
Navigating the Low-Code Landscape:
A Comparison of Development Platforms

Jörg Christian Kirchhof, Nico Jansen, Bernhard Rumpe
Software Engineering, RWTH Aachen University

acronio GmbH
Aachen, Germany

https://se-rwth.de https://acronio.de

Andreas Wortmann
Institute for Control Engineering of

Machine Tools and Manufacturing Units (ISW)
University of Stuttgart

Stuttgart, Germany

wortmann@isw.uni-stuttgart.de

Abstract—Low-code development is a software-development
paradigm that can reduce the conceptual gap between ap-
plication domain problem expertise and software engineering
solution expertise. Hence, it might be a vital means to reduce
the impact of the world-wide scarcity of software-developers.
Consequently, many different low-code development platforms
(LCDPs) have surfaced in the last 5-10 years, which domain
experts must understand to chose the best-possible LCDP for
their applications. This choice is not made restricting to front-end
features of these LCDPs, but also to back-end features, which
the domain experts are usually less familiar with. To support
domain experts in making this decision, we have investigated
popular LCDPs for features relevant to domain experts. Our
findings aim to guide these domain experts, but also researchers
in better understanding the landscape of LCDPs.

Index Terms—Software Engineering, Low-Code, No-Code,
Model-Driven Software Engineering

I. INTRODUCTION

In our cyber-physical society, software is vital in advancing

progress and generating added-value in virtually every domain.

However, the scarcity of software developers hinders innova-

tion, efficiency, and competitiveness. Consequently, increas-

ingly more and complex software is contributed by experts

from these domains, which gives rise to the conceptual gap [1]

between their expertise of what needs to be solved in the

problem domain (e.g., avionics, biology, medicine, production,

. . .) and their lack of expertise on how to solve that in the

solution domain of software. Instead of making domain experts

professional software engineers, the abstraction of software

engineering needs to increase further to ease their contribution

to adding software-based value. This is the story of model-

driven development (MDD) [2].

Where research in MDD has produced a wealth of suc-

cessful and widely applicable methods, solutions, and tools

(e.g., UML, EMF, ATL, . . .), it did only rarely produce tightly

coupled platforms to support domain experts in contributing

software-based value. low-code tools (LCTs)1 [3], [4], [5]

aim to reduce this gap by combining selected modeling lan-

guages, transformations, editors, and further tooling to provide

a tightly integrated software to produce a specific kind of

application (e.g., B2B, mobile, web) using MDD. Hence, low-

code is a success story of MDD [6].

1Not every low-code tool is a “platform”.

Since 2018, LCTs proliferated into many domains, to pro-

duce different kinds of applications, using various modeling

techniques, and development support. While low-code and

LCTs are becoming ubiquitous, they support different featues,

deployment modes, and target platforms. To guide researchers

and practitioners in selecting an appropriate LCT, we have

conducted a survey on their capabilities that investigates thier

support for different database technologies, deployment, target

platforms, and more.

Hence, our contributions are

• an investigation of relevant features of LCTs;

• the analysis and comparison of selected LCTs regarding

these features; and

• a discussion of challenges in the use of the investigated

LCTs.

In the following, Section II describes the features we

investigated for each LCDP, before Section III introduces

the analyzed LCTs, and Section IV compares these with

another regarding those features. Afterward, Section V dis-

cusses observations, Section VI highlights related studies, and

Section VII concludes.

II. LCDP FEATURES

With the increasing incorporation of MDD in the engineer-

ing of software systems, the number of low-code applications

is also growing. [7] elaborates on their interrelations and

discusses that these notions, while not the same and partially

for different end-users, are tightly interwoven and can benefit

vastly from each other. Furthermore, [7] highlights key

characteristics of low-code tools. Notable are the largely

cloud-based development platforms, which require no setup

and can be easily used by citizen developers, the majority

of the targeted users. For this reason, aspects of usability,

collaboration, types of editors, target platforms, and supported

APIs are essential. Therefore, our analysis according to these

characteristics focuses on the following features:

A. Development Features

Language describes the language that the developers can use

to specify their application or to add handwritten code. In

case there is no specific domain-specific language (DSL),

it is usually the language of the generated code. This

854

2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

979-8-3503-2498-3/23/$31.00 ©2023 IEEE
DOI 10.1109/MODELS-C59198.2023.00135

[KJRW23] J. C. Kirchhof, N. Jansen, B. Rumpe, A. Wortmann:
Navigating the Low-Code Landscape: A Comparison of Development Platforms.
In: Proceedings of MODELS. Workshop LowCode, pp. 854 - 862,
ACM/IEEE, Oct. 2023.

feature does not refer to the language that the LCT itself

is implemented in.

