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A B S T R A C T

The design of mass housing projects, with their complex array of apartment types and constraints, can be
challenging for architects. Automated-organizing programs can assist in exploring various design alternatives,
but the computational cost of checking all possible building organizations grows exponentially. This paper
describes a method that utilizes a variant of the Constraint Satisfaction Problem (CSP) to bound and direct the
growth of search trees. The method allows designers to explore design alternatives using geometrical objects
and incorporates constraints related to daylight and privacy evaluation. Two search tree strategies, breadth-first
search (BFS) and depth-first search (DFS), are implemented using a custom solver, with DFS proving suitable
for larger search trees and BFS being appropriate for searching through the entire tree. By clearly defining
the problem and adjusting the constraints, designers can efficiently explore the design space and obtain valid
building alternatives in a reasonable time.
1. Introduction

Housing is a complex and multifaceted subject with no single defini-
tion or definitive design solution. Therefore, it is necessary to develop
tools and methods that reduce the design complexity. Automated or-
ganizing becomes challenging in residential complexes because, as
the items (apartments) increase, the number of possible organizations
increases exponentially [1]. This exponential growth in computational
space and time poses a difficulty for computational design tools, as they
need to allow designers to explore various results with different sets of
variables.

Design tools should increase productivity and creativity by allowing
designers to explore a wider variety of solutions than they could reach
without computer systems [2]. This paper aims to provide a custom
solver for residential building design that limits the search space and
lets designers control these limits. Thus, designers can guide the search
to achieve solutions with reduced computational requirements.

Constraint Satisfaction Problem (CSP) is a problem-solving
paradigm. To formulate a CSP, we need (1) a set of variables and their
corresponding domains and (2) a set of constraints on the values that
the variables may take. The challenge of CSP is then to find valid values
for each variable within their domain and satisfy the constraints [3].

Efficient generic CSP solvers exist [4,5], but these solvers only
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accept explicit mathematical expressions for defining the problem. In
architecture software (e.g., Rhino 3D), the problems usually include
complex geometric objects that are hard to define directly with math-
ematical expressions. Designers who use this software primarily deal
with geometric objects and are rarely concerned with the underly-
ing mathematical expressions. Thus, the paper presents the following
contributions:

• Introducing a novel custom constraint solver that generates resi-
dential buildings, accepts parameters and constraints as geometri-
cal objects, and utilizes the Grasshopper GUI. Notably, the solver
offers designers more freedom in shape diversity by removing
limitations on the number of inputs and design dimensions.

• Implementing complex geometrical constraints, including day-
light availability and privacy evaluation, within the constraint
solver to prove the concept.

• Testing the constraint solver with three different design examples
to assess its effectiveness and performance.

In the remainder, Section 2 discusses the related work and where
the contribution of this paper lies. Section 3 explains the methodology
and how the solver was developed. Finally, Sections 4 and 5 discuss the
program’s results.
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2. Background

2.1. Constraint Satisfaction Problem (CSP)

To solve CSPs, solvers initially assign values to variables using
search strategies. Subsequently, these strategies search to change the
value of one variable at a time. Optimization problems can also in-
clude search strategies, especially local search methods [6]. Search
algorithms rely on a data structure to track the search tree. For each
node n in the tree, n.parent is the node in the search tree that generated
t, n.action is the action applied to the parent to generate n, and n. cost

is a function that assigns a numeric cost to each path from the initial
node to the current node. Then, the solver will use the cost function to
prioritize specific paths during the search process [6].

In architectural design, a constraint system is defined as the collec-
tion of geometric entities and their corresponding constraints, which
describe the interactions between these entities. In the context of geo-
metric CSPs, the objective is to determine geometric entities’ positions,
orientations, and dimensions to satisfy all the given constraints [7].
CSPs have been used for building layout design [5,8,9], building mass-
ing design [4], façade design [10], 3D object layout design [11,12],
and schematic and layout design for services in a building’s ceiling
void [13]. Methods to solve CSPs in the design field include numeric
optimization, local search, and direct search (branch and bound
methods, and other heuristic procedures) [14].

Note that designers must convert the constraints and parameters
into mathematical expressions to use the CSP solvers that leverage these
three methods.

