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Abstract—- In automotive production cells, complex processes
involving multiple robots must be optimized for cycle time.
We investigated using symbolic GR(1) controller synthesis for
automating multi-robot task planning. Given a specification of
the order of tasks and states to avoid, often multiple valid
strategies can be computed; in many states there are multiple
choices to satisfy the specification, such as choosing different
robots to perform a certain task. To determine the best choices
under the consideration of movement times and probabilities
that robots may be interrupted for repairs or corrections, we
combine the execution of the synthesized controller with Monte
Carlo Tree Search (MCTS), a heuristic AI-planning technique.
The result is a model-at-run-time approach that we present by
the example of a multi-robot spot welding cell. We report on
experiments showing that the approach (1) can reduce cycle
times by choosing time-efficient movement sequences and (2)
can choose executions that react efficiently to interruptions by
choosing to delay tasks that, if an interruption of one robot
should occur later, can be reallocated to another robot. Most
interestingly, we found, however, that (3) in some cases there is a
conflict between time-efficient movement sequences and ones that
may react efficiently to probable future interruptions—and when
interruption probabilities are low, increasing the time allocated
for MCTS, i.e., increasing the number of sample simulations
made by MCTS, does not improve cycle time.

Index Terms—Robot tasks planning, Reactive systems, Monte
Carlo Tree Search

I. INTRODUCTION

Programming multi-robot choreographies in automotive

production cells, such as spot welding cells, is a challenge.

The point-to-point movement trajectories and the order of

robot tasks must be optimized for cycle times while avoiding

collisions. Moreover, it can happen that interruptions may

occur due to damages of the robots’ tools or because other

manual corrections to the process are necessary.

Every time a production cell is set up, due to spatial/ar-

chitectural particularities on the shop floor, the multi-robot

choreographies must be adapted or re-programmed, which is

a manual and time-consuming process. Due to the complexity

of the task, capabilities such as reacting dynamically to

interruptions, for example by re-allocating open tasks to other

robots, is usually an unattainable goal, as the space of different

states explodes that must be considered in this manual process.

We investigated how reactive controller synthesis from

requirement specifications can be applied for automating the

task of efficient multi-robot task planning. Especially, since ef-

ficient algorithms were developed for synthesizing controllers

from GR(1) specifications [1]–[5], a subset of LTL, applying

such techniques appeared promising. However, current syn-

thesis tools, such as SPECTRA [4], [5], do not support real-

time constraints and stochastic processes. Moreover reactive

controller synthesis is obviously not suited for finding efficient

point-to-point movement trajectories. For the latter problem

various trajectory planning approaches exist that shall not be

the focus of this paper. However, point-to-point movement

times and possible collisions that may occur, are relevant for

planning safe and time-efficient choreographies.

We investigated solving the multi-robot choreography syn-

thesis problem in three stages:

(1) We apply automatic trajectory planning algorithms for

all the possible point-to-point movements of each robot. Tra-

jectory combinations where robots are at the risk of colliding,

are identified, and movement times are stored for later use.

(2) We apply SPECTRA’s synthesis algorithm to compute

a controller from a GR(1) specification that, in a nutshell,

requires all tasks to completed in each cycle, while adhering

to certain constraints in the order of tasks, and avoiding robot

collisions as identified in the previous stage. The specifica-

tion also considers the occurrence of interruptions. However,

we neither regard interruption probabilities nor interruption

and movement times. This GR(1) specification, in fact, need

not be written by hand, but can be generated from tasks

and constraints that robot programmers can enter in ABB
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RobotStudio. If the specification is realizable, SPECTRA is

able to synthesize a controller, i.e., one that contains all valid

control strategies. The controller represents many strategies (in

a rather compact way, thanks to its symbolic representation),

but not necessarily all of the possible strategies. SPECTRA also

ships a controller execution engine. We connected this engine

via ABB’s Robot Web Services to the robot cell, in order to

receive the necessary sensor inputs and control the movements

of the (real or simulated) robots. I.e., if after the fulfillment of

a task, the synthesized controller dictates a particular task to

be performed next, the corresponding trajectory, as calculated

in stage (1), is executed.

(3) Since movement and interruption times as well as

interruption probabilities are not considered by the controller

produced at stage (2), we integrated the controller execution

engine with a heuristic sample-based planning technique,

namely Monte Carlo Tree Search (MCTS). The goal of MCTS

is to find, at run-time, time-efficient task execution sequences,

which includes finding sequences that are able to react time-

efficiently to interruptions by re-allocating tasks to other

robots. MCTS is a heuristic planning technique that gained

traction in AI (cf. [6]); by continuously performing forward-

looking simulations, it can often determine beneficial actions

even in complex settings. Moreover, it can often find good

choices even if the planning time is limited, and can gradually

improve the quality of its predictions the more processing time

it is granted.

In order to apply MCTS, we built a simple simulation

engine that implements the assumptions of the interruption

probabilities and durations, and reflects the movement times

as determined in stage (1). Coupled with the synthesized

controller, executed by SPECTRA’s execution engine, this

forms a model-at-run-time that is used by MCTS to generate

and evaluate sample forward simulations of the system.

Results: We evaluated our approach using a real industrial

multi-robot spot welding cell. We found that we can success-

fully reduce cycle times, as MCTS is able to choose time-

efficient movement sequences and can choose executions that

react efficiently to interruptions by choosing to delay such

tasks that, if an interruption of one robot should occur later,

can be re-allocated to another robot. Most interestingly, we

found, however, that in some cases there is a conflict between

time-efficient movement sequences and sequences that may

react efficiently to probable future interruptions—and when

interruption probabilities are low, increasing the number of

iterations in MCTS may not allow MCTS to perform better.

