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Abstract: Al planning aims to automate the reasoning process that underlies the plan formulation
to achieve a particular goal for a particular problem. Research in this field has focused on symbolic
methods -which represent knowledge with human readable symbols- to efficiently and systematically
produce plans, i.e., sequences of actions to be performed, from well-defined problem statements.
Despite advances in leveraging Al for construction planning and scheduling, most construction projects
still adopt fully manual work templates. We outline the current state, challenges, and potentials of
using symbolic Al in construction process planning. We first discuss the challenges in construction
process planning. Then, we summarize potential applications of symbolic Al planning methods in
the construction industry providing a resource for both practitioners and researchers to familiarize
themselves with the potential of these powerful Al methods.
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1 Introduction

Today, artificial intelligence (Al) is frequently linked with machine learning methods, such as deep
learning, that leverages neural networks. Traditionally, there have always been two main paradigms of
Al: symbolic vs. subsymbolic, model-based vs. function-based, or knowledge-driven vs. data-driven
[1]. While advances in the availability of data training, data transmission, and data processing have
given rise to the resurgence of data-driven Al methods, which were considered being of little use in
the “Al winter” of the 1980s, symbolic Al methods enable a plethora of successful applications based
on structured knowledge, such as expert systems, path planners, or production planning. Despite not
being in the spotlight currently, symbolic Al has been with us all the time.
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Al planning is an abstract, explicit reasoning process that selects and organizes sequences of actions
based on their anticipated outcomes. This reasoning seeks to achieve predetermined goals as
efficiently as possible. Automated planning is an Al subdomain that studies this reasoning process
computationally [2]. We believe that automated planning methods, particularly model-based planning
(or so called symbolic Al planning), can facilitate construction planning.

In model-based planning, the controller that selects the next action to be performed is derived
automatically from models of the actions, states, and goals defined in a declarative language like the
Planning Domain Definition Language (PDDL) [3]. Our aim is to provide insights for researchers who
want to use this technique in construction process planning.

Several challenges have hindered the scalability and widespread use of automated planning systems
in construction planning [4]. Construction planning is consequently still mostly done manually, which
results in inefficient plans and arguably contributes to construction’s large environmental impact [5].
Model-based planning can address challenges related to knowledge formalization, inflexible work
templates, and the disconnected nature of planning and scheduling. Towards leveraging model-based
planning in construction, the contributions of this paper are:

1. Summarizing model-based planning methods and their corresponding environmental character-
istics;
2. Reviewing selected applications of model-based planning in fields other than construction; and

3. Discussing the potential application of these planning methods in construction.

Our key insights are twofold: First, complex problems in the construction industry require a hybrid of
model-based planning methods, and these problems all need the probabilistic method. Second, for
the problem of robotic assembly, integrating task and motion planning methods is the most promising
approach, while other problems can be modeled and solved with task planning methods.

We focus more on task planning methods in this paper and do not discuss motion planning methods in
detail. In the remainder, Section 2 discusses construction planning and related automation challenges.
Section 3 introduces the methods of planning, and Section 4 discusses the use of these methods in
other fields. Finally, Section 5 outlines potential use-cases of each method for construction planning
challenges.

2 Planning in Construction

Planning is required for many activities of construction processes, such as allocating labor, equipment,
and material for efficient and economical operations. Sarker, Egbelu, Liao, et al. [6] categorize these
activities into 10 categories, out of which model-based planning can potentially be applied to six:
(1) delivery process of ready mixed concrete (RMC) trucks, (2) resource allocation and leveling (to
reduce peak requirements and resource fluctuation), (3) inspection of partially completed work at
the end of one activity and before the start of the next known as buffer stocks (modeling the link
between processes), (4) planning for linear projects such as railroads and pipelines, (5) time and
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cost estimation, and (6) controlling the cost escalation in big infrastructure projects [6]. Additionally,
model-based planning can support automated assembly (cf. Table 1). Several methods and systems

Table 1: This table shows construction industry planning categories, their scope and application

Planning categories Scope Application

Scheduling and dispatching Dispatching space RMC trucks

Resource allocation and leveling | All projects Equipment. manpower balancing

Buffer stocks Project sites, Procurement Work in progress, work flow reduction, cycle time

Linear projects Highway and road construction Schedululing, traverse operations, cost estimation

Time and cost estimation All projects Risk management, quality assurance, intellectual property
Infrastructure Public project, bridge and highways construction | Cost escalation factor

Automated assembly Project sites, prefabrication Task and motion planning

have been developed so far to automate planning processes. However, construction planning is done
mostly manually because (C1) flexible knowledge formalization is missing for storing construction
models and templates for sequencing algorithms, (C2) current automated scheduling methods are
dependent on manually formed and maintained work templates, (C3) research on automated planning
and scheduling is decoupled, (C4) existing automated planning systems are only partly validated in
real-life construction projects, and (C5) automated learning methods are needed to learn construction
knowledge from existing records without extensive human input [4]. Model-based planning, as
illustrated in the following sections, has the potential to address C1-C3.