Numeric optimization: Numeric optimization algorithms optimize
an objective function concerning some variables while constraints are
applied to those variables [6]. Li et al. [8] use a commercial nonlinear
optimization tool, LINGO by LINDO Systems as the solver for layout
design. They use Successive Linear Programming (SLP) and Generalized
Reduced Gradient (GRG) algorithms to optimize and find solutions.
Shikder et al. [9] also use a gradient-based approach for layout design
as the optimization method.

Local search: Local search algorithms begin from a single node and
gradually move to neighboring nodes. These algorithms are inspired
from statistical physics, such as simulated annealing, or from evolution-
ary biology, such as genetic algorithms [6]. Genetic algorithms have
been used to guide the search process for facade design and 3D object
layout design [10,11]. Larive et al. [12] use local search to randomly
instantiate variables and explore their neighborhood based on a cost
function to design a 3D object layout.

In this paper, we do not use these two CSP methods because
the search space consists of discrete objects (apartments) rather than
continuous and numerical variables. Additionally, we aim to decrease
randomness and allow designers to have more control over the search
process. Hence, we have chosen the direct search method.

Direct search: Direct search algorithms use systematic search
strategies to determine the next variable replacement in a CSP. These
search strategies all share basic tree search algorithms and differ
primarily in their selection of the next node to expand(Section 3.2) [6].
The constraints and design parameters must be defined as mathematical
models for the constraint solver engines to perform direct searches.
However, as the complexity of the design elements and parameters
increases, these mathematical models become harder to define, modify,
and debug.

For instance, Donath and Bohme [4] employ two different tools
for designing building massing using direct search. The first tool, OPL
STUDIO 3.7.1 modeling environment, utilizes Depth-First Search (DFS).
However, due to the lack of 3D visualization, they were only able to
solve separate subdomains of the building massing. The second tool,
MAXON’s CINEMA4D XPRESSO visual scripting environment, offered
a GUI but had limitations on shape diversity and the number of blocks.
2

Furthermore, the constraint system had to be modeled as a directed
graph. In another study, Medjdoub et al. [5] use ARCHIPLAN that uti-
lizes DFS for layout planning. They optimize the search by minimizing
a cost function: after it finds the first solution, it uses a cost to bound
the search space further. However, their results are in 2D.

As mentioned above, these papers are confined to simple or 2D
geometries primarily because the problems have to be explicitly defined
as mathematical expressions. Additionally, the number of their input
elements is limited.

2.2. Light and privacy constraints

In this section, we briefly discuss the background regarding the light
and privacy constraints implemented in the constraint solver.

Regarding the privacy condition, we calculate the visible volume
inside one apartment as viewed from the window of another apartment.
Calculating the visible volume has also been used to quantify visual
openness, which is the amount of open space (not built) visible to an
individual at a specific point. Fisher et al. [15,16] have used visual
openness for urban environments and interior design.

For light condition, we use inverse sun rays. Inverse sun rays are
vectors emitted from a point towards the sun’s direction (represented
by the mean point or points corresponding to the sun’s location) to
determine whether a point is in shadow. Schwartz [17] uses inverse
sun rays emitted from several points to assess the potential glare for
pedestrians. Additionally, Miranda et al. [18] use inverse sun rays to
identify how long a given location is in shadow over a given time
period.

3. Methodology

This section begins by providing an overview of the solver’s func-
tion, the tools and languages utilized, the intended users of the solver,
and the inputs required. Section 3.1 explains how using geometric
objects in a CSP facilitates defining complex problems. Subsequently,
detailed explanations regarding the search strategies (Section 3.2) and
constraints (Section 3.3) will follow.

The solver arranges apartments to build a multi-story residential
building on a regular 3D grid as a stack of 2D layers. Hence, all input
apartments must consist of modules whose bounding box dimensions
are identical to other modules and the grid. The solver searches through
the apartment organization alternatives on each iteration and uses
constraints to bound the search tree.

Regarding the tools and language, we use (1) Rhino 3D (a
Computer-Aided Design (CAD) software) to create, modify, and doc-
ument 3D models, and (2) Grasshopper (a visual programming plugin
for Rhino3D) to create and modify 3D models by connecting building
blocks called ‘‘components’’. The solver itself is developed as a new
component within Grasshopper using C# language.

