressions
used offer extensive constructs. In the static part, we therefore
prohibit all potentially side-effect-prone expressions, such as

1 https://github.com/tudo-aqua/z3-turnkey

Modeling Variability of Hierarchical Component-Based Systems 7

assignments and method calls. These restrictions are also imple-
mented as context-condition checks implementing the provided
interface.

Analyzing Variable Systems While variability increases the
flexibility of a system description it also introduces additional
complexities. Instead of a fixed configured system, elements
of the definition must be considered concerning all variants.
Analysis of variable systems may need to consider all possible
manifestations of a system. As our modeling language intro-
duces structural variability, this implies that well-formedness
checks need to consider the availability of modeling elements
with respect to feature configurations.

Analysis of variable definitions is a common problem in
managing software product lines. Multiple approaches exist for
lifting analysis of single systems to the analysis of a variable
system. A classification of product line analysis strategies dif-
ferentiates roughly between product-based, feature-based, and
family-based analysis and combinations thereof (Thüm et al.
2014), all having their advantages and disadvantages. Product-
based analyses apply to the product, deriving each product to
ensure full coverage, resulting in computation overhead through
redundant computations. Feature-based analyses instead apply
to domain artifacts that implement a certain feature in isola-
tion and are, therefore, unable to analyze properties of inter-
acting features. Finally, family-based analyses apply directly
to domain artifacts and variability models, promising the most
efficient computations.

We decided to implement a combination of family-based and
product-based analyses to realize well-formedness checks for
variable component definitions. We use product-based analy-
ses to reuse a multitude of context-condition checks, ranging
from simple design convention rules to complex type checks.
Implementations for these context conditions do not consider
variability. We thus leverage product-based analyses to reuse
their implementation. We do so by calculating the variants de-
fined by a variable component model at design time, virtually
creating their corresponding component models, and employ-
ing the already existing context-condition checks on these. We
can therefore reuse all existing context conditions, with the
drawback of redundant computations.

Any context condition that is independent of variability is
directly applied to variable component definitions instead, pre-
venting redundant computations. This also includes condition
checks that we have newly implemented. For example, checking
the feature constraint of each variable component model.

By focusing on each component definition in isolation, we
can streamline our analysis process, avoiding the need to calcu-
late the entire component model. Variable structures of subcom-
ponents are encapsulated. That is, context-condition checks are
unaffected by the variability contained in any of the component’s
subcomponents. Only the feature model and variable interface
descriptions are part of a component’s signature and must be
checked during component instantiation. These are checked
with respect to the enclosing component’s feature model. The
enclosing component’s feature model is composed of the locally
defined feature constraints and the feature model of its subcom-

ponents. Once the feature model of the enclosing component
is composed, it is converted back to SMT and checked. This
step ensures that the feature constraints of the subcomponents
remain intact and are not violated.

5. Case Study
We evaluate the applicability of our method for modeling vari-
ability of C&C architectures in a case study using a flight control
system based on an existing AADL (Feiler & Gluch 2012) ex-
ample2. The goal is to engineer a family of flight systems that
feature different variants representing different configurations of
the system. Each has a different maturity level for their respec-
tive scenario. We accommodated this case study to MontiArc
by reconstructing the vital components. Thus, we also provide
the respective translated artifacts 3 for a complete overview of
the implemented models. In the following, we discuss the most
significant parts of the overall system, to evaluate the use of
variability in MontiArc.

The overall architecture is represented in Figure 7. The flight
system receives a satellite signal and input from the pilot and
computes the observable failure of the route. In its base con-
figuration, the system’s behavior is based on a GPS subsystem,
evaluating the received satellite signal, an internal power supply,
an automated flight guidance for adjusting the pilot’s command
to the current coordinates, and a flight control system calculating
the necessary measures. Furthermore, the modeled architecture
contains two additional features, advanced (highlighted in red)
and dualGPS (highlighted in blue). The advanced system uses
improved GPS components, enabling even more precise local-
ization, and a more complex auto flight guidance system. The
latter is further subdivided into a basic flight guidance and an
additional auto pilot. The dual GPS feature further introduces
a second GPS system and a corresponding voter, processing
both GPS signals to increase the accuracy. The features can
be used separately or jointly, ultimately resulting in four valid
configurations. The combined use can be observed in the second
GPS. Here, a new component, gps2, is introduced, which is
additionally required in its advanced configuration.