3 Planning Methods

Model-based planning for creating the sequence of actions to be performed to reach a specific goal
consists of two main parts: (1) the domain models that define the states, goals, and actions, specified
in a planning language; and (2) the algorithms that use the models to generate the plan [4]. A planner
then inputs the domain models and derives a sequence of actions required for reaching the goal state.
Thus, given an initial state (e.g., concrete hollow core slabs on the ground) and a goal state (e.qg.,
concrete hollow core slabs in their position on the roof) of a problem, planners will use various search
and reasoning techniques to find a sequence of actions leading from the initial state to the goal state.

Depending on the problem environment, search and reasoning techniques differ. For planning
in construction, classical planning, temporal and numerical planning, probabilistic planning, and
hierarchical task networks appear to be promising techniques, which can be used together (hybrid
planning) to address more complex problems. Table 2 defines important characteristics of the planning
environment. Based on the environment characteristics we defined in Table 2, we now define planning
methods.

Classical planning is the problem of planning in deterministic, fully observable, and discrete envi-
ronments [7]. While classical planning answers what to do and in which order, temporal planning
answers when an action takes place and how long it takes for planning in a continuous environment
[7]. The difference between temporal and numerical planning is that in temporal planning, the only
continuous variable is time and all other variables are discrete [8]. However, continuous variables
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Table 2: This table shows the the definitions of environmental characteristics [7]

Task environment characteristics

Definition

Observability

Fully observable

Partially observable

Unobservable

The sensors detect all environmental aspects that are relevant
to the choice of action.

The sensors are noisy and inaccurate or parts of the state are
missing from the sensor data.

There is no sensor.

State transition

Deterministic

The next state of the environment is fully determined by the
current state and the action executed

Actions are characterized by their possible (not deterministic)

Stochastic
outcomes.
. . Discrete The state, time and actions are used as discrete variables.
Time and perception . . . . :
Continuous The state, time and actions are used as continuous variables.

are allowed other than time in numerical planning, but it is insufficient for defining high dimensional
geometrical problems [8].

Probabilistic planning is planning in partially observable, stochastic environments [7]. Markov
Decision Process (MDP) planning is used when the actions have effects that can only be predicted
probabilistically, but the state of the problem is always observable [3]. Partially Observable Markov
Decision Process (POMDP) planning problem is used for problems where the actions have stochastic
effects, but the state cannot be fully observed [3].

Hierarchical Task Networks (HTNs) are methods for solving planning problems that consist of
abstract tasks and their methods (decomposition). Therefore, instead of going through all possible
actions in each state, the methods decompose high-level relevant tasks to build a task network
containing both compound and primitive tasks (actions) [9]. This approach can make the large
problems more manageable.

The methods mentioned above are widely used for solving task planning problems. We also briefly
discuss the problem of motion planning as it is relevant to construction industry challenges: The
challenge of Motion planning is finding a feasible trajectory in space and time [2]. It includes (1)
finding a path in an environment for moving a mobile system from the start position to the goal position
and (2) the control law along the path considering the mobile system’s dynamic limitations (speed,
kinematics, and acceleration). Motion planning requires a geometric CAD model of the environment
with the obstacles and free space; Methods of this planning problem deal with high dimensional
geometry in a continuous environment [2]. Table 3 shows a summary of the mentioned planning
methods and their main environmental characteristics.

Table 3: This table shows the main characteristic of each planning method

Planning methods _ Environmental chglracteristics . .
Observability State transition Time and perception
Classical planning Observable Deterministic Discrete
Numeric and temporal planning - - Continuous
MDP Observable
Probabilistic planning POMDP Partially observable Non deterministic -
Conformant Unobservable
Motion planning methods - - Continuous

33. Forum Bauinformatik, Miinchen, 2022

312



Sherkat, S. et al. FORUM @

4 Applications of Model-Based Planning

4.1 Classical Planning

Classical planning has applications including planning military logistics [10], and RoboCup Logistics
League (RCLL) [8]. However, to use classical planning in non-deterministic and partially observable
real-world problems, abstraction and hierarchy both in activities and in states have been used [8]. In
robotics, a classical planner is rarely used to control a robot’s motors directly. Instead, they usually
assume the robot can perform a set of tasks (tasks defined with classical planning methods). Then,
these tasks could be implemented in a lower-level probabilistic process [11], in custom rule-based
systems [12], or in other ways to control the robot’s motors. In the RCLL scenario for example, the
classical planner does not need to know about the continuous coordinates of the robot and only plans
the discrete move actions between the different machines [8].

4.2 Temporal and Numeric Planning

Robots could use temporal planning to (1) meet a deadline (e.g., complete a task before 6 PM), (2)
meet a time window (e.g., the charging station is only operating between 2 and 4 PM), or (3) coordinate
concurrent activities. Combinations of numeric and temporal planning allow modeling numeric changes
over time, which is useful for resource management (e.g., the battery level) [8]. But, the duration of
actions being executed by robots can only be observed and not controlled directly because many
external factors will affect these durations. To handle this, robots need to determine when to dispatch
each action for execution and to understand when the deviation of observed durations from those in
the model has invalidated the plan [8].