Hand-Written Code Support describes the ability to inte-

grate handwritten code. The code generated by low-

code tools cannot always cover all use cases due to the

diversity of projects. This feature ensures that developers

can meet their requirements even if they are outside the

tool’s normal case.

Hot Reload describes the ability of the tool to automatically

apply changes to the data model / graphical user interface

(GUI) without manually rebuilding and reloading the

application. Especially in early development phases, there

may be frequent changes. Hot reload makes it easier to

test changes.

3rd Party Plugins describe the ability to integrate third party

services. Such third-party services can be, for example,

Dropbox, SAP, or Salesforce. Third-party services can be

used to connect the generated applications to any existing

infrastructure.

Visual Editor describes the feature that models and/or GUIs

can be edited graphically. Usually this is done via drag-

and-drop and, in the case of GUIs, in What you see is
what you get-mode.

B. Database Technologies

SQL Database describes the property of holding data in

SQL databases. This property is also fulfilled if external

SQL databases can be integrated. SQL is widely used

in industry. Fulfilling this criterion facilitates integration

with existing applications that are based on SQL.

Graph Database describes the property of holding data in

graph databases. This property is also fulfilled if external

graph databases can be integrated. Graph databases are

used when there are highly complex relations between

data (e.g., in social network applications).

Key-Value / Document-oriented Database describes the

property of holding data in key-value or document-

oriented databases. This property is also fulfilled if

external databases can be integrated. Such databases

are used especially for unstructured data and when

horizontal scalability is required. Examples include

Google Firestore, Amazon DynamoDB, and MongoDB.

C. Type of Target App

Web is fulfilled when the tool creates an application that runs

in the browser.

iOS is fulfilled when the tool creates a native iOS application,

i.e., one that can (potentially) be downloaded from the

app store. It does not include responsive web applications

that adapt their interface to the size of mobile devices

without actually being installed on the device.

Android is fulfilled when the tool creates a native Android

application, i.e., one that can (potentially) be downloaded

from the app store. It does not include responsive web

applications.

Desktop is fulfilled when the tool creates a native application

for desktop computers (i.e., Windows, macOS, and/or

Linux). It does not include web applications unless they

are installed as separate applications independent of the

browser.

D. Features of Generated App

Live Collaboration describes the feature that users can work

on the data in the generated application simultaneously

and see live changes made by other users. Examples of

this are Google Docs or Overleaf, where users of the word

processor can see the cursors and changes of other users

working on the same document live. Live collaboration

can make it easier to synchronize users’ work when there

are a larger number of users.

REST API describes the property that the generated applica-

tion can also be operated via a REST application pro-

gramming interface (API), e.g., new data can be entered.

REST APIs enable users to automate their tasks.

E. Deployment & Operation

Serverless / Cloud-native describes the characteristic that

applications can be run in a cloud in a way that no

servers need to be administered. The administration of

applications can be very complex. It is therefore desirable,

especially for non-technically trained users, to keep this

effort low. This property is also considered to be fulfilled

if the provider of the tool itself acts as the hoster

of the application and the administration effort is thus

eliminated.

Monitoring describes the feature to technically monitor the

execution of the generated application, e.g., to view traffic

or CPU load. In particular, this does not include services

such as Google Analytics, which do not monitor the

execution of the application itself, but the behavior of

the user. Through such monitoring functions, problems

can be detected and corrected.

III. LOW-CODE TOOLS

In recent years, a large number of tools for rapid application

development have been introduced. Here we present the tools

that we will compare in this paper. This list includes mostly

low-code tools, but not exclusively. Low-code tools com-

pete in practice with well-known web frameworks that also

promise rapid development of applications. For comparison,

our evaluation therefore also includes some tools that cannot

be classified as low-code tools. In the following, we will now

briefly introduce each tool (in alphabetical order, ignoring

company names):

A12 [8] is a low-code framework for developing web appli-

cations. The most prominent application developed using

A12 is the federal German tax report software Elster.

AWS Amplify Studio is a low-code tool for creating mobile

and web applications. The Amplify CLI enables develop-

ers to integrate their apps with other AWS services. The

855

(a) Mendix. Left: GUI. Right: Data model. (b) Zvolv’s bot editor. Bots are defined in as configurable step-by-step
workflows.

(c) Outsystems’ GUI editor. GUIs can be composed using a
drag-and-drop editor using the elements on the left.

(d) Fliplet’s data editor. Data is presented in Excel-like spreadsheets.