Regarding the scalability of this approach, we found that

SPECTRA struggles to synthesize controllers in cases of more

than three robots, but it seems to be due to problems in an

internal pre-processing step that can be overcome in the future.

Contribution: Although there is work to support or solve

controller synthesis using planning algorithms (cf. [7], [8]),

these methods are not used to optimize the controller towards

other, nonfunctional requirements; to the best of our knowl-

edge, our approach is the first to demonstrate a beneficial com-

bination of controller synthesis and AI planning techniques

for efficiently controlling a timed and probabilistic system.

At run-time our approach is able to handle interruptions by

choosing among different scheduling strategies and considers

task re-allocation. The results we obtain in the case of low

interruption probabilities motivate us to investigate techniques

to handle rare events more reliably, or learn a model of the

controlled system including interruptions probabilities.

The technique presented in this paper is an MDE technique

that, by utilizing trajectory planning, formal controller synthe-

sis, and on-line planning, significantly lifts the abstraction level

compared to how multi-robot production cells are programmed

in practice today. Offering engineers this level of abstrac-

tion is not a limitation; in fact, within the abstract solution

space defined by the specification, synthesis and planning

algorithms can find correct and optimized solutions for multi-

robot choreographies. We show patterns of specifying robot

cell requirements in SPECTRA’s GR(1) language that can be

applied similarly for other robot cells with different numbers

of robots, different tasks, different assumptions, and different

safety and liveness requirements.

Structure: We cover foundations in Sect. II, overview

the methodology in Sect. III, and describe the multi-robot

cell GR(1) specification and synthesis in Sect. IV. Sect. V

illustrates the integration of MCTS for online planning, and

Sect. VI describe our industrial case example. Sect. VII shows

the results of our method, which are discussed in Sect. VIII.

Sect. IX overviews related work and we conclude in Sect. X.

II. FOUNDATIONS

A. Multi-robot tasks planning

We define a task to be an activity to be performed by a robot

and which takes certain period of time. A task is reallocatable
when it can be performed by more than one robot.

Task planning is the activity to define for a robot the order

of tasks to perform (task plan). Multi-robot tasks planning
is the task planning for a multi-robot cell.

The task plan can be fixed or flexible. In a fixed task plan,

the order of tasks is always the same in all cycles. In a flexible

plan, the task order can change or tasks can be re-allocated,

i.e. carried out by different robots, in each cycle.

B. Reactive synthesis

(The content of this subsection strongly follows [5])

1) Linear Temporal Logic (LTL): Linear Temporal Logic

(LTL) is defined as a modal temporal logic with modalities

referring to time [9], [10].

LTL is made up of a finite set of atomic propositions AP ,

Boolean connectors ¬, ∧, ∨, and →, and temporal operators X
(next), G (globally), F (in the future), U (until), Y (previous)

and S (since).

a) LTL Syntax: The syntax of an LTL formula ϕ is

defined by the following grammar:

ϕ := p | ¬ ϕ | ϕ ∨ ϕ | Xϕ | Gϕ | Fϕ | ϕ U ϕ | Yϕ | ϕ S ϕ
where p ∈ AP .

Let p ∈ AP , ϕ and ψ be LTL formulas. The following

Boolean operators can be derived:
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• true = p ∨ ¬ p
• false = ¬ true
• ϕ ∧ ψ = ¬ (¬ ϕ ∨ ¬ ψ)
• ϕ→ ψ = ¬ ϕ ∨ ψ

b) Computation: A computation π = π0π1π2 · · · is an

infinite sequence of truth assignments to propositions, where

πi ∈ 2AP denotes a computation π at time instant i. πi is a

set of propositions at position i.
c) Satisfiability: A formula ϕ holds on a computation π

iff π, 0 |= ϕ, which is denoted by π |= ϕ. We say that the

computation π satisfies ϕ.

A set of computations M satisfies ϕ, written as M |= ϕ, if

every computation in M satisfies ϕ.

d) Additional operators and equivalences: There are

others operators and some equivalences of LTL operators:

• F ϕ ≡ true U ϕ
• G ϕ ≡ ¬ F ¬ ϕ
• ϕW ψ ≡ (ϕ U ψ) ∨ G ϕ (weak until)

• H ϕ ≡ ¬ (true S ¬ ϕ) (historically)

2) GR(1) Synthesis: GR(1) synthesis considers a subset of

LTL where the specifications are made up of initial assump-

tions and guarantees defining initial states, safety assumptions

and guarantees referring to the current and next state, and

justice assumptions and guarantees. which denote assertions

about what should hold infinitely often during a computation.

A GR(1) specification is made up of the following elements

[10]:

1) X input variables controlled by the environment

2) Y output variables controlled by the system

3) X ′ and Y ′ copies of input and output variables at the next

step

4) θe assertion over X characterizing initial environment

states

5) θs assertion over X∪Y characterizing initial system states

6) ρe(X ∪ Y ∪ X ′) transition relation of the environment

7) ρs(X ∪ Y ∪ X ′ ∪ Y ′) transition relation of the system

8) J e
i∈1..n justice goals of the environment

9) J s
j∈1..m justice goals of the system

The tuple 〈θe, ρe,J e〉 defines environment specifications

and 〈θs, ρs,J s〉 system specifications. A GR(1) specification

is realizable if the following formula is realizable:

ϕsr = (θe → θs) ∧ (θe → G((Hρe) → ρs))∧
(θe ∧ Gρe → (

∧
i∈1..n

GFJ e
i →

∧
j∈1..m

GFJ s
j ))

For GR(1), the specifications must be expressible in the

structure defined above and therefore it does not cover com-

plete LTL. GR(1) [10] considers a subset of LTL for which

realizability and synthesis is solved in time exponential in

the size of the LTL formula and polynomial in the resulting

controller. [3], [10] proposed efficient symbolic algorithms for

GR(1) realizability checking and controller synthesis.