From an engineering perspective, all variants should be devel-
oped together in a single product line to avoid redundant imple-
mentations. In addition, analyses and well-formedness checks
should support component developers in detecting errors early
on. Figure 8 presents the corresponding textual model in Mon-
tiArc, introducing the two features (l. 2). Using the dualGPS
configuration introduces the additional subcomponents gps2
and voter (ll. 15-19). Additionally, new connections between
the components are established (ll. 27-34). While the default
configuration connects gps1 (the only GPS in this variant) di-
rectly to the autoFlightGuidance (l. 33), the dualGPS modi-
fication interposes the voter, for processing multiple GPS sig-
nals first (ll. 27-31). Furthermore, the advanced configuration
is forwarded (via constraints) to the selected subcomponents
autoFlightGuidance (l. 36), gps1 (l. 37), and gps2 (l. 18) if
existent. This enables instantiating these in the desired configu-

2 github.com/osate/examples/tree/master/SafetyTutorial/packages
3 github.com/MontiCore/montiarc/tree/develop/applications/avionics

8 Jansen et al.

MA
FlightSystem (advanced, dualGPS)

sat

GPS gps1 (advanced)

pos

AutoFlightGuidance (advanced)

FlightControlPowerSupply

pi

of

sat

gc

fscpow

pow

pow

GPS gps2 (advanced)

sat

GPSVoter

ip2

op

pos

FlightGuidance

AutoPilot
cmd

pos
ip1

gc

Figure 7 MontiArc architecture of a variable flight control system with two features, advanced and dualGPS resulting in four
valid configurations.

ration, given, that the corresponding feature is available in the
respective subcomponent.

The auto flight guidance supports two different configura-
tions based on the advanced feature. We developed the vari-
able component definition, computing the appropriate guid-
ance command based on the current position and the opera-
tors steering command. In its base version (Figure 9, top),
the component features a behavior definition via an automa-
ton. Generally, the auto flight guidance component has three
states. In its Operational mode, it continuously calculates the
required guidance command. If the input data is assumed to
have low fidelity, i.e., due to low precision, the system turns
into a NonCriticalModeFailure, where the operation is still
performed. The system can also recover from this state back
into its Operational mode. If the service in unavailable, no
pilot input present, or the power supply cut, we switch into a
CriticalFailureMode, where no guidance command is com-
puted.

Choosing the advanced configuration of the auto flight guid-
ance (Figure 9, bottom) further decomposes the component into
two subcomponents, a general flight guidance and an auto pilot.
Thus, variability in MontiArc can influence the decomposability
of a system. In this case, the position data is first processed and
then, together with the pilot’s steering command, forwarded to
the auto pilot, which then, in turn, performs a more sophisticated
computation of the resulting guidance command.

The corresponding textual model is presented in Figure 10.
Similar to the overall flight system, the component has the
advanced feature definition (l. 2). As the auto flight guidance
is unrelated to the GPS configuration, the dualGPS feature does
not apply. The structural variability is expressed in the presented
varif-statement. While the base configuration contains an
automaton specification (ll. 17-35), the advanced case (ll. 9-
15) defines the discussed subcomponents. In the latter case,
the composition of these subcomponents’ behavior defines the
behavior of the auto flight guidance itself.

We first developed the general architecture and then imple-
mented the behavior of the subcomponents such as auto flight
guidance, which constantly triggers the calculation of the cor-

responding command for the flight control. Thus, calculation
depends on the selected feature. Here, static analysis comes into
effect as some ports are only available for specific features. Our
prototypical realization, for example, detects potential usage
of the second GPS system as well as the GPS voter, resulting
in different connection configurations for the first GPS system
and the auto flight guidance. In contrast, the developed GPS
component type only features open variability in the form of
parameters. While these do not introduce structural variability
but instead are used to customize internal behavior, they effect
analysis of the component definition. In general, we cannot
decide the satisfiability of component configuration but instead
forward checks to component instantiation instead.

The developed GPS component is instantiated in the defi-
nition of the flight system and configured with respect to the
selected feature (i.e., advanced). Here, concrete values are pro-
vided for the component’s parameter, thus enabling the analysis
of potential constraints. With the provided values, we can now
determine the satisfiability of said constraints, at least for these
specific configurations. The static analysis of the flight system
detects that, e.g., the ports of the gps voter component are only
connected in configurations where the corresponding compo-
nent definition exists and checks the validity of the parameter
assignments against the defined constraint. Other components,
such as the power supply, are unaffected by feature configura-
tions. Similarly, the components of the gps voter or the autopilot
do not provide any structural variability. However, they are in-
cluded for specific variants for their enclosing components and
connected respectivly. Therefore, the analyzes detect for each
variant and component references in connectors that the respec-
tive component instances exist.