Figure 1. Examplary screenshots of some of the examined tools.

offered GUI components are customizable using Figma,

an interface design tool.

Oracle APEX is a low-code tool for creating web and mobile

applications focussed on enterprise applications. It offers

a drag-and-drop visual editor for GUIs and integrates with

other Oracle technologies like Oracle‘s SQL databases.

Appian is a low-code tool focussed on automating processes.

Besides enabling developers to create dashboards (using a

drag-and-drop visual editor), data (using forms), and pro-

cesses (using activity diagrams), it also features process

mining capabilities to discover inefficiencies in processes.

Google AppSheet is a no-code tool for automating work-

flows. Using an activity-diagram-like workflow editor,

users can create automations. AppSheets can be inte-

grated with third party apps and data like Google Sheets,

SQL databases, or Dropbox.

BettyBlocks is a no-code platform for building web appli-

cations. Dashboards can be defined using a drag-and-

drop visual editor. The data model is defined using online

forms and actions can be defined using activity diagrams.

It offers integrations for many third party services such

as Twitter, Google Maps and Slack.

Caspio is a no-code tool for creating business applications.

The applications are focussed on the database whose data

can be visualized on dashboards. A visual drag-and-drop

editor is used for modeling data structures using class

diagrams.

Electron is a framework for building cross-platform desktop

applications using web development languages like CSS

and JavaScript. Electron is not a low-code tool, but a

popular choice for creating cross-platform applications.

Prominent examples include the collaboration app Mi-
crosoft Teams, the music streaming application TIDAL,

or the software development tool GitHub Desktop.

Fliplet is a low-code tool for mobile and web applications.

GUIs can be created using a drag-and-drop visual editor,

while data can be edited using spreadsheets (cf. Fig. 1(d)).

It offers a wide range of integrations and features like

notifications (push, email, SMS), analytics, or single sign

on.

856

Flutter is a UI framework for cross-platform applications.

Serverpod is an open-source project that provides a

server-side backend for Flutter applications. Applications

are developed using the Dart language that follows a

similar syntax as Apples SwiftUI DSL for defining GUIs.

Third parties extend Flutter with low-code editors.

Ionic is a framework for developing cross-platform mobile

applications (iOS and Android) using web technologies

like JavaScript. It offers UI elements looking similar

to those provided by operating systems. In contrast to

React Native, Ionic creates regular web applications,

that interface with the hardware of the device (e.g., the

camera) only when necessary.

Mendix is a low-code application platform for web and

mobile applications. Developers can define the GUI using

a drag-and-drop visual editor and the backend using class

diagrams (called Domain Models) (cf. Fig. 1(a)) and

activity diagrams (called Microflows). Through various

third party extensions, other systems like SAP can be

integrated, e.g., into the class diagrams.

OutSystems (or Service Studio) is a low-code development

tool for building mobile and web applications. OutSys-

tems offers drag-and-drop visual editors (cf. Fig. 1(c)).

The data structures are defined using class diagrams. The

GUI can be (partly) generated from the data structures

and adapted manually. The behavior can be specified

using activity diagrams.

Pega is a low-code tool focussed on workflow automation.

Developers define processes using a drag-and-drop visual

editor for business process models. Processes can be

visualized and analyzed using artificial intelligence.

Microsoft Powerapps is a low-code tool for enterprise ap-

plications. Being a Microsoft product, it offers many

integrations with other Microsoft products that are widely

used in business scenarios. Overall, over 800 APIs can be

integrated, using wrappers called connectors. Powerapps

is often combined with other services from Microsoft
Azure, Microsoft’s cloud platform.

React Native is a framework for developing cross-platform

mobile applications (iOS and Android) using JavaScript

and React. The resulting applications are not like regular

web applications but require mobile devices (or their

emulators) to be executed. React Native cannot be consid-

ered a low-code tool, however, it is known to be capable

of enabling rapid application development.

Vaadin is a framework for building Java-based web applica-

tions. The Vaadin Designer enables developers to also

define GUIs using a drag-and-drop visual editor. Vaadin

provides over 45 GUIs components, depending on the

pricing tier.

Wavemaker is a low-code tool for creating mobile and web

applications. It offers a drag-and-drop visual editor for

GUIs. Under the hood, Wavemaker is a code generator for

React Native. This code is not bound to the Wavemaker

platform, preventing vendor lock-in.

Xamarin is a framework for developing cross-platform ap-

plications (both desktop and mobile) using C# and .NET.

The framework’s goal is to create apps that “look and feel

[like] native” apps2. According to Microsoft, over 75 %

of the code can be reused between all mobile platforms.