3) Reactive systems specification: SPECTRA is a speci-

fication language for reactive systems with the expressive

power of GR(1), and particularly appropriated for reactive

synthesis [5]. The specification language comes with a set

of tools. Among others, a synthesizer to obtain a correct-by-

construction implementation, and several means for executing

the resulting controller.

A SPECTRA specification contains variables, assumptions

and guarantees. The variable names are unique and a variable

can be referenced from anywhere inside the specification.

However, assumptions and guarantees can not be referenced

inside the specification.

Variables have a type and are controlled by the environment

(declared with the keyword env) or by the system (declared

with the keyword sys).

Assertions over the input (resp. the output) variables, tran-

sitions relation of the environment (resp. the system) and

justice goals of the environment (resp. the system) are declared

as initial, safety (G) and justice (GF) assumptions with the

keyword asm (resp. gar).

C. Monte Carlo Tree Search

MCTS has received considerable interest due to its success

in the problem of computer Go [6], [11]–[13].

The main idea behind MCTS is that generating a number of

sample forward simulations is an effective and efficient way

to estimate the value of an action, and the action’s values can

be used to optimize the control strategy [11].

The MCTS algorithm builds possible future game states (a

search tree) according to the outcomes of simulated playouts.

As long as the resources allow it, the MCTS repeats the four

following phases: (1) Selection, (2) Expansion, (3) Simulation

and (4) Backpropagation. The steps are illustrated in Fig. 1.

1) Selection: Starting at the root node R, select optimal

child nodes recursively until a leaf node (i.e., not fully

expanded) L is reached. The selection is based on the tree

policy.

2) Expansion: If the node L does not end the game with

a win/loss for either player, create one (or more) child

nodes according to the available actions and randomly

select one of them, C. Add C to the tree.

3) Simulation: Run a simulation from C until a result is

achieved. Default Policy determines how simulation is

run, e.g., make random moves repeatedly until the robot

cell cycle ends.

4) Backpropagation: Update the move sequence from C
to R with the simulation result, i.e., the outcome is

backpropagated through the selected nodes to update their

statistics. The visit counts are increased and the node

value is updated according to the outcome (cycle time).

The tree policy is used to determine how children are

selected and the default policy is used to determine how

simulations are run (e.g. randomized).

MCTS maintains the balance for selection between explo-

ration and exploitation. The tree policy is based on the UCT

(Upper Confidence Bound 1) value computed with [13]. Since

the goal of the system is to make best decisions, the intuition

behind that is the more the system makes an action, the more

this action will be taken (exploitation). But this strategy may
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make the system to not find a better action (exploration).

Moreover, if the system tries often new action (exploration)

then it may probably discover often worst decisions. The

system action or node chosen is the one with the highest value:

wi

ni
+ c.

√
lnn
ni

• wi ≡ number of wins (i.e., simulations leading to cycle

time improvement) after the i-th move

• ni ≡ number of simulations after the i-th move

• c ≡ balance between exploration and exploitation (typi-

cal:
√
2).

• n ≡ total number of simulation for the node considered

(n =
∑

i ni).

Fig. 1. Monte Carlo Tree Search iterations overview

When all the allocated resource time is consumed, the move

played by the program is the most promising child node of the

root node.

III. METHODOLOGY OVERVIEW

We assume that a spatial model of the production cell was

created, for example using standard tools such as ABB Robot-

Studio. Moreover, we assume that the robot tasks, especially

re-allocatable tasks, along with working point coordinates are

defined, efficient movement trajectories between the task lo-

cations were calculated for each robot, and trajectory and task

allocation combinations with the danger of robots colliding

were identified.

Now, our technique is based on the process shown in Fig. 2.

The process is made up of the following steps:

(1) Reactive system specification: Based on the robot’s

task definition, collision constraints, and other requirements

on the allowed order of task fulfillment, we derive a SPECTRA

GR(1) multi-robot cell specification. The specification also

considers robots interruptions and specifies how the robot

cell shall react to them. For example, if a robot’s tool is

damaged, it may be required to move to a location where

it shall be replaced, and then continue processing its tasks.

The specification also includes assumptions, for example that

a robot ordered to perform a task will eventually be finished

with the task. We use the SPECTRA analysis tools to check

whether the specification is realizable. It could be unrealizable,

for example, if there is a conflict among task order or collision

constraints.

(2) Controller synthesis: We perform controller synthesis

from the system specification. The resulting outputs is a

controller that describes valid control strategies that satisfy

the specification.

(3) Strategy validation and execution: We integrate the

resulting controller with a model at run-time to control the

robot cell at run time and allow the controller to make time-

optimal decisions. The synthesized controller execution is

therefore tuned by our model at run-time. In order to simulate

interruptions, we developed robot interruption models that also

reflect interruption probabilities from our experience.

An overview of the architecture of the robot cell control

loop is shown in Fig. 3. We developed adapters that connect

SPECTRA’s controller executor with the robot cell through a

robot specific API (ABB Robot Web Services).

(1) Our adapter reads the robots’ output signals to determine

if any robot is interrupted (due to a mechanical failure)

and can not perform a task. In addition, the robot cell

gives information about the completion of all tasks.