While features of the auto flight guidance or GPS compo-
nents are not explicitly assigned, they are forwarded to the
signature of the flight system. As the latter also defines fea-
tures of the same name, these are mapped to each other. That
is, selecting feature advanced for a flight system also implies
selecting that feature for its subcomponents.

Modeling Variability of Hierarchical Component-Based Systems 9

component FlightSystem {

feature advanced, dualGPS;

port in SatelliteSignal sat;

port in CMD pi;

port out boolean of;

PowerSupply powersupply;

FlightControl flightControl;

AutoFlightGuidance autoFlightGuidance

GPS gps1;

sat -> gps1.satSignal;

varif (dualGPS) {

GPS gps2;

GPSVoter voter;

constraint(gps2.advanced == advanced);

}

pi -> autoFlightGuidance.cmd;

powersupply.pow -> autoFlightGuidance.pow;

powersupply.pow -> flightControl.pow;

autoFlightGuidance.gc -> flightControl.gc;

flightControl.fsc -> of;

varif (dualGPS) {

sat -> gps2.sat;

gps1.pos -> voter.ip1;

gps2.pos -> voter.ip2;

voter.op -> autoFlightGuidance.pos;

} else {

gps1.pos -> autoFlightGuidance.pos;

}

constraint(autoFlightGuidance.advanced == advanced

&& gps1.advanced == advanced);

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

MA

Figure 8 MontiArc architecture of a cruise control system
featuring two additional variants.

6. Evaluation
We evaluated the MontiArc modeling infrastructure for stati-
cally analyzing variable component descriptions using multiple
experiments. In this section, we present and discuss our exper-
imentation setup and results. First, we examine the efficiency
and scalability of our approach via experiments with an increas-
ing number of variants. Then, we examine the effect of feature
constraints on the execution time of the static analysis. Lastly,
we present experiments showcasing the effect of encapsulating
variable structures in subcomponents.

The experiments presented here all follow a general setup.
Each experiment consists of multiple runs with input models
of varying sizes. A run is processing the input models, that is,
parsing the models to create their ASTs, performing inter-model
transformations on the ASTs, creating the symbol table, and
finally performing various static-analysis checks. We executed
each run a hundred times and tracked execution times. All
runs were executed on a computer with a 3.5GHz quad-core
processor, 16 GB DDR4-RAM, and Windows 10 operating
system.

In our first experiment, we analyze the effect of the number of
variants on the execution time. To this end, we created multiple
artificial models with varying numbers of features and variation
points. Each feature defines two ports, a subcomponent, and
connectors between the component’s and the subcomponent’s
ports. For simplicity, we reuse the same component type for
each subcomponent. As the component models in this exper-

MA
AutoFlightGuidance(!advanced)

gc

Operational

CriticalMod

eFailure

/ gc = calc(pos, cmd)

/ gc = calc(pos, cmd)

AutoPilot

MA
AutoFlightGuidance (advanced)

FlightGuidance

fd

i

cmd

pos

cmd

pow

gcd

op

pos

pow
[pos.lowPrec] / gc

= calc(pos, cmd)

[! pos.lowPrec] / gc

= calc(pos, cmd)

NonCritical

ModeFailure
cmd

[pow == Power.OFF]

/ gc = CMD.NONE

/ gc = CMD.NONE

[pow == Power.OFF]

/ gc = CMD.NONE

Figure 9 The two configurations of the auto flight guidance
component: One configuration defines the behavior via an
automaton, and the other configuration introduces further
subcomponents.

iment do not constrain feature combinations, the number of
variants defined by a component is 2F, where F is the number
of features. We run the experiment for varying sizes of F.

The mean execution time of each run is shown in Figure 11.
The depicted graph shows the number of features on the x-
axis and the mean execution time on the y-axis. The smallest
standard deviation is 0.0333 for the run with four features. The
standard deviation for 14 features is 6.0588. The execution
time is exponential to the number of features, i.e., linear to the
number of variants.