Zvolv is a low-code tool focussed on automating processes.

After modeling a process using activity diagrams, the

processes can be partly automated using so-called bots
(cf. Fig. 1(b)), that either instantiate and configure prede-

fined actions or use hand-written Python code. Data about

the processes can be shown in dashboards. Zvolv offers

integrations with third party tools like Dropbox, SAP, or

Slack.

IV. COMPARISON

We have examined the previously mentioned tools to see

if they have certain features. We rely on the freely available

information about the tool, i.e., websites, (YouTube) videos,

documentation and, if available for free, trying out the tools

ourselves. Not all features of the evaluated tools are available

open-source. For example, Vaadin’s Observability Kit is only

available in an Ultimate subscription with unknown pricing.

In such cases, we still recognize the feature as fulfilled if we

can find information about the feature existing. Table I shows

our feature evaluation.

We would like to highlight some of the observations from

this comparison:

Observation 1: Handwritten code is an important addition
to visual editors. Almost all of the tools examined offer

the possibility of using handwritten code in addition to the

generated code. While the automatically generated code covers

some standard cases, it is not sufficient, especially when

describing the behavior of the application (as opposed to the

look).

Observation 2: SQL is the most widely used database
technology for low-code tools. We suspect that this is the case

because class diagrams for data modeling translate naturally

into SQL schemas. In addition, SQL is widely used industri-

ally. Some of the vendors therefore offer a way to integrate

existing SQL databases into the low-code applications. In these

cases, it makes sense to use the same technology for newly

modelled databases as well.

Observation 3: Low-Code tools prefer creating web appli-
cations over native desktop applications. Low-code vendors

do not seem to have a greater interest in developing native

desktop applications. For the most part, it is expected that

desktop users will use a web app.

Observation 4: Low-code solutions often act as glue code
between third party services. For many of the examined tools,

the real value of the tool is not in completely new applications,

but in enabling non-computer scientists to combine existing

third-party tools. Many of the tools examined offer third-party

plug-ins. How many plugins are supported in each case varies.

2https://visualstudio.microsoft.com/xamarin/

857

Table I
COMPARISON OF FEATURES OF TOOLS FOR RAPID APPLICATION DEVELOPMENT (� = FULFILLED, �� = PARTLY FULFILLED, � = NOT FULFILLED, ? = UNKNOWN)

Development
Features

Database
Technologies

Type of
Target App

Features of
Generated App

Deployment &
Operation

Tool Language H
an

d-
W

ri
tt

en
C

od
e

Su
pp

or
t

H
ot

R
el

oa
d

3r
d

Pa
rt

y
Pl

ug
in

s

V
is

ua
l

E
di

to
r

SQ
L

D
at

ab
as

e

G
ra

ph
D

at
ab

as
e

K
ey

-V
al

ue
/

D
oc

.
D

at
ab

as
e

W
eb

iO
S

A
nd

ro
id

D
es

kt
op

L
iv

e
C

ol
la

bo
ra

tio
n

R
E

ST
A

PI

Se
rv

er
le

ss
/

C
lo

ud
na

tiv
e

M
on

ito
ri

ng

A12 TypeScript, Java � � � � � � � � � � � � � � �
AWS Amplify Studio Target-dependent (Java,

Swift, Dart, . . .)
� � � � � � � � � � � � �� 1 � �

Oracle APEX JavaScript � � �� 10 � � � � � � � � � � � �
Appian Proprietary DSL � ? � � � � � � � � � � 5 � � �
Google AppSheet N/A (No-Code Tool) � � � � � � � � � � � � � � �
BettyBlocks N/A (No-Code Tool) �� 11 ? � � ? 4 ? 4 ? 4 � � � � ? � � ?
Caspio JavaScript � ? � � � � � � � � � � 5 � � �
Electron JavaScript � � � � � � � � � � � � � � �
Fliplet JavaScript � � 7 � � � � � � �� 9 �� 9 � ? � � �
Flutter + Serverpod Dart � � � �� 3 � � �� 1 � � � � �� 2 � � 8 �
Ionic JavaScript � � � � � � � � � � � � � � �
Mendix Java � � � � � � � � � � � � � � �
OutSystems C#, JavaScript � � � � � � � � � � � � � � �
Pega(systems) Java � ? � � � � � � � � � � 5 � � �
Powerapps + Azure N/A6, PowerFx � � � � � � � � � � � � � � �
React Native JavaScript � � � �� 1 �� 1 �� 1 �� 1 � � � � � � �� 1 �� 1