(2) The status of the robots and tasks are transformed to

inputs for the controller executor. The inputs consist of

• the robots’ status (interrupted or not), and

• the status about each task (completed or not).

The controller executor, based on the synthesized con-

troller, processes the inputs and produces outputs in

the form of next task assignments for each robot. The

execution of the controller can be combined with an

MCTS-based method as described in Sect. V.

(3) Our tool parses the controller’s outputs and

(4) converts the task assignments to robot-specific function

calls. The we repeat again from step (1).

IV. ROBOT CELL CONTROLLER SPECIFICATION

The controller specification is derived from the robot cell

requirements and constraints. First, the specification defines

the robot cell variables. Environment variables represent the

status of the robot cell: the robots’ status and tasks’ status; sys-

tem variables represent the robot task assignments. Second, the

specification defines the environment behavior as assumptions

and the system behaviour as guarantees.

The assumptions are defined as follows:

(A1) At cycle start, no tasks are completed, no robots are

interrupted.

(A2) When a cycle ends, a new cycle eventually starts.

(A3) Each robot will complete its assigned task after a finite

number of steps.

(A4) At any time a robot can be interrupted (e.g. due to

mechanical failure).

(A5) A task is completed if a robot performs it successfully.

(A6) An interrupted robot must not be able to complete a task.

The system behaviour is defined by the following rules:

(R1) At cycle start, robots must be at their home location.

(R2) Tasks assignments are restricted to the robots declared

for this tasks.
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Fig. 2. Reactive robot task planning process

Fig. 3. Strategy execution in a multi-robot cell system

(R3) When a task is assigned to a robot, the assignment must

not change before robot completes the task, unless the

robot is interrupted.

(R4) Inside a cycle, each task is completed once.

(R5) To prevent collisions, a task must not be assigned at same

time to more than one robot.

(R6) If a robot cannot perform a task, it must move to its home

location (e.g., for repair) and its task can be re-assigned

to another robot.

(R7) A robot must not go back to the home location if any

of its non-reallocatable tasks have not been completed,

except if the robot is interrupted.

(R8) A task must not start if one of its dependent tasks is not

completed.

(R9) Tasks assignments that lead to collisions must not occur.

V. MONTE CARLO TREE SEARCH INTEGRATION

In some states, the resulting synthesized controller has

many possibilities to assign the next robot tasks. The default

controller executor of SPECTRA chooses a random assignment

among these possibilities. However, this choice mechanism is

not optimal.

We apply an MCTS algorithm that evaluates each of the

possibilities by simulating multiple steps into the future,

until the end of the current cycle. The most promising task

assignment is then chosen.

Our MCTS algorithm simulates a game in which the

system behavior is determined by the synthesized controller

and the environment behavior by our Java-based environment

simulation, which embodies the environment assumptions as

in Sect. IV, real-valued movement times, and interruption

times and probabilities.

The resulting game tree consists of nodes. A node’s outgo-

ing transition is a node action, which corresponds to a syn-

thesized controller system action. Our environment simulation

sets the inputs of the controller (robot cell status) whereas the

synthesized controller executor aims to compute the output of

the controller (robot task assignments). The game tree starts

with a node, in which the inputs are set and a system action

has to be taken, i.e., an assignment of controller outputs. The

available actions of a system node are computed by querying

the synthesized controller through the controller executor. The

assumptions of the environment are realized by our Java-based

environment simulation.

As default policy we used a random-based approach. At the

end of the simulation phase of an MCTS iteration, the cycle

time is computed, since we always execute the simulation

until the cycle ends. The best choice at the end of the MCTS

simulations is the action which leads to the most time-efficient

actions’ sequence, i.e., robot task assignments.

VI. RUNNING EXAMPLE

A. Robot cell description

We illustrate our method with a spot welding cell with two

spot welding robots. The workpiece is a vehicle body that must

be welded on eight points. Figure 4 shows an illustration.

The robot cell consists of:

• Two robots R0 and R1 . Their base position are 0

and 5 , respectively.

324

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on January 05,2023 at 21:58:52 UTC from IEEE Xplore.  Restrictions apply. 



• Eight welding spots located at positions 1 , 2 , 3 ,

4 , 6 , 7 , 8 , 9 .

Each welding spot represents a task.

Fig. 4. Use case: A spot welding robot cell illustration

1) Robots constraints: Due to their kinematic constraints,

each robot has a limited workspace (ellipses in Fig. 4) and

thus, has a set of tasks it can perform:

C1: R0 can perform tasks at 1 , 2 , 3 , 4 , 6 .

C2: R1 can perform tasks at 1 , 6 , 7 , 8 , 9 .

We can see that this robot cell has two reallocatable tasks

at 1 and 6 . The other tasks are non-reallocatable.

2) User requirements: We have some requirements about

the corners of the part. The corners must be welded before its

adjacent points.

D1: 2 must be weld before 1 . 3 and 4 .

D2: 7 must be weld before 6 , 8 and 9 .

3) Collision constraints: A collision will occurs if R0 is

at location 6 and R1 at location 1 .

B. Reactive system specification

This section describes the reactive system specification that

can be derived from these constraints, based on the properties

described in Sect. IV and Sect. VI-A.

1) Constants and variables: All line numbers in this section

are related to the Listing 1 of the specification.

The specification starts by declaring its name in line

1, the constants regarding the number of the robots, the

welding points and the home position of robots in lines 3-

22. The constant basePositions holds base location and

robotTasks holds the tasks of the robots. Lines 28-31

define the types Robot and Location to model the robots

and locations. The specification models the robot cell status

consisting of task and robot status in lines 33-36 with the en-

vironment variables isCompleted and isInterrupted
respectively. Our model specifies task assignment with the

system variable taskAssignement in lines 38-39.