4.3 Probabilistic Planning/ Planning Under Uncertainty

MDPs and POMDPs have been used for optimizing dam management in hydroelectric power plants
because, for example, a valve can get stuck and not respond correctly to a signal from the controller
(stochastic actions), errors in the flow measurement in pipes are common (uncertainty in the state),
or the level in a steam reservoir is a variable that cannot be observed directly (partial observability)
[13]. But probabilistic planning requires a precise representation of the possible states and actions,
which leads to exponential growth of the problem space and limits their use for real-world problems. In
dam management, the challenge of state and action exponential growth has been addressed through
factored representations, which uses Bayesian networks [13]-[15]. Another challenge with using MDP
is that they become difficult to solve for large problems with hundreds of state variables. In this case,
abstraction or decomposition strategies might help [16].

4.4 Motion Planning

Free-space motion is the most basic motion planning problem, in which the agent must just move
across space without colliding with anything [17]. Multimodal motion planning extends the problem
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Table 4: This table shows potential planning methods for each of the construction process categories.

Planning methods
Classical Temporal and Numeric Probabilistic Hierarchical task network Motion planning methods
Scheduling and dispatching of RMC trucks x x x - -

Resources allocation and leveling - x x
Impact of buffers in construction processes
Scheduling linear projects
Time, cost and quality
Large infrastructure projects .

Robotic assembly x - x x x

Construction planning categories

x x

x

X X X X

NOoO O~ WN =

space to include changing the state of other objects in the world [17], [18]. However, for a robot to
act fully autonomously, planning needs to be in a hybrid environment that contains both discrete and
continuous actions and variables. For example, if the problem is packing some boxes into a defined
region, we need to model both discrete (e.g., move, pick, boxes) and continuous (e.g., robot trajectory,
box poses) variables and actions [19]. To solve this, research has devised fully integrated task and
motion planning tools, such as PDDLStream [19].

5 Potential Uses of Model-Based Planning in Construction

Model-based planning can be applied to construction process planning categories and challenges
mentioned in Section 2 . However, construction processes are non-deterministic and large; thus, we
should solve them by combining several planning methods. For instance, scheduling and dispatching
of RMC trucks can be modeled as a hybrid of (1) classical planning for finding the shortest path to the
construction sites, (2) temporal and numeric planning for dispatching hours, costs, and revenues, (3)
probabilistic for considering delays, accidents and other things that can interrupt the delivery process.
Table 4 shows the potential methods for the rest of the construction planning categories.

As shown in Table 4, probabilistic planning is a part of all the construction processes since they are
rarely deterministic. The plan should consider all the possibilities that might happen after performing an
action. However, this is not possible in real world construction problems and requires other measures
as mentioned in Section 4.3.

Temporal and numeric planning can automate schedule planning and schedule optimization in con-
struction projects. For example, costs, labor, material and time are linear continuous variables that can
be planned and scheduled automatically using temporal and numerical planning methods (Table 4).

Classical planning is used for planning parts of the process that include discrete objects. It can be used
to sequence and allocate the tasks in a construction process, since the tasks are discrete variables.

Motion planning is concerned with geometry. So, the kinematic limits of the robots and their trajectory
and path planning in the construction site is done by motion planning. For robotic assembly of building
parts, integrating task and motion planning methods looks promising as it includes both discrete and
continuous actions and variables. For example, the building components are discrete variables and
the location of them are continuous variables.
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Additionally, we can use abstraction and hierarchy (HTN) for modeling larger problem domains, as
shown in the examples in Section 4.

Model-based planning also has the potential to address the challenges In Section 2 : Formal repre-
sentation (C1): each method of planning provides the essential language requirements for formally
representing the problem. Inflexibility of knowledge base (C2): once the model is properly built for
a problem, it can solve any instance of that problem automatically. Also, using probabilistic plan-
ning methods can increase the flexibility of the knowledge base. Decoupled nature of planning and
scheduling (C3): planning and scheduling are merged in temporal and numerical planning.

5.1 Conclusion

Model-based Al planning uses symbols to model the problem and then logic to solve them. Recent
reviews on automated planning in construction suggest that formal representation, the rigidity of
process templates, and the decoupled nature of planning and scheduling are among the reasons that
hinder the use of existing automated planning systems [4]. Based on these insights, we conclude
that different methods for task planning, e.g., classical, temporal, probabilistic, and motion planning
have different advantages, limitations, and applications. Classical planning can be used for parts of
the problems that are discrete, like finding the shortest path in a delivery process. Temporal planning
can be used for processes that include resources and scheduling. Probabilistic planning is a part of
all construction processes. These methods should be used together as construction processes are
complex and cannot be modeled with a single planning method. Finally, a hybrid of task and motion
planning methods has the potential for automating robotic assembly in construction. Discussing the
languages for modeling these methods and planners that solve them using different algorithms and
heuristics, and learning methods are beyond the scope of this paper, but are discussed in [2]-{4], [7],
[20].
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