The main factors for execution time for small values of F are
model parsing, symbol-table creation, and variant-independent
checks. Execution time for these activities grows linear with the
input size, and there is a constant delay for tool startup, which
puts execution times close together. With increasing values of
F, the execution time of product-based analyses becomes more
dominant. In an agile development environment, execution
time for a small number of features may be justifiable. With a
larger number of features, however, analyses of all variants can
no longer be carried out with every change without hindering
efficiency.

So far, each feature has added variation to a component,
and feature combinations were not constrained. In our second
experiment we reused the models from the first experiment to
test the effect of adding features without variation. We repeated

10 Jansen et al.

component AutoFlightGuidance {

feature advanced;

port in Coordinates pos;

port in CMD cmd;

port in Power pow;

port out CMD gc;

varif (advanced) {

FlightGuidance flightGuidance;

AutoPilot autoPilot;

pos -> flightGuidance.i;

cmd -> autoPilot.op;

flightGuidance.fd -> autoPilot.d;

autoPilot.cmd -> gc;

} else {

automaton {

initial state Operational;

state NonCriticalModeFailure;

state CriticalModeFailure;

Operational -> Operational /

{gc = cmd.calc(pos);};

Operational -> NonCriticalModeFailure [pos.lowPrec] /

{gc = cmd.calc(pos);};

Operational -> CriticalModeFailure [pow == Power.OFF] /

{gc = CMD.NONE;};

NonCriticalModeFailure -> NonCriticalModeFailure /

{gc = cmd.calc(pos);};

NonCriticalModeFailure -> Operational /

{gc = cmd.calc(pos);};

NonCriticalModeFailure -> CriticalModeFailure [pow ==

Power.OFF] / {gc = CMD.NONE;};

CriticalModeFailure -> CriticalModeFailure /

{gc = CMD.NONE;};

}

}

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

MA

Figure 10 Textual MontiArc architecture of the variable auto
flight guidance component featuring two variants.

each run but added ten unused features to the input model. The
model processor reports all unused features. We observed an
average increase of 0.48 seconds in the mean execution time
of each run. We conclude that the execution time is mostly
linear to the unique combinations of variation points. Feature
combinations that build on the same set of variation points are
grouped and evaluated together. Unused features have only a
small effect on computation time. The observed increase in
execution time may be due to an increase in the size of the SMT
formal used to determine the unique variants and the reporting
of unused features.

In our third experiment we evaluate the effect of encapsu-
lating features into subcomponents. Features that have no in-
teraction can be encapsulated independently from one another.
That is, instead of having one component that holds the whole
variability, we can decompose that component into multiple
subcomponents with variable parts. The feature model of the
composed component is unchanged. If there is no variability in
the interface of these subcomponents, then we can effectively
reduce the complexity of each component. Furthermore, each
component can be checked in isolation with a reduced number
of variation points. We thus would expect to see a decrease in
the average computation time. To evaluate this, we reused the
models from our first experiment but distributed the variation
points evenly across two subcomponents. That is, for an even
number of features, each subcomponent holds half of the vari-
ation points of the examples from the first experiment. Each

Figure 11 The graph showcases the mean execution time of
processing a model with the given feature size. The x-axis is
the number of features; the y-axis is the mean execution time
in seconds.

Figure 12 The graph showcases the mean execution time of
processing a model with the given feature size where features
are evenly distributed across two subcomponents. The x-axis
is the number of features; the y-axis is the mean execution
time in seconds.

subcomponent defines its own feature model, and the composi-
tion of these feature models is exactly the feature model from
the first experiment. The mean execution time of each run of
this experiment is shown in Figure 12.

Compared to the first experiment, the execution time in-
creases significantly less with the number of features. However,
there is a computation overhead for models with a small number
of features. The experiment shows that decomposition can be
effectively used to reduce the complexity of variable component
descriptions. Instead of analyzing one big model, variable parts
can be evaluated in isolation. The worst-case execution time is
still exponential to the number of features. However, features
without interaction can be effectively split across subcompo-
nents to avoid redundant computations. Variable components
from a library can be reused without reevaluating their internal
structure. Reusing the same component type multiple times,
i.e., having multiple subcomponents of the same type, does not
result in redundant computations besides calculating the overall
feature model. While this approach effectively reduces compu-

Modeling Variability of Hierarchical Component-Based Systems 11

tational complexity, it is only viable where one can identify sets
of variation points without feature interaction. Ultimately, the
approach is still bottlenecked by feature explosion.