Rhino 3D and Grasshopper use Rhinocommon.dll and Rhino.dll
libraries to create and modify geometries. Therefore, using the same
libraries, we seamlessly input and manipulate geometric objects – built
within Rhino 3D and Grasshopper – in our solver component. We can
then develop the CSP solver and define constraints using these geo-
metric objects. For instance, Fig. 1 illustrates three closed mesh objects
built inside Rhino 3D. We input them into the solver’s component in
Grasshopper, where we can access them as a list and define a simple
constraint using Rhinocommon library functionalities that checks if a
point is inside the meshes.

As for the users, two types of users can benefit from this method:
1. Developers who define new constraints, input parameters, and

search strategies and make modifications to the solver. Developers must
be programming experts familiar with Rhino 3D, Grasshopper, and
their geometric libraries (e.g., Rhinocommon).

2. Designers who use the solver to define their design problems.
Designers only need to be familiar with Rhino 3D and Grasshopper in-
terfaces. They adjust the constraints and solver inputs (already defined

by developers) and explore design alternatives.
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Fig. 1. A geometric constraint for point inclusion in meshes.
Designers can adjust inputs falling into four categories: geometric,
numeric, boolean, and string. Grasshopper provides features for repre-
senting and storing data related to these inputs. In the following, we
give an example for each input type.

Geometric object inputs can include lists of meshes, surfaces, and
other geometric object types. String inputs store data relevant to the
constraints or the solver via text (e.g., specifying ‘‘south’’ for a module
that requires light from the south, as described in Section 3.3.2).
Boolean inputs provide true or false options through button compo-
nents, allowing designers to control the application of specific con-
straints. Numeric inputs can be lists of numbers or single numerical
values, such as specifying the number of floors. The Appendix contains
a figure illustrating the inputs and outputs of the solver.

3.1. Object-oriented data modeling

Object-oriented data modeling describes approaches in which ab-
stract models of software systems are created and systematically trans-
formed into low-level implementations. This approach aims to reduce
the gap between problems and software implementation, while also
hiding the complexities of a system from its users and enabling them
to tackle complex challenges [19].

In this paper, a geometric object is an abstract model of the math-
ematical implementation behind it. We use this approach to define
the geometrically complex challenge of residential building organiza-
tion as a CSP problem. Hence, designers can use constraint satisfac-
tion methods without having to directly engage with the underlying
mathematical formulas.

3.2. Search strategy

There are two classes of direct search for CSPs: Forward Search (FS)
and Backward Search (BS) [20]. We have built a custom FS solver that
employs two tree search strategies, namely Breadth-First Search (BFS)
and Depth-First Search (DFS), to explore the solution space. In our
search tree, each layer of depth corresponds to a floor, and the nodes
represent different possible organizations of apartments on that floor.
BFS expands the root node first and then expands all its successors.
Consequently, all nodes at a given depth in the search tree are expanded
before any node at the next level (Fig. 2-a). Conversely, DFS expands
the deepest node in the current frontier of the search tree. It proceeds
immediately to the deepest level of the search tree, where the nodes
have no successors [6] (Fig. 2-b).
3

BFS: In our solver, BFS examines each floor’s organizations (nodes)
before proceeding to the next floor. Hence, a complete solution (build-
ing) is obtained only when all building alternatives have been explored
until the last floor. BFS is suitable when (1) the number of apartments
and floors is small, (2) the constraints effectively limit the branching,
and (3) all path costs are equal.

Advantages: If there is any solution, it will find it (it is exhaustive) and
yield all the solutions. Additionally, designers can manage the outputs
by floor, enabling computations for specific subsets of floors.

Disadvantages: If the branching factor is not controlled, it can
result in time and computer space limitations because the graph needs
to store the previously expanded nodes. The time and space complexity
of BFS with a depth of d and a branching factor of b would be 𝑂(𝑏𝑑 )[6].

DFS: DFS examines an entire building before moving on to the
next alternative. Backtracking is used to reduce the total number of
calculations. This method is suitable when (1) only a limited number
of solutions are needed, rather than all possible solutions, (2) the
constraints do not effectively bound the branching, and the search
space is big.