Vaadin Java � � � � � � � � � � � � � � �
Wavemaker JavaScript � � � � � � � � � � � � � � �
Xamarin C# � � � � �� 1 � �� 1 � � � � � � � �
Zvolv No-Code (Process),

JSON, Python (Bots)
� � � � ? 4 ? 4 ? 4 � � � � � � � �

1 Offered by third party
2 Serverpod offers software for live collaboration, but it requires manual programming of the synchronization logic
3 Offered by a third party vendor, https://flutterflow.io/
4 The service uses databases but it is unknown which type of database it uses. We suspect it is SQL since parts of the GUI use related vocabulary (e.g., tables).
5 Developers can define the refresh behavior / refreshing conditions that specify when to reload data.
6 By integrating Powerapps with other Azure services, it is possible to use almost any programming language for hand-written code.
7 While there is no hot reload, users can be notified about updates or even forced to update
8 Serverpod can generate Terraform files to deploy to AWS EC2. The management of the virtual machines then lies with the developer.
9 It is possible to publish mobile apps via the regular app stores. However, Fliplet says they can update the app without going through the app store’s review process again. Therefore, the app

is likely just a shallow wrapper around a web view.
10 While it is possible to integrate plugins, Oracle does not provide a rich library of plugins like other vendors do.
11 BettyBlocks is marketed as a no-code tool. It is possible to add custom JavaScript components and action steps using the enablement toolkit.

858

The established providers can usually offer significantly more

integrations than new providers.

Observation 5: Many low-code tools try to act as one-stop-
shop solutions that also host applications. Many providers of

low-code tools want to sell their users not only the application

itself, but also act as a hosting provider. This, of course,

leads to a certain vendor lock-in. We expect that the low-code

providers in the background are themselves customers of a

cloud. They therefore have their own interest in generating

their applications in a cloudnative and scalable manner.

Based on our practical experiments with the tools that go

beyond comparing the features, we also came to the following

findings:

Observation 6: Low-Code tools often rely on one-shot
generation. If the low-code tools freely release the code they

generate, sometimes this code is not suitable to be generated

multiple times. Sometimes the concept of the tool is that

manual changes are made to the generated code, which are

of course overwritten by running the generator again. In other

situations, the tool does not expect the generation process to

be run multiple times and crashes and/or destroys parts of

the project. If one wants to develop long-term maintainable

applications, this approach has corresponding problems. It

effectively undermines the low-code approach, since only

handwritten code can be used after initial generation.

Observation 7: There is sometimes no clear separation
between generated and handwritten code. Related to the first

finding, we found that it is not always made clear which parts

of the code were generated by a code generator and which

parts are handwritten. Such marking of generated code can

be done, e.g., by a comment at the top of the file warning

against adjusting the code manually or also by a suitable folder

structure. For example, in Java projects generated code is often

collected in a folder called target/generated-sources
or similar and thus clearly separated from handwritten code.

Observation 8: Although small example projects are often
easy to understand, developing real applications remains
hard. Many of the projects studied offer sample projects.

We welcome this in principle, as it makes it easier to get

started with a new tool. Understandably (from a marketing

perspective), however, these sample projects are designed

precisely to demonstrate only the very easy-to-use features of

the respective tool. The development of new applications that

differ significantly from the sample projects, on the other hand,

often requires a significant training period. Given that rather

little information exists about many of the tools examined,

familiarization with a low-code tool can therefore be more

difficult than familiarization with an established framework

for application development.

Observation 9: Visual editors struggle to offer an appro-
priate level of abstraction. Many of the tools examined offer

visual editors for drag-and-drop editing of models. In our

experience, such editors make it easier to get started because

they show the user their options. However, if the language

is sufficiently complex, such editors can also quickly overload

the user with information by displaying significantly too many

parameters whose effect is not directly understandable. At the

other extreme, such editors offer only very limited possibilities

and then quickly require handwritten code again to achieve the

desired goal.

Observation 10: Many low-code tools are mainly shallow
GUIs for existing general purpose programming languages
(GPLs), DSLs, or database technologies. Often tools are

advertised under the term "low-code" whose main purpose

is a thin wrapper for existing DSLs in the form of a visual

editor. For example, many of the tools examined rely on

SQL tables. This makes it necessary to model corresponding

data structures. Some tools use forms in which the user

(unknowingly) enters essentially the same information as in

a SQL CREATE TABLE statement. While these tools may

be less intimidating to non-computer-scientists due to an

often visually appealing interface, we suspect that in the long

run, learning the underlying (textual) language may be more

efficient.