7. Discussion
We aimed to develop a methodology for modeling variable
system architectures that maintains the composability of com-
ponents. The developed methodology empowers component
developers to create libraries of variable components and com-
pose these as needed. Rather than having a static global feature
model, feature models became part of components’ signatures to
maintain the black-box usability of components. A component’s
feature model can be composed alongside component usage to
create the overall feature model of the modeled system. A par-
ticularly nice aspect of the methodology is that components
can be configured directly on usage. That is, component users
have the freedom to decide which part of a subcomponent’s
feature configuration is locked in place and how to compose
the remaining features with the feature model of the enclosing
component. Furthermore, as subcomponents are configured
individually, component users can employ different variants of
a component in the same architecture.

However, there are some limitations to consider when em-
ploying the presented methodology. Feature explosion, a com-
mon challenge in modeling variant-intensive systems, is also
a significant concern in our methodology. Modeling 150% ar-
chitectures has the drawback that models can become large fast.
Despite that, we opted for the 150% modeling approach due to
its seamless integration with other MontiArc concepts. Mon-
tiArc already supports parameterizing components for behavior
configuration. Features and structural variability are just an
extension of these concepts.

As presented in the evaluation, encapsulating variable struc-
tures in subcomponents is an option to battle complexity. Where
this is not an option, variable component descriptions can be-
come hard to maintain. However, the main aspects of our
methodology are not subject to 150% modeling approaches.
Making feature models part of a component’s signature and
supporting feature configuration on component usage could also
be achieved with other variability modeling approaches.

With regard to the implementation, there is room for improve-
ment. We decided to use a product-based analysis approach to
some of the static analyses to reuse already existing implemen-
tations. Reimplementing these to make analyses variant-aware
could show improvements in execution times. For example,
variable structures could be encoded together with the well-
formedness rules in SMT to employ SMT solving to check
well-formedness across all variants.

The presented approach is applicable to components of
component-and-connector ADLs that share similar properties
(i.e., components with interfaces of named elements, connec-
tors between these interfaces, . . .). Furthermore, extending its
implementation most often demands implementing new context
conditions (of ADL-specific complexity) only. For instance,
applying it to ADLs featuring bidirectional ports does not re-
quire changing our method. Instead, only adding corresponding

conditions is needed to conduct the structural checks.

8. Related Work

Variability has already been explored in the area of compo-
nent and connector architectures (Suloglu et al. 2018). For
AADL (Feiler & Gluch 2012), multiple approaches exist for
modeling variability. In (Shiraishi 2010), features and their char-
acteristics are directly defined in the body of the component,
and (Adachi Barbosa et al. 2011) propose an aspect-oriented
approach for modeling software product line architectures. The
approach presented in (González-Huerta et al. 2014) builds on
the common variability language (Haugen et al. 2012), repre-
senting variability to a base model separately, with a resolution
model providing decisions for variability selection. However, in
all these approaches, the feature model is not part of a compo-
nent’s signature. Instead, the feature model is defined globally.
Furthermore, MontiArc configures components directly during
component instantiation, enabling the composition of partially
configured components and their feature models. Variability
binding (Dolstra et al. 2003) during product configuration only
severely limits the reuse.

In EAST-ADL (Debruyne et al. 2004), variability is also part
of a component’s signature (Blom et al. 2013). While structural
variability of composed components is supported for black-box
usage, modeling variability of behavior requires a more detailed
view of the system (Leitner et al. 2012). Similar to MontiArc,
EAST-ADL supports the composition of variable components,
but this is done along the hierarchy of components only (Blom
et al. 2016). Explicitly, each component in EAST-ADL is un-
derstood as a variable element, thus representing a feature in the
feature tree. In addition, feature trees of individual components
are composed alongside hierarchical component composition.
In MontiArc, however, the structure of the underlying feature
tree is independent of the hierarchy of components. Rather,
features in MontiArc are defined over global namespaces and
can be partially bound or hidden by other features at different
hierarchy levels.

The approaches described in (Mann & Rock 2009; Loughran
et al. 2008; Thiel & Hein 2002) focus on the description of
system architectures in the automotive sector. The approaches
are external to the architecture description language. Individual
variable elements, like optional ports, are modeled as individual
features. The analysis is only employed on the feature model.
The approach we have presented makes it possible to check the
well-formedness of the composition of variable components.