Advantages: The computer space problem will reduce because once
a node has been expanded, it can be removed from memory as soon
as all its descendants have been fully explored. For a branching factor
of b and a maximum depth of m, DFS requires the storage of 𝑂(𝑏𝑚)
nodes. We use a variant of DFS called backtracking search, in which
only one successor is generated at a time, and each partially expanded
node remembers the next successor to generate. . Hence, only 𝑂(𝑚)
memory is needed [6].

Disadvantages: Although DFS can be exhaustive in searching the entire
tree, in our case, designers must set a limit for the number of outputs,
making it non-exhaustive.

Designers can improve the DFS by assigning a cost for apartment
attributes. The node with the lowest cost on each floor will be explored
first.

This paper focuses solely on BFS, DFS, and a cost function. Heuristic
search methods can be applied to these search strategies to improve the
search. However, applying them and analyzing how they will affect
the design exploration process is outside the scope of this paper. In
the following paragraphs, we discuss other search strategies, their
practicality, and why we excluded them from solving our problem.

(1) Depth-limited search and (2) iterative deepening depth-first search:
DFS fails in problems with infinite nodes to explore due to infinite
depth. To address this, (1) depth-limited search supplies DFS with a
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Fig. 2. (a) The BFS logic for search (b) The DFS logic for search.
predetermined depth limit l. That is, nodes at depth l will have no
successors. (2) iterative deepening DFS gradually increases the depth
limit, starting from 0 and incrementing by 1, until it reaches the
shallowest goal [6]. In our search tree, the depth corresponds to the
finite number of floors in a building. Hence, these two strategies will
have little benefit to our problem.

(3) Iterative lengthening search: this strategy is like iterative deep-
ening but uses increasing path-cost limit instead of increasing depth
limit [6]. The cost we have introduced in this work is also finite as it
corresponds to the finite number of modules on each floor. Therefore,
this search strategy will have little benefit to our problem.

(4) Bidirectional search: Bidirectional search runs two simultaneous
searches — forward search and backward search. The two searches
should meet in the middle [6]. This strategy would be valuable if we
already knew the buildings’ final organizations and sought only the
sequence of actions that led to these organizations, which is not the
case in our problem.

3.2.1. Creating a grid
In the first step, designers create a 3D grid to define the building’s

boundary and specify four types of points (Fig. 3): (1) a vertically
aligned series of points extending from the first to the last floor that
builds the connection shaft (numeric input set by designers), (2) en-
trance points adjacent to the connection shaft points (numeric input set
by designers), (3) invalid points to which apartments should not move
(geometric input set by designers) (4) valid points to which apartments
can move (automatically processed using previous data).

3.2.2. Data structure
We require a structured approach to facilitate the search process, in-

corporate costs and constraints, and provide organized data for design-
ers to adjust the buildings. The primary classes are Space, Apartment,
and Building: (Fig. 4)

Space: The ‘‘Space’’ class represents an individual module and in-
cludes the following attributes:

1. Type (numeric input set by designers): A whole number (0 to 50)
that specifies the module’s type. Type zero always belongs to the
entrance module, but designers set the other types according to
their preferences. For example, type one could represent a room
module.
4

2. Light (numeric input set by designers): A whole number (0 to 50)
that determines the amount of daylight the module needs. Light
zero is always for modules that do not need any light. Designers
define additional codes based on their needs and specifications
(further details in Section 3.3.2).

3. Mesh (geometric input set by designers): A joined single mesh
that sets the module’s geometry.

4. Cost (numeric input set by designers): A whole number (0 to
50) that prioritizes the nodes for expanding in DFS. The higher
the cost function, the lower the chance of being expanded in the
search.

Other Space attributes will be set automatically during the code
execution.