2) Assumptions: All line numbers in this section are related

to the Listing 2 of the specification.

The environment assumptions are described in Sect. IV and

modelled in the specification as assumptions. Lines 3-9 of the

specification model define (A1) with initial assumptions. (A2)

1 module Spec020802
2

3 // Number of robots
4 define NUM_OF_ROBOTS := 2;
5 define NUM_OF_ROBOTS_MINUS_ONE := NUM_OF_ROBOTS - 1;
6

7 // Number of point’s locations
8 define NUM_OF_LOCATIONS := 10;
9 define NUM_OF_LOCATIONS_MINUS_ONE := NUM_OF_LOCATIONS -

1;
10

11 // Maximum number of tasks
12 define MAX_NUM_OF_TASKS := NUM_OF_LOCATIONS -

NUM_OF_ROBOTS;
13 define MAX_NUM_OF_TASKS_MINUS_ONE := MAX_NUM_OF_TASKS -

1;
14

15 // Define robot base location constant
16 define basePositions[NUM_OF_ROBOTS] := { 0, 5 };
17

18 // Define robot tasks
19 define robotTasks[NUM_OF_ROBOTS][MAX_NUM_OF_TASKS] := {
20 { 1, 2, 3, 4, 6, -1, -1, -1 },
21 { 1, 6, 7, 8, 9, -1, -1, -1 }
22 };
23

24 // Type to iterate over the 2D arrays "robotTasks"
25 type TaskIndex = Int(0..MAX_NUM_OF_TASKS_MINUS_ONE);
26

27 // Robot cell robots
28 type Robot = Int(0..NUM_OF_ROBOTS_MINUS_ONE);
29

30 // Robot cell locations
31 type Location = Int(0..NUM_OF_LOCATIONS_MINUS_ONE);
32

33 // Tasks status
34 env boolean[NUM_OF_LOCATIONS] isCompleted;
35 // Robots status
36 env boolean[NUM_OF_ROBOTS] isInterrupted;
37

38 // Task assignment of each robot
39 sys Location[NUM_OF_ROBOTS] taskAssignment;
40

41 // Define predicate specifying the end of a welding
cycle

42 predicate IsCycleCompleted():
43 ((forall loc in Location. isCompleted[loc] = true) & (

forall rob in Robot. isInterrupted[rob] = false)
& (forall rob in Robot. taskAssignment[rob] =
basePositions[rob]));

44

45 // Define predicate specifying that the location is not
a robot target

46 predicate IsLocationNotATarget(Location loc):
47 (forall rob in Robot. taskAssignment[rob] != loc);
48

49 // ends first part ...

Listing 1. Specification of multi-robot cell: Constants and variables

defines the restart of a cycle that represents the completion

of all tasks. It is designed as safety assumption at lines 23-

28. Lines 11-15 model the robot task completion with the

corresponding task status and implements the assumption (A3)

and (A5). Since robot interruptions can happen at any time

(A4), there is no need to write assumption on environment

variable isInterruped. The specification states in lines 30-

34 the assumption (A6): when a robot is interrupted it must

not complete any task.

3) Guarantees: All line numbers in this section are related

to the Listing 3 of the specification.

The system rules are described in Sect. IV and modelled in

the specification as guarantees. Lines 3-6 of the specification

model (R1) state a rule about the start of a cycle with a safety

guarantee. It specifies that the task assignement of a robot

325

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on January 05,2023 at 21:58:52 UTC from IEEE Xplore.  Restrictions apply. 



1 // continues first part ...
2

3 // No task is initially completed
4 asm InitiallyNoTaskIsCompleted:
5 forall i in Location. isCompleted[i] = false;
6

7 // No robot is initially interrupted
8 asm InitiallyNoRobotIsInterrupted:
9 forall i in Robot. isInterrupted[i] = false;

10

11 // Each robot will complete its assigned task after a
number of steps

12 asm RobotsWillCompleteATaskAfterXStep:
13 G forall r in Robot. forall t in Location.
14 (taskAssignment[r] = t & !IsCycleCompleted()) ->
15 ((next(isCompleted[t]) = isCompleted[t]) | (next(

isCompleted[t]) = true));
16

17 // Task status must not change if robot does not
complete it

18 asm NotCompletedTaskKeepsItsStatusUnchanged:
19 G forall l in Location.
20 (IsLocationNotATarget(l) & !IsCycleCompleted()) ->
21 (isCompleted[l] = next(isCompleted[l]));
22

23 // Restart new cycle when the current cycle is completed
24 asm RestartCycle:
25 G IsCycleCompleted() ->
26 ((forall j in Location. next(isCompleted[j]) = false)
27 & (forall i in Robot. next(isInterrupted[i]) = false)
28 ) | (forall j in Location. next(isCompleted[j]) = true);
29

30 // Interrupted robots must not perform task
31 asm InterruptedRobotMustNotDoTask:
32 G forall r in Robot. forall t in Location.
33 (isInterrupted[r] & taskAssignment[r] = t & !

IsCycleCompleted()) ->
34 next(isCompleted[t]) = isCompleted[t];
35

36 // ends second part ...

Listing 2. Specification of multi-robot cell: Assumptions

must be its home position at cycle start. The specification

implements (R2) by modelling in lines 8-11 robot workspaces

based on the matrix of tasks robotTasks defined in List-

ing 1. Lines 13-17 model that when a robot has an assigned

task and while is is not interrupted, then this assignment must

not change until the task is completed (R3). The system has

to make sure that vehicle parts are not welded twice at the

same point (R4). We model this rule with the guarantee in

lines 19-22, which avoid to make task assignment on already

completed tasks. The specification models (R7) in lines 32-39.