Overall, when examining the tools, we noticed that many

of them have a similar structure. Fig. 2 provides an overview

of this architecture. Most low-code solutions seem to expect

their developers to model three aspects of the application:

Data structures, behavior, and GUI. The data is modeled

either in the form of class diagrams, forms, or spreadsheets.

Spreadsheets are used in combination with real data where

the first column or row represents the structure and the other

cells are filled with actual data. Behavior is normally modeled

using activity diagrams or business process models. GUIs are

usually modeled using visual drag-and-drop what you see is
what you get-editors. Deviations from this structure exist. For

example, UMLP uses a textual GUI description language.

From a technical perspective, three types of artifacts are

commonly used: 1) SQL databases, whose schemas were

generated from the data models, are mostly used as databases.

2) The behavior of the application is handled via (for the

most part invisible to developers) code of a GPL or a model

interpreter. 3) Frontend definitions. The concrete technology

for the frontend depends on the target platform. Usually, the

code for the behavior and the code for the frontend can be

extended or (partially) replaced by handwritten code.

The code created in this way is then deployed on a cloud

infrastructure. In many cases, the providers of the low-code

tool also act as hosters and also take care of the provision of

the generated application. We assume that in most cases no

own infrastructure is provided here, but infrastructure from

hyperscalers is resold. For example, during our tests, we

found that the IPs that were being used to deliver our web

applications by Outsystems and Fliplet belonged to the IP

range of Amazon CloudFront. Additionally, many low-code

tools utilize 3rd party services to integrate with other popular

services such as Dropbox or Google Sheets.

V. DISCUSSION

Based on our findings, we can observe features favorable for

most low-code tools. While full compliance with all features

is not necessarily required for each platform, some emerge as

859

�
��
��
��
	�

��
��

�

�
��
�

��
��

�
��
���
��
��
�

��
�

��

��

�
��
�

�

�
������ �
���
����
����
�

�������
�

����������
����	�
��
���	� �
���������

! "#$���������

����%��&�����
����	�
'��������(
������������

�(#������	�����
�
���

</>

</>

)�
����������� �
%���� *
����
�&��������

Figure 2. Common architecture of low-code tools.

particularly favorable. Also, there are open challenges LCTs

have to tackle in the future.

A. Observations

Web for the win? Apparently, web-based platforms are

clearly on the rise. This is likely due to the greater approacha-

bility and out-of-the-box usability, even for novice users. The

necessity of a local setup represents an entry hurdle for domain

experts without software engineering experience.

Furthermore, the embedding of external services turned out

to be beneficial for LCTs. Functionalities such as Google

services or notifications are already established technological

standards that can be easily embedded in applications.

Where is the domain-specificity? As domain experts are

usually not software experts, low-code platforms should lever-

age domain-specific modeling techniques and not constitute

mere abstractions of a GPLs. Terminology from the domain

picks up users in their field of knowledge, supporting them in

their modeling activity. However, current LCTs mostly do not

incorporate domain knowledge, which makes it questionable

whether they are currently not rather an aid for skilled soft-

ware developers (who have an intrinsic understanding of the

underlying programming concepts) to work more efficiently.

Integrated hosting—Blessing or curse? Several LCTs pro-

vide integrated deployment and hosting. This is both an

advantage and a disadvantage for users. On the one hand,

direct deployment and hosting offer a convenient solution

to build and use the target system immediately and without

coping with any technological concerns. On the other hand,

this often results in a vendor-lock scenario, as the platform

providers profit from direct hosting, which either prevents or

at least impedes in-house or third-party hosting.

How should the models look like? Most LCTs support

modeling using graphical editors to describe structure and

behavior of the target application. While graphical models

yield various benefits, including improving communication

quality when discussing the models and improving the recall

of design details, textual models can be organized differently

more easy to include additional information, such as design

rationale and can foster understanding of design decisions

better [9]. This suggests that for optimal use, LCTs should

provide boths kinds of views on their models.

Where are the the real-world examples? LCTs aspire to

be used by software developers without formal software engi-

neering education. Yet, most examples we have encountered

were small-scale / toy examples only that leave the intended

LCT users behind once the domain problems to be solved

become more challenging.

Where are the language workbenches? The analyzed

LCTs are not implemented using common language work-

benches. This suggests that this information either is hidden

on purpose or that the modeling languages of the LCTs and

model-processing tooling are crafted without using a language

workbench. If the latter, we can expect LCTs having to deal

with many challenges solved by language workbenches (such

as language composition [10], generation [11], and evolution

of model processors, . . .) manually.