Apartment: The ‘‘Apartment’’ class represents an individual apart-
ment and includes the following attributes:

1. Space list: a list of the Apartment’s Space class objects
2. Cost: the average cost of the Apartment’s Space objects
3. Rotation angles (numeric input set by designers): rotation angles

specified for the Apartment objects

Building: The ‘‘Building’’ class represents an individual building alter-
native and includes the following attributes:

1. Apartment list: a list of all Apartment class objects in an alter-
native classified by floor

2. Point list: a list of invalid and occupied points of an alternative

3.2.3. Creating the nodes
On each iteration, a selection of apartments will be put around

the shaft in a certain order, and we call each of these alternatives an
apartment organization. To calculate all of the apartment organizations
(nodes of the search tree), designers must set the following inputs:
(Fig. 5 illustrates an example for one floor)

• a list of all the Apartment objects, e.g., {A, B} (Apartment objects
built as explained in Section 3.2.2)

• a list of the number of apartments on each floor, e.g., {2} (nu-
meric input set by designers)

• a list of apartment indexes to be used on each floor, e.g., {(0,1)}
(numeric input set by designers)
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Fig. 3. (a): Different types of points in the building grid representation: (1) red points as the vertical shaft, (2) green points as entrance, (3) crossed points as invalid points, and
(4) white points as valid points. (b): 3D view of the same points in the building grid.
Fig. 4. The hierarchy of classes and their attributes (designers set the attributes marked with (*)).
• a list of available entrance points on each floor, e.g., {0,1,2,3}
(numeric input set by designers)

First, we calculate the ‘‘combination with repetition’’ for apart-
ments on each floor separately. This example considers two kinds
of apartments (A, B) to choose from, and we want two apartments
on the floor. Consequently, the number of possibilities for choosing
apartments would be 𝐶(𝑛, 𝑟) (Fig. 5-b).

𝐶 =
(

𝑛 + 𝑟 − 1
𝑟

)

(1)

Second, we calculate all possible positions to which these apartment
combinations can move. We use ‘‘permutations without repetition’’ for
entrance point indexes. The number of possible positions would be
𝑃 (𝑛, 𝑟) (Fig. 5-a).

𝑃 = 𝑛!
(𝑛 − 𝑟)!

(2)

Now, the total number of possible organizations for this floor would be:

𝐽 = 𝐶 × 𝑃 (3)

In some cases, repetitive organizations (K) can occur. For example,
if the chosen apartment selection is (A, A), then the positions (0,1) and
(1,0) would be identical. K is calculated with a function that substitute
each position on a floor with the apartment indexes and deletes the
identical organizations; the number of unique organizations for each
5

floor would be:

𝐼 = 𝐽 −𝐾 (4)

Given that we have all the positions for each floor, the solver searches
through them and checks the constraints to find the solutions.

3.2.4. Breadth-First search
We show the unique organizations of each floor n as 𝐼𝑛 (Eq. (4)), and

the unique organizations that have satisfied all the constraints as 𝐼∗𝑛 .
The solver first applies the constraints to all the selections of apartments
and positions for the first floor (𝐼1). Then, only the organizations that
satisfy all the constraints, 𝐼∗1 , are outputted for the next floor. Hence,
the number of outputs that need to be evaluated for the second floor is
as follows:

𝑁 =
(

𝐼∗1
)

×
(

𝐼2
)

(5)

3.2.5. Depth-First search
The solver goes from the first to the last floor for each building

on each iteration. So, the maximum number of unique organizations
stored and checked for each iteration is equal to the number of floors
(one unique organization per floor). If a node fails to satisfy all the
constraints, the iteration backtracks to the previous node, and none
of the nodes after the invalid one will be expanded. Additionally,
designers can guide the search by assigning costs to the Space objects.
In this case, the branch with the least cost will be selected first.
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Fig. 5. (a) Permutation without repetition for entrance point indexes of the floor (b) Combination with repetition for apartment indexes.
3.3. Constraints

Definition of constraints directly affects the performance of the
solver and the quality of its outputs. Therefore, it is essential to define
constraints that effectively limit the search space and are computa-
tionally easy to evaluate. We have implemented three examples of
geometrical constraints to test the method: overlapping, light, and
privacy. We choose the light and privacy constraints for two reasons:
(1) they require complex geometrical calculations, and (2) they are
common in designing residential complexes. These constraints use geo-
metric objects rather than direct mathematical inputs. For instance, we
represent a circle as an object rather than defining it using the equation
(𝑥−ℎ)2+(𝑦−𝑘)2 = 𝑟2, where (ℎ, 𝑘) represents the center and 𝑟 represents
the radius of the circle (Section 3.1).