Variability has already been explored several times in Monti-
Arc using different variability modeling techniques. Hierarchi-
cal variability modeling presented in (Haber, Rendel, Rumpe,
Schaefer, & van der Linden 2011) likewise supports the compo-
sition of variable components and late substitution of variable
parts. However, the approach does violate the black-box view
of components. Furthermore, variability binding at the time
of component instantiation is not supported. Instead, a single
variant of the component type is derived, severally limiting the
reuse of variable component definitions. Instead, the solution
presented here is more flexible, as it supports variability binding

12 Jansen et al.

on component usage, as well as partial configuration. In another
approach (Haber, Rendel, Rumpe, & Schaefer 2011), we com-
bined MontiArc with delta-oriented programming (Schaefer et
al. 2010). There, variability is not part of the component but is
described by so-called (delta) transformations (i.e., small trans-
formations adding new structure or behavior to a component).
Variants of a component are described by these transformations
applied to a base component. However, this approach also only
allows for changes to component types that are resolved before
instantiation. Furthermore, although the transformations are
powerful, permitting subsequent changes and deleting elements,
they add another layer of complexity which manifests through
additional rules and artifacts.

9. Conclusion
We presented a method for modeling the variability of hierarchi-
cally composed components. Here, global features define varia-
tion points in component descriptions and are part of the compo-
nent’s signature, maintaining the black-box view of components
while enabling global feature configuration without the need
for composing individual feature models of subcomponents.
Variability of components is bound or partially bound during
component instantiation with support for hiding global features
along the hierarchy of components. Furthermore, we formally
defined variable component types and their well-formedness
rules. We prototypically implemented modeling the method as
an extension of MontiArc and presented the concrete syntax
and the realization of consistency check via an SMT solver.
This paves the way for exploring formal analyses of component
variants.

Acknowledgments
The authors of the RWTH Aachen University were supported
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) [grant number 499241390] and the authors
of the University of Stuttgart were supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
[grant number 441207927].

References
Adachi Barbosa, E., Batista, T., Garcia, A., & Silva, E. (2011).

Pl-aspectualacme: an aspect-oriented architectural descrip-
tion language for software product lines. In Software archi-
tecture: 5th european conference, ecsa 2011, essen, germany,
september 13-16, 2011. proceedings 5 (pp. 139–146).

Adam, K., Butting, A., Heim, R., Kautz, O., Pfeiffer, J., Rumpe,
B., & Wortmann, A. (2017). Modeling Robotics Tasks for
Better Separation of Concerns, Platform-Independence, and
Reuse. Aachen, Deutschland: Shaker Verlag.

Adam, K., Hölldobler, K., Rumpe, B., & Wortmann, A. (2017).
Modeling Robotics Software Architectures with Modular
Model Transformations. Journal of Software Engineering for
Robotics (JOSER), 8(1), 3–16.

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Software
product lines. In Feature-Oriented Software Product Lines
(pp. 3–15). Berlin, Heidelberg: Springer.

Baier, D., Beyer, D., & Friedberger, K. (2021). Javasmt 3: Inter-
acting with SMT solvers in java. In International Conference
on Computer Aided Verification (pp. 195–208). Springer.

Blom, H., Chen, D.-J., Kaijser, H., Lönn, H., Papadopoulos,
Y., Reiser, M.-O., . . . Tucci-Piergiovanni, S. (2016, 07).
EAST-ADL: An Architecture Description Language for Au-
tomotive Software-intensive Systems in the Light of Recent
use and Research. International Journal of System Dynamics
Applications, 5, 1-20.

Blom, H., Lönn, H., Hagl, F., Papadopoulos, Y., Reiser, M.-O.,
Sjöstedt, C.-J., . . . others (2013). EAST-ADL: An architec-
ture description language for automotive software-intensive
systems. In Embedded Computing Systems: Applications,
Optimization, and Advanced Design (pp. 456–470). IGI
Global.

Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe,
B., & Wortmann, A. (2017, July). Systematic Language Ex-
tension Mechanisms for the MontiArc Architecture Descrip-
tion Language. In European Conference on Modelling Foun-
dations and Applications (ECMFA’17) (pp. 53–70). Springer.

Debruyne, V., Simonot-Lion, F., & Trinquet, Y. (2004). EAST-
ADL—An architecture description language. In IFIP World
Computer Congress, TC 2 (pp. 181–195). Boston, MA:
Springer US.