For each robot, we model a guarantee to states that if all its

non redundant tasks are completed then it can go back to its

home position, unless it is interrupted. In our case, the robot

R0 must not go back home if the tasks at 2 , 3 and 4

are not completed yet. The same rule applies for the robot

R1 with the tasks at 7 , 8 and 9 .

a) Reactivity to unforeseen events: (R6) specifies what

must happen in case of robot interruption. The goal of this

rule is to free the working space of the vehicle part so that a

neighbored robot can take over the tasks of the failed robot.

This rule is modelled in lines 28-30.

b) Specification of task dependencies: The rule (R8)

is about task dependency. It makes sure that the system

can assign a task only if it has no dependent task which

is not completed yet. We specified for our robot cell tasks

dependencies in Sect. VI-A2. (D1) is implemented in lines

41-44 and (D2) in lines 46-48.

c) Collision prevention: (R5) avoids that a task is as-

signed at the same time to different robots. This rule is

implemented in lines 24-26.

Sect. VI-A3 defines collision constraints related to task

assignment. All possible combinations of task assignment

which lead to collision must be avoided (R9). The reactive

specification models this rule in lines 50-52.

VII. RESULTS

We implemented a MCTS-based controller executor, which

adds a new functionality to the existing SPECTRA controller

executor. Our approach is to use MCTS simulations to make

a time-optimal choice of the system actions leading to an

optimal cycle time. We made assumptions based on the rate

of interruptions which occur in the production lines. We

integrated the assumptions as a model of the environment in

MCTS simulations. This model allows us to evaluate systems

actions.

In each evaluation step of the MCTS algorithm we build

the game tree starting from the current system state of the

synthesized controller. The children of a system state are

environment states. We call a node in which the system must

take an action system node, while in an environment node,

the inputs are updated based on the last system outputs. An

environment node of our game tree consists of the current

inputs and the controller state whereas a system node is made

up of the controller outputs. In order to achieve simulations,

we implemented a flexible executor which is able to jump from

any already discovered state to another one without following

a consecutive path starting from the initial state to the state

where we would like to jump to.

From any system node in which a system action is needed,

we build a game tree with the system and the environment as

players. The controller next states aims to generate environ-

ment nodes. We design and develop a simulation environment

based on the behaviour model of the robot interruptions. This

allows us to generate system nodes. The MCTS-simulations

are based on the interruptions’ assumptions. Since the response

time of this kind of system in production lines is important,

we choose to use time as resource limitation for the MCTS-

simulations instead of the iterations count.

A movement time corresponds to the time needed for a

robot to move from a welding point to another. The task time

is the time need for the robot at a welding point to perform

a weld, i.e., close and open the welding gun. We used the

simulation software RobotStudio1 for our experiment. We first

computed the execution time for all possible trajectories and

for all tasks. A movement time is around 1.6 s and a task

time 0.5 s. The time for an interruption is set up to 60 s. This

helps us to design a simulation environment of a robot cell

with robot movements and tasks times. Secondly, based on the

robot movements and tasks times we created a simulation of a

virtual multi-robot cell. SPECTRA comes with an executor for

1https://new.abb.com/products/robotics/de/robotstudio
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1 // continues second part ...
2

3 // Robots must start at their home position
4 gar RobotMustStartAtHome:
5 G forall r in Robot. forall l in Location. (l = basePositions[r] & isCompleted[l] = false) ->
6 (taskAssignment[r] = basePositions[r]);
7

8 // Each robot can perform only the tasks in its workspace including its home location
9 gar RobotsWorkspaces:

10 G forall r in Robot. (taskAssignment[r] = basePositions[r]) |
11 (exists t in TaskIndex. robotTasks[r][t] > -1 & taskAssignment[r] = robotTasks[r][t]);
12

13 // When target is set, target must not change before robot gets there
14 gar TargetMustNotChangeUntilReached:
15 G forall r in Robot. (isInterrupted[r] = false) &
16 (exists l in Location. (isCompleted[l] = false) & (l = taskAssignment[r]) & (l != basePositions[r])) ->
17 taskAssignment[r] = next(taskAssignment[r]);
18

19 // A task must not to be completed twice
20 gar NoTaskIsCompletedTwice:
21 G forall l in Location. ((isCompleted[l] = true) & (forall u in Robot. l != basePositions[u])) ->
22 (forall r in Robot. next(taskAssignment[r] != l));
23

24 // 2 robots must not have the same task
25 gar RobotMustNotHaveSameTask:
26 G forall r1 in Robot. forall r2 in Robot. (r1 != r2) -> (taskAssignment[r1] != taskAssignment[r2]);
27

28 // Interrupted robot must go back home to release its task for re-allocation
29 gar RobotGoHomeIfInterrupted:
30 G forall r in Robot. (isInterrupted[r] = true) -> next(taskAssignment[r] = basePositions[r]);
31

32 // Robots may go back home if all tasks which can only achieved by them are done
33 gar Robot_0_MightBackHomeAfterOnlyTasks:
34 G (isCompleted[2] = false | isCompleted[3] = false | isCompleted[4] = false) & (isCompleted[0] = true) &
35 (isInterrupted[0] = false) -> next(taskAssignment[0] != 0);
36

37 gar Robot_1_MightBackHomeAfterOnlyTasks:
38 G (isCompleted[7] = false | isCompleted[8] = false | isCompleted[9] = false) & (isCompleted[5] = true) &
39 (isInterrupted[1] = false) -> next(taskAssignment[1] != 5);
40

41 // Tasks dependencies guarantees
42 gar Dependency_for_2:
43 G forall r in Robot. (isCompleted[2] = false) ->
44 (taskAssignment[r] != 1 & taskAssignment[r] != 3 & taskAssignment[r] != 4);
45

46 gar Dependency_for_7:
47 G forall r in Robot. (isCompleted[7] = false) ->
48 (taskAssignment[r] != 6 & taskAssignment[r] != 8 & taskAssignment[r] != 9);
49

50 // Collision constraints
51 gar CollisionConstraint_0_6_1_1:
52 G !(taskAssignment[0] = 6 & taskAssignment[1] = 1);
53

54 // end third part and specification.