3.3.1. Overlapping
The overlapping constraint checks if any module center falls within

the invalid points list and detects module overlap.

3.3.2. Light
The Light constraint checks if the modules of an Apartment object

receive enough light. This constraint optimizes the calculation process
through two approaches: (1) emitting rays from the module’s faces
rather than the sky (inverse sun rays) and (2) specifying the faces of
the apartment that require evaluation. The Space class (Section 3.2.2)
includes information about which faces can receive light. Designers
specify this information using string inputs. For instance, if a module
can receive light from the south or east, designers input ‘‘south, east’’.
These designated faces are referred to as valid faces. Other inputs
include:

1. Ray vectors (geometric input set by designers): Designers input
a list of vector objects. These vectors represent the rays emitted
from module faces, which can be the negative vector of average
sun rays or custom rays.

2. Light receiving surfaces (geometric input set by designers): Design-
ers input a list of surface objects surrounding the building. Light
rays travel from the points located on the valid faces of a module
towards the direction of ray vectors. Then, if these rays intersect
with the light-receiving surfaces, the rays would be considered
successful — light can reach that point on the module’s face
(Fig. 6-a).

3. Accuracy (numeric input set by designers): Designers input a num-
ber for accuracy, indicating the number of rays emitted from
each face.

4. Light obstacles (geometric input set by designers): Designers input a
list of solid objects (cubes, cuboids, etc.), representing obstacles
that may obstruct light.
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5. The number of reflections (numeric input set by designers): Design-
ers input a number that represents how many times an emitted
ray can be reflected. This parameter is adjustable if designers
want to consider indirect light. However, for simplicity, indirect
rays reflected from other blocks will not be calculated (Fig. 6-c).

Based on each module’s light setting (valid faces), the solver checks the
light constraint module by module. For each face, a list of rays, equal
in number to the specified accuracy (a) will be emitted in the direction
of the ray vectors (with the constraint that the angle between the ray
vectors and the face’s normal vector does not exceed 90 degrees). The
rays will succeed if they reach the light receiving surfaces (Fig. 6-a). The
solver then calculates the number of successful rays (s) for that face.
Based on the ratio (b) (set by default to 0.5, but is adjustable), the
constraint 𝑠 > 𝑎× 𝑏 is evaluated as either true or false (Fig. 6-b). If any
module fails to satisfy the light condition, the corresponding alternative
is discarded.

Once the alternatives are generated, designers can access all objects
attributes. For example, designers can access the successful ray origins,
which can help them in determining optimal window positioning.

3.3.3. Privacy
The privacy constraint checks the privacy between two modules

with windows from different apartments. It minimizes calculations by
checking only two numbers:

• Distance (numeric input set by designers): the distance between
the centers of the windows in two different apartment modules
(Fig. 7-b).

• Angle (numeric input set by designers): the angle between the
normal vector of the face and the line connecting the centers of
the two faces. The angle is denoted as 𝛼 for one face and 𝛽 for
the other face (Fig. 7-b).

Designers must input two limit values:
(1) Maximum distance value: Beyond this distance, privacy checking

becomes unnecessary. The distance value will be checked when the
privacy constraint executes between two modules. If the distance is
lower than the input limit, the angle 𝛼 is checked.

(2) Maximum 𝛼 value: This angle represents the threshold be-
yond which the visible volume is considered unacceptable. The max-
imum 𝛼 value is denoted as 𝛼∗, and the ratio of the visible volume
(

visible volume
modules’ volume × 100

)

as r. Designers use a separate algorithm to find

the 𝛼∗ value based on the input r value. This algorithm (1) calculates
the visible volume from another module’s window while changing
𝛼 (with adjustable window locations), and (2) uses the Galapagos1

component to calculate 𝛼∗ parameter with a fixed 𝑦 value and variable 𝑥
values (Fig. 7-a). Finally, the solver checks the constraint ((𝛼 ∣ 𝛽) > 𝛼∗).