LCT and MDE—"Two sides of the same coin?" [7] This

finding also aligns with [7], stating that MDE and low-code

should complement each other. Therefore, LCTs should be

built on top of already established MDE techniques to harness

their advantages. This also incorporates functionalities usually

provided by default in MDE applications. An example is the

possibility to regenerate multiple times, while many low-code

platforms currently only support a one-shot generation. The

option of retriggering the generation process is essential for

the evolutionary development of a system, in particular, if

additional handwritten code snippets should be integrated. It

860

is also necessary to integrate generated and handwritten code

appropriately while keeping their sources separate (following

the notion of separation of concerns [12]). For this purpose,

LCTs could benefit vastly from known patterns from software

language engineering, such as the generation gap [13] or one

of its extensions [14].

B. Challenges

Computational Thinking. LCTs ultimately aim to enable

domain experts to contribute to or create software solutions

themselves. Obviously, these experts come from a variety

of domains and have internalized various different methods,

concepts, and paradigms to solve challenges in their domain

that may not be directly translatable to software development.

Instead, using an LCT properly often still demands understand-

ing certain concepts from software engineering, such as data

structures, encapsulation, algorithmic thinking, and similar.

Hence, an essential challenge for each LCT is the onboarding

of domain experts into the computational thinking required to

provide useful low-code software solutions.

Brownfield Low-Code. Software projects rarely start com-

pletely from scratch. Likewise, when low-code development is

employed in a context in which large bodies of code reifying

domain knowledge and business expertise already exist, the

integration of low-code with the code base is necessary. With

many LCTs being walled gardens that prevent the users from

accessing the (generated) code, this entails that existing code

must become low-code, i.e., models, as well. This demands

means to extract (LCDP-specific) models from existing code

bases automatically. Otherwise, the manual extraction of LCT

models from code would bind software engineering resources

that the users of LCTs obviously cannot employ.

LCT Migration. Even a walled garden might wither and

when the low-code models therein reify important business

value to their owners, there must be means to migrate models

from one LCT to another. Aside from contrasting the busi-

ness model of many LCTs, this also entails the semantically

correct and, ideally automated, translation of models from the

language(s) of one LCT into the languages of another LCT.

Tailoring LCTs. Most LCTs aim for supporting as many

use cases as possible by using rather generic approaches,

such as providing generic modeling languages for data flows,

data structures, constraints, and views to create some kind of

application. However, in many domains there are very specific

standards, concepts, and terminologies that the respective

domain experts are familiar with and expect to be able to

use [15]. This demands means to easily tailor the modeling

languages of LCTs but also the LCTs themselves to a specific

domain.

VI. RELATED WORK

In the literature, there are several analyses referring to low-

code platforms. While we have already included and discussed

related work inline, in the following, we go into more detail

about other relevant studies in this domain and compare those

with our findings. Primarily, these studies are based on a

purely conceptual investigation. This often omits aspects of

actual usability and technology readiness, which, however,

are important features, especially for low-code platforms to

support citizen developers out-of-the-box [7].

Gartner analyzed numerous low-code platform in one of

their magic quadrants [16], evaluating tools according to their

ability to execute and their completeness of vision. In this

analysis, Outsystems, Mendix and Microsoft Powerapps were

rated best. While Gartner also includes features of the product

in their evaluation, their analysis focuses clearly on business

aspects. Our analysis focuses more clearly on technical aspects

and excludes aspects such as pricing, customer experience

or the business model. Gartner advises software engineering

leaders to develop their low-code tools based on technology

fit, commercial considerations, and developer talent and skills.

Our analysis provides an extended insight to evaluate the

technology fit.

Similar to our study, [17] and [18] analyze the features

of a set of low-code tools. Compared to these studies, our

study offers a lower number of features but a larger number

of tools, giving a broader market overview. Moreover, [17]

also includes an overview of the main components of low-

code platforms, similar to the common architecture identified

in our analysis. A survey of low-code tools with a special

focus on blockchain application can be found in [19].

VII. CONCLUSION

We have investigated the features of 21 low-code tools and

found that the majority of these tools leverages largely domain-

independent modeling techniques using web-based, graphical

editors to create web applications over SQL databases. To

this end, many LCTs also support integrating handwritten

code as well as third-party plugins. The main discriminating

decisions in choosing a LCT seem to be whether (a) a specific

database technology, (b) live collaboration, or (c) desktop

applications are required. To further support LCT users in

choosing the best-suitable LCT, the supported degrees of

automation by the LCT as well as the supported features in the

target applications should be compared as well. Overall, the

lack of truly domain-specific abstractions in the investigated

LCTs suggests that these aim less at being used by domain

experts–unless the domain is web applications–and more by

citizen developers with an interest in software development.