Listing 3. Specification of multi-robot cell: Guarantees

the synthesized controller (Default/Random-based algorithm).

We made a benchmark to compare the algorithms for 1000

cycles. In our experiments, MCTS simulations end at the end

of a cycle.
The time allocated to MCTS impacts the system response

time. We find a setup which permits time-efficient planning

and an acceptable system response time. We compare the

following algorithm executions:
1) Default/Random-based which comes with SPECTRA

2) MCTS-based with time limitation of 500 ms (MCTS500)

3) MCTS-based with time limitation of 1000 ms

(MCTS1000)
The idea is that during run-time there is, on average, a time

of 500 ms until the next task assignment must be computed.

However, MCTS simulations can also be run in parallel, so

comparing MCTS with more computation time is interesting

as well.

A. Hardware setup

For our experiments we use an ordinary Personal Computer

(PC), Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz, 1800

MHz, 4 core (s), 8 logical processor (s), RAM 16.0 GB, x64-

based processor, Windows 10.

B. Experiment 1: No interruptions

Our first experiment investigates the cycle time with the

three algorithms (Default, MCTS500 and MCTS1000), when

no interruption occurs. This builds a baseline for comparison

when we experiment with interruptions. Tab. I shows that the

average cycle time is 11.06 s for Default. MCTS outperforms

significantly with 9.37 s (improvement of 1.69 s with 15.3%)

and 9.27 s (improvement of 1.79 s with 16.2%) for MCTS500

and MCTS1000 respectively. We have on average 51 and 103
simulations for MCTS500 and MCTS1000 respectively.
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TABLE I
NO INTERRUPTIONS: CYCLE TIMES

Algorithm Avg. cycle time (s) Improvement cycle time (s)

Default (Random) 11.06

MCTS500 9.37 1.69 (15.3%)

MCTS1000 9.27 1.79 (16.2%)

C. Experiment 2: interruption probability of 0.0125 / new task
assignment

In the second experiment we use a probability model for

the interruptions and assume that an interruption occurs on a

new task assignment with the probability of 0.0125.

The improvements reflect that MCTS outperforms even with

this interruption’s probability. For instance, Tab. II shows

that MCTS500 outperforms significantly with a cycle time

of 15.55 s whereas Default’s cycle time is 17.26 s. This

corresponds to an improvement of 1.71 s (9.9%). In addition,

MCTS1000’s cycle time reaches 15.36 s corresponding to an

improvement of 1.90 s (11.0%). The small difference between

the MCTS500’s and MCTS1000’s cycle times can be explained

by the interruption count which is smaller for MCTS1000.

Furthermore, when we analyse the standstill time, we also

find out some improvements. The standstill time corresponds

to the time where no robots are working due to the interrup-

tions. Even with the same number of interruptions, MCTS

optimizes the standstill time. It shows that there are more

tasks re-allocations which happened and therefore the robots

have less time without working. The results in Tab. II show

that the Default has the highest standstill time of 5.72 s.
MCTS500 outperforms with 5.64 s showing an improvement

of 0.08 s (1.4%). Moreover, MCTS1000 with more efficient

task re-allocations outperforms with standstill time of 5.53 s
corresponding to an improvement of 0.19 s (3.3%).

D. Experiment 3: interruption probability of 0.0025 / new task
assignment

In this experiment we assume that an interruption occurs on

a new task assignment with the probability of 0.0025.

Also in this case, MCTS outperforms. Regarding Tab. III,

the cycle times of MCTS-based algorithms are much better

than Default (12.39 s). The MCTS500 has a cycle time value of

10.55 s corresponding to an improvement of 1.84 s (14.85%)

and the MCTS1000’s cycle time reaches 10.65 s showing an

improvement of 1.79s (14.45%).

The same behaviour is observed when we compare the

algorithms in terms of standstill time. Our observations reveal

that MCTS outperforms the Default algorithm. Tab. III shows

that Default has a standstill time of 1.20 s. The MCTS500’s

standstill time of 1.16 s show an improvement of 0.04 s,
i.e., 3.3%, whereas MCTS1000 has a standstill time of 1.14 s
corresponding to an improvement of 0.06 s, i.e., 5.0%.

Furthermore, we expect to get more improvements by

increasing the time allocated to MCTS. However, comparing

MCTS500 and MCTS1000 on the cycle time we do not observe

an improvement as in the standstill time.

E. Scalability analysis

We notice scalability issues with some SPECTRA specifica-

tions. The synthesis takes 608ms to compute our case with

2 robots. A specifications with 3 robots takes 15049ms for

synthesis computation, and with 4 robots the process freezes

during the SPECTRA specification is being translated to Binary

Decision Diagram (BDD). We are investigating to overcome

this limitation to any number of robots.