1 The Galapagos component is an optimization tool within Grasshopper
plugin that utilizes evolutionary and annealing algorithms.



Automation in Construction 154 (2023) 104995S. Sherkat et al.
Fig. 6. (a) The process of checking light conditions for each module (b) Module face indexes and designers’ light condition settings (c) Maximum reflection count for a face
(higher values impact search speed).
Fig. 7. (a) The visible volume from another apartment (b) Calculation of the 𝛼 value (changing the 𝑥 value impacts 𝛼 and (d).
3.4. Constraint propagation

Constraint propagation communicates the domain reduction of a
variable to all of the constraints applied to this variable. Hence, con-
straint propagation reduces the variables’ domain. This process contin-
ues until no more variable domain can be reduced or when a domain
becomes empty, resulting in a failure [6].

For instance, if the number of apartments to be organized on a floor
exceeds the number of valid entrance points on that floor, the search
will not start. Similarly, if a module is only set to receive light from one
face, and that face is connected to another module within the same
7

apartment, the light constraint would not be checked for the entire
apartment. Hence, the domain of the apartments reduces.

Designers can adjust the constraints and the search process. So, the
more ‘‘strict’’ the constraints are set, the more variable domains will
be reduced. To illustrate this, we provide examples for each constraint
to clarify what we mean by ‘‘strict’’. (1) In the light constraint, each
module can receive light from four faces (south, east, north, and
west). Therefore, a module that can receive light from only one face
(e.g., south) has a stricter constraint compared to a module that can
receive light from three faces (e.g., south OR east OR north). (2) In the
privacy constraint, a ratio of the visible area (Section 3.3.3) between 5
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(

Table 1
The setting for E1.

Integer and Boolean inputs String inputs Apartment data

Module dimensions 5 ∗ 5 ∗ 3 (m)

Light conditions

North 1

A

Module Id Type Light Cost

Floor count 4 West 0 0 0 0

Light constraint On North 2 1 2 3 0
Privacy constraint On East 2 1 0 0

Apartment count on each floor

Floor Apartment count South 3 3 3 1 0

1 2 East 4 1 0 0

2 2
Privacy data

Distance 15
B

0 3 1 0
3 2 Angle 60 1 1 0 0
4 1 2 0 0 0
to 15% is more strict than a ratio exceeding 70%. (3) In the overlapping
constraint, limiting the valid entrance points from the beginning is
more strict than allowing all the entrance points to be available.

3.5. After outputting the alternatives

Designers must input geometries with only the necessary details
because this solver is particularly suitable for the design exploration
stage. Further details can be added after the alternatives are outputted.
Designers can still explore the design, add details such as windows and
structure, and access the data of each building alternative through the
object-oriented data model we have created. For example, a designer
can select certain types of apartment modules (Section 3.2.2) to add
detail to them.

3.6. Examples

We introduce three different settings for testing our method. Each
of the modules of the apartments has an ID (Fig. 8), based on which
Type and Light codes have been assigned (Section 3.2.2).

E1: Only two apartments are used, and the number of floors is set
to four. We use both light and privacy constraints for this example. We
have defined three light conditions, each can receive light from two
sides. For privacy, we set the visible volume to 10 percent, resulting in
an angle of 60 (Table 1).

E2: Four different apartments have been used, and the number of
floors is set to three. Both light and privacy constraints are active, and
we have defined four light conditions. Additionally, we changed the
visible volume for privacy to 15 percent, which resulted in an angle of
50 (Table 2).

E3: Eight different apartments have been used, and the number of
floors is increased to eight. Again, both light and privacy constraints
are active. We have defined five light conditions, and privacy constraint
details are the same as in E2 (Tables 3 and 4).

4. Results

There is no specific building alternative solution for this method,
and the results depend on designers and their inputs. We show some
of the valid alternatives created by our solver using the three examples
E1, E2, and E3.

For E1 and E2, we first use the BFS algorithm and assign no cost.
In these examples, BFS is suitable because we have inputted a few
apartments (two for E1 and four for E2) and activated both light
and privacy constraints. Therefore, we can search for all the valid
alternatives. As a result, the solver outputs seven valid alternatives in
40 s2 for E1 (Fig. 9) and forty-three valid alternatives in 5.1 min for E2.
Fig. 10 illustrates four randomly selected outputs from these forty-three
alternatives.