Despite the rather simple modeling techniques encountered in

the LCTs, we found little (documented) reuse of established

language workbenches is as astonishing as well.

ACKNOWLEDGEMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence

Strategy—EXC 2023 Internet of Production—390621612.

Website: https://www.iop.rwth-aachen.de

REFERENCES

[1] R. France and B. Rumpe, “Model-driven Development of Complex Soft-
ware: A Research Roadmap,” Future of Software Engineering (FOSE
’07), pp. 37–54, May 2007.

861

[2] B. Selic, “The pragmatics of model-driven development,” IEEE software,
vol. 20, no. 5, pp. 19–25, 2003.

[3] A. C. Bock and U. Frank, “Low-code platform,” Business & Information
Systems Engineering, vol. 63, pp. 733–740, 2021.

[4] N. Prinz, C. Rentrop, and M. Huber, “Low-code development platforms-
a literature review.” in AMCIS, 2021.

[5] M. Tisi, J.-M. Mottu, D. S. Kolovos, J. De Lara, E. M. Guerra,
D. Di Ruscio, A. Pierantonio, and M. Wimmer, “Lowcomote: Training
the next generation of experts in scalable low-code engineering plat-
forms,” in STAF 2019 Co-Located Events Joint Proceedings: 1st Junior
Researcher Community Event, 2nd International Workshop on Model-
Driven Engineering for Design-Runtime Interaction in Complex Systems,
and 1st Research Project Showcase Workshop co-located with Software
Technologies: Applications and Foundations (STAF 2019), 2019.

[6] A. Bucchiarone, F. Ciccozzi, L. Lambers, A. Pierantonio, M. Tichy,
M. Tisi, A. Wortmann, and V. Zaytsev, “What is the future of modeling?”
IEEE software, vol. 38, no. 2, pp. 119–127, 2021.

[7] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, “Low-code development and model-driven engineering:
Two sides of the same coin?” Software and Systems Modeling, vol. 21,
no. 2, pp. 437–446, 2022.

[8] H. Mehmanesh, S. Gandenberger, A. Weiss, T. Kneist, and
S. Lorenz, “A12 low code für individuelle enterprise software,”
[Online]. Available: https://www.mgm-tp.com/documents/mgm-A12_
Whitepaper_Low-Code-Enterprise-Software_2022_DE.pdf, Last
accessed: 03.06.2023, mgm technology partners GmbH, Tech. Rep.,
2022.

[9] R. Jolak, M. Savary-Leblanc, M. Dalibor, A. Wortmann, R. Hebig,
J. Vincur, I. Polasek, X. Le Pallec, S. Gérard, and M. R. Chaudron,
“Software engineering whispers: The effect of textual vs. graphical soft-
ware design descriptions on software design communication,” Empirical
software engineering, vol. 25, pp. 4427–4471, 2020.

[10] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe,
S. Völkel, and A. Wortmann, “Composition of Heterogeneous Modeling
Languages,” in Model-Driven Engineering and Software Development,
ser. Communications in Computer and Information Science, vol. 580.
Springer, 2015, pp. 45–66.

[11] B. Rumpe, Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

[12] W. L. Hürsch and C. V. Lopes, “Separation of Concerns,” 1995.

[13] J. Vlissides, Pattern Hatching: Design Patterns Applied. Addison-
Wesley Longman Ltd., 1998.

[14] F. Drux, N. Jansen, and B. Rumpe, “A Catalog of Design Patterns for
Compositional Language Engineering,” Journal of Object Technology
(JOT), vol. 21, no. 4, pp. 4:1–13, October 2022.

[15] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, “Modeling
languages in industry 4.0: an extended systematic mapping study,”
Software and Systems Modeling, vol. 19, pp. 67–94, 2020.

[16] P. Vincent, K. Iijima, A. Leow, M. West, and O. Matvitskyy, “Magic
Quadrant for Enterprise Low-Code Application Platforms,” Gartner,
Tech. Rep., 2022.

[17] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting
the understanding and comparison of low-code development platforms,”
in 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2020, pp. 171–178.

[18] A. C. Bock and U. Frank, “In search of the essence of low-code: An
exploratory study of seven development platforms,” in 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), 2021, pp. 57–66.

[19] S. Curty, F. Härer, and H.-G. Fill, “Design of blockchain-based applica-
tions using model-driven engineering and low-code/no-code platforms:
a structured literature review,” Software and Systems Modeling, 2023.
[Online]. Available: https://doi.org/10.1007/s10270-023-01109-1

862