De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT
solver. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (pp. 337–340).
Springer.

Dolstra, E., Florijn, G., & Visser, E. (2003). Timeline variability:
The variability of binding time of variation points. Utrecht
University: Information and Computing Sciences.

Feiler, P. H., & Gluch, D. P. (2012). Model-based engineering
with AADL: an introduction to the SAE architecture analysis
& design language. Addison-Wesley.

France, R., & Rumpe, B. (2007, May). Model-driven Develop-
ment of Complex Software: A Research Roadmap. Future of
Software Engineering (FOSE ’07), abs/1409.6620, 37–54.

González-Huerta, J., Abrahão, S., & Insfran, E. (2014). Auto-
matic derivation of AADL product architectures in software
product line development. In Proceedings of the 1st Architec-
ture Centric Virtual Integration Workshop. Valencia, Spain:
CEUR-WS.org.

Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., & Völkel,
S. (2007). Textbased Modeling. In 4th international work-
shop on software language engineering, nashville. Johannes-
Gutenberg-Universität Mainz.

Haber, A., Rendel, H., Rumpe, B., & Schaefer, I. (2011). Delta
Modeling for Software Architectures. In Tagungsband des
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung
eingebetteterSysteme VII (pp. 1 – 10). fortiss GmbH.

Haber, A., Rendel, H., Rumpe, B., Schaefer, I., & van der
Linden, F. (2011). Hierarchical Variability Modeling for Soft-
ware Architectures. In Software Product Lines Conference
(SPLC’11) (pp. 150–159). IEEE.

Haber, A., Ringert, J. O., & Rumpe, B. (2012, February). Mon-
tiArc - Architectural Modeling of Interactive Distributed and
Cyber-Physical Systems (Technical Report No. AIB-2012-

Modeling Variability of Hierarchical Component-Based Systems 13

03). RWTH Aachen University.
Haugen, Ø., Wąsowski, A., & Czarnecki, K. (2012). CVL:

common variability language. In Proceedings of the 16th In-
ternational Software Product Line Conference-Volume 2 (pp.
266–267). New York, NY, USA: Association for Computing
Machinery.

Heineman, G. T., & Councill, W. T. (2001). Component-based
software engineering. Putting the pieces together, Addison-
Westley, 5, 16.

Hölldobler, K., & Rumpe, B. (2017). MontiCore 5 Language
Workbench Edition 2017. Aachen, Deutschland: Shaker Ver-
lag.

Hölldobler, K., Rumpe, B., & Wortmann, A. (2018). Software
Language Engineering in the Large: Towards Composing
and Deriving Languages. Computer Languages, Systems &
Structures, 54, 386–405.

Ivanov, I., Bézivin, J., & Aksit, M. (2002). Technological
spaces: An initial appraisal. In 4th International Symposium
on Distributed Objects and Applications, DOA 2002.

Jakšić, A., France, R. B., Collet, P., & Ghosh, S. (2014). Eval-
uating the usability of a visual feature modeling notation.
In Software language engineering: 7th international confer-
ence, sle 2014, västerås, sweden, september 15-16, 2014.
proceedings 7 (pp. 122–140).

Jolak, R., Savary-Leblanc, M., Dalibor, M., Wortmann, A.,
Hebig, R., Vincur, J., . . . Chaudron, M. R. V. (2020, Novem-
ber). Software engineering whispers : The effect of textual
vs. graphical software design descriptions on software de-
sign communication. Empirical software engineering, 25(6),
4427-4471.

Karpenkov, E. G., Friedberger, K., & Beyer, D. (2016).
JavaSMT: A unified interface for SMT solvers in Java. In
Working Conference on Verified Software: Theories, Tools,
and Experiments (pp. 139–148). Springer.

Leitner, A., Kajtazovic, N., Mader, R., Kreiner, C., Steger, C.,
& Weiß, R. (2012). Lightweight introduction of EAST-
ADL2 in an automotive software product line. In 2012 45th
Hawaii International Conference on System Sciences (pp.
5526–5535). IEEE Computer Society.

Loughran, N., Sánchez, P., Garcia, A., & Fuentes, L. (2008).
Language support for managing variability in architectural
models. In International Conference on Software Composi-
tion (pp. 36–51). Berlin, Heidelberg: Springer.