VIII. DISCUSSION

The results of our experiments show that it is possible for

MCTS to reduce the cycle time and standstill time because

it can predict and exploit interruptions. MCTS can find and

apply a strategy which is time efficient and allows re-allocation

of robot tasks efficiently. However, an efficient task planning

which minimizes the movement time of robots may conflict

with the strategies that maintain the potential for a time-

efficient re-allocation of task when interruptions occur. This

conflict can, but does not have to occur in all cases and we

observed it in Sect. VII-D (in rare interruptions).

We illustrate this conflict in Fig. 5. Based on our spec-

ification R0 must first perform task at 2 . Therefore our

MCTS-based method has to plan the task and must choose one

of the 3 schedules showed in Fig. 5. Based on the analysis of

movement times of the robot, the least time efficient planning

as shown in Fig. 5(a) is 0 → 2 → 4 → 1 → 3

→ 0 . Fig. 5(b) shows a better planning: 0 → 2 → 3

→ 4 → 1 → 0 and Fig. 5(c) illustrates the best time

efficient task scheduling 0 → 2 → 1 → 3 → 4

→ 0 . However, this best planning (Fig. 5(c)) becomes the

worst planning if an interruption occurs. At this point, MCTS

must deal with this conflict to find a close to time optimal

strategy based on its predictions. Since the interruptions are

rare, it may happen that the estimated optimal strategy is not

the really optimal (as predicted). This phenomenon explains

the behaviour of our MCTS algorithms in Sect. VII-D where

we do not notice an improvement on cycle time comparing

the MCTSs each other by increased time allocation.

We find out that MCTS-based algorithm performs better

than Random. When interruptions are rare, increasing the

number of MCTS iterations may not improve the performance

of the cycle time, but still improving standstill time. The

standstill time improvement shows a more efficient task re-

allocation.

IX. RELATED WORK

There exist approaches that combine controller synthesis

and planning in the sense that controller synthesis is solved

using planning algorithms [7], [8]. By contrast, our approach

combines synthesized controllers from LTL specifications with

a planning algorithm to optimize the controller execution in a

timed an stochastic setting.
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TABLE II
CYCLE TIMES AND IMPROVEMENTS COMPARISON: INTERRUPTIONS: 0.0125 / NEW TASK ASSIGNMENT

Algorithm # Interruptions Avg. cycle time Avg. standstill time Improvement cycle time Improvement standstill time

Default (Random) 107 17.26 5.72

MCTS500 107 15.55 5.64 1.71 (9.9%) 0.08 (1.4%)

MCTS1000 103 15.36 5.53 1.90 (11.0%) 0.19 (3.3%)

TABLE III
CYCLE TIMES AND IMPROVEMENTS COMPARISON: INTERRUPTIONS: 0.0025 / NEW TASK ASSIGNMENT

Algorithm # Interruptions Avg. cycle time Avg. standstill time Improvement cycle time Improvement standstill time

Default (Random) 25 12.39 1.20

MCTS500 22 10.55 1.16 1.84 (14.85%) 0.04 (3.3%)

MCTS1000 21 10.60 1.14 1.79 (14.45%) 0.06 (5.0%)

(a) Least time effi-
cient (13.00 s)

(b) Less time
efficient(11.30 s)

(c) Best time efficient
(8.81 s) and least
time efficient with
interruption (69.26 s)

Fig. 5. Conflicts in tasks planning by rare interruptions

Moreover, our approach also is able to handle interrup-

tions at run-time by choosing among different (provably cor-

rect) multi-robot task scheduling strategies that also consider

task re-allocation. The related works addressing the problem

of robot task and motion planning with camera-based ap-

proaches [14]–[21] does not offer this capability: run-time task

re-scheduling and re-allocation.

Our approach, during the reactive system specification phase

aims to eliminate potentials collisions beforehand. We propose

a solution which addresses the problem of unforeseen events,

which may happen at runtime and offer more flexibility for

robot cell planing and programming since there is no fixed

robot tasks planing.

X. CONCLUSION AND FUTURE WORK

We presented an approach for robot tasks planning in

multi-robot cells based on MCTS and GR(1) synthesis. The

integration of MCTS aims to optimize the task planning at

run-time. Whereas GR(1) permits a task planning with the

abstraction of movement times and the task re-allocation in

case of interruptions. We integrate our approach with a multi-

robot cell and experiment our method to compare it with a

default or random based method in a simulation environment.

Our methodology can be used for other application domains.

We showed that it is possible to make task planning of

a multi-robot cell beforehand and handle unforeseen events

which can not be anticipated during the robot programming

phase. Furthermore, MCTS makes optimal run-time planning

since it determines the best choices for the reactive system

based on unforeseen events model. We showed that controller

synthesis techniques and MCTS techniques can be combined

successfully and they complement each other excellently. With

our experiments we showed that integrating MCTS-based

method reduces up to 5% idle times and disturbance ultimately.

Moreover our approach can significantly up to 14.9% optimize

the cycle time.

In our future work, we want to include online optimization

methods in the domain of reinforcement learning such as

Q-Learning. In addition, we want to overcome the issue on

the scalability of SPECTRA specifications and investigate on

improvements of MCTS to address the topic of rare events

to improve our MCTS-based approach (e.g. parallelization).

Another topic for the future is to automatically and formally

analyse the requirements and relevant information of the multi-

robot cell and generate the corresponding system specifica-

tion, in which a non-realizable specification highlights the

requirements at the level of the user and not in the GR(1)-

Specification. We may offer a DSL to robot engineers, so

they will not have to learn temporal logics. In addition, our

approach can be extended to other optimization goals, e.g.

energy-efficiency.
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