Mann, S., & Rock, G. (2009). Dealing with variability in ar-
chitecture descriptions to support automotive product lines:
Specification and analysis methods. In Proceedings of Em-
bedded World Conference 2009 (pp. 3–5). Citeseer.

Medvidovic, N., & Taylor, R. N. (2000a). A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1), 70–93.

Medvidovic, N., & Taylor, R. N. (2000b). A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1), 70–93.

Meliá, S., Cachero, C., Hermida, J. M., & Aparicio, E. (2016).
Comparison of a textual versus a graphical notation for the

maintainability of mde domain models: an empirical pilot
study. Software Quality Journal, 24, 709–735.

Schaefer, I., Bettini, L., Bono, V., Damiani, F., & Tanzarella,
N. (2010). Delta-oriented programming of software product
lines. In International Conference on Software Product Lines
(pp. 77–91). Berlin, Heidelberg: Springer.

Shiraishi, S. (2010). An AADL-based approach to variability
modeling of automotive control systems. In International
Conference on Model Driven Engineering Languages and
Systems (pp. 346–360). Berlin, Heidelberg: Springer.

Suloglu, S., Kaya, M. C., Karamanlioglu, A., Entekhabi, S.,
Saeedi Nikoo, M., Tekinerdogan, B., & Dogru, A. H. (2018).
Comparative analysis of variability modelling approaches in
component models. IET Software, 12(6), 437–445.

Thiel, S., & Hein, A. (2002). Systematic integration of vari-
ability into product line architecture design. In International
Conference on Software Product Lines (pp. 130–153). Berlin,
Heidelberg: Springer.

Thüm, T., Apel, S., Kästner, C., Schaefer, I., & Saake, G. (2014,
June). A classification and survey of analysis strategies for
software product lines. ACM Computing Surveys (CSUR),
47(1).

About the authors
Nico Jansen is a research assistant at the Chair of Software
Engineering of the RWTH Aachen University. His research
interests cover software language engineering, software archi-
tectures, and model-based software and systems engineering.
You can contact the editor at jansen@se-rwth.de.

Jérôme Pfeiffer is a research assistant at the Institute for Control
Engineering of Machine Tools and Manufacturing Units (ISW)
of the University of Stuttgart. His research interests include
software language engineering techniques and applied model-
driven engineering with a focus on digital twins and Industry
4.0. You can contact the author at jerome.pfeiffer@isw.uni-
stuttgart.de or visit www.isw.uni-stuttgart.de/en/institute/team/
Pfeiffer-00005/.

Bernhard Rumpe is a professor heading the Chair of Software
Engineering of the RWTH Aachen University. His main inter-
ests are rigorous and practical software and system development
methods based on adequate modeling techniques. This includes
agile development methods as well as model-engineering based
on UML/SysML-like notations and domain-specific languages.
You can contact the author at rumpe@se.rwth-aachen.de.

David Schmalzing is a research assistant at the Chair of Soft-
ware Engineering of the RWTH Aachen University. His research
interests include software architectures, model-driven engineer-
ing, and software language engineering. You can contact the
author at schmalzing@se.rwth-aachen.de.

Andreas Wortmann is a full professor at the Institute for Control
Engineering of Machine Tools and Manufacturing Units (ISW)

14 Jansen et al.

mailto:jansen@se-rwth.de?subject=Your paper "Modeling Variability of Hierarchical Component-Based Systems"
mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "Modeling Variability of Hierarchical Component-Based Systems"
mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "Modeling Variability of Hierarchical Component-Based Systems"
www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
mailto:rumpe@se.rwth-aachen.de?subject=Your paper "Modeling Variability of Hierarchical Component-Based Systems"
mailto:schmalzing@se.rwth-aachen.de?subject=Your paper "Modeling Variability of Hierarchical Component-Based Systems"

of the University of Stuttgart. He conducts research on model-
driven engineering, software language engineering, and sys-
tems engineering with a focus on Industry 4.0 and digital twins.
You can contact the author at andreas.wortmann@isw.uni-
stuttgart.de or visit www.wortmann.ac.

Modeling Variability of Hierarchical Component-Based Systems 15

mailto:andreas.wortmann@isw.uni-stuttgart.de?subject=Your paper "Modeling Variability of Hierarchical Component-Based Systems"
mailto:andreas.wortmann@isw.uni-stuttgart.de?subject=Your paper "Modeling Variability of Hierarchical Component-Based Systems"
www.wortmann.ac