2 We used Asus G551jw, Intel Core i7-4720HQ, NVIDIA GeForce GTX 960M
4 GB GDDR5), and 16 GB DDR3.
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To compare the two search strategies, we conduct a DFS for E2 with
the same setting as Table 2 without using cost. We set the limit for the
number of outputs to four. Hence, the solver computed the four valid
alternatives in 1.4 min (Fig. 11).

The time needed for a DFS depends on where the solutions lie in
the search tree. In the worst case, this time will be the same as BFS.
However, the required computer space makes DFS more suitable for
larger search trees. Note that these four alternatives would be identical
to alternatives 0 to 3 produced by BFS because we assigned no cost.

The four outputs of DFS are illustrated in Fig. 12 when we assign a
cost value of 2 to all modules with type 2 (Table 2-the empty frame),
and a cost value of 1 to the remaining modules. This approach allows
the search to prioritize alternatives with lower path costs.

Finally, E3 tests a more complex design with eight floors and eight
apartments to evaluate the solver on larger-scale designs. Since this
setting will have many solutions, we only use DFS to solve it and set
the limit for the number of outputs to 50. This setting will provide us
with the first 50 valid alternatives in the search tree. Fig. 13 shows
four of these 50 outputs. It took 40.7 min for the solver to output the
first 50 solutions, which proves that the computer will not run out of
space while calculating the solutions, but it takes more time to find
and output 50 valid alternatives. Additionally, because of the way DFS
performs the search, we can see that the first 50 solutions only differ
on the top floor (deeper layers of the search tree).

5. Discussion and conclusion

Conducting a direct search in the solutions domain is computa-
tionally expensive for organizing a residential complex because the
search tree (building alternatives) grows exponentially as the number
of apartments and floors increases.

We have utilized object-oriented data modeling to build a CSP
solver within the Grasshopper plugin in Rhino 3D. The solver conducts
BFS and DFS without requiring strict mathematical models for defining
the problems and constraints.

Our CSP solver has two types of users: developers who edit the
solver and create its inputs and constraints, and designers who utilize
the solver to define their design problem. Developers can define objec-
tives and conditions via geometrical objects and the features of Rhino
3D/Grasshopper. Conversely, designers can define their design problem
as a CSP using the Rhino 3D/Grasshopper interfaces and control the
search process by setting cost functions and adjusting the constraints
(Section 3.4).

Regarding the search methods, designers can use each search
method for a different purpose:

DFS is more suitable when dealing with large search trees where
computing all the answers is unnecessary. However, in large-scale
problems with numerous solutions, designers should adjust the number
and types of apartments for each floor separately to have more variety
on lower floors.

BFS provides all the valid solutions exhaustively but is practical only
when the search tree is small and the constraints effectively limit the
growth of the search tree.
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Fig. 8. Apartments used in the examples one,two, and three.

Fig. 9. All the seven alternatives from BFS (Table 1).
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Table 2
The setting for E2.

Integer and Boolean inputs String inputs Apartment data

Module dimensions 5 ∗ 5 ∗ 3 (m)

Light conditions

West 1 Module Id Type Light Cost

Floor count 3 North 2 A
0 0 0 0

Light constraint On East 1 2 2 0

Privacy constraint On South
3

2 3 3 0

Apartment count on each floor

Floor Apartment count East 3 3 3 0

1 3
South 4

B

0 1 1 0

Privacy data

Distance 12

1 0 0 0
2 2 4 0

2 3 C
0 1 2 0
1 0 0 0

Angle 50
2 2 3 0

3 3 D 0 0 0 0
1 1 3 0
Table 3
The setting for E3.
Integer and Boolean inputs String Inputs

Module dimensions 5.5.3 (m)

Light condition

North 1

Floor count 8 North 2
Light condition On East

Privacy condition On South 3
East

Apartment count on each floor

Floor Apartment count South 4

1,2 3,3 North

3,4 3,2 South 5

5,6 2,2 Privacy condition Distance 15
7,8 3,2 Angle 60
Table 4
The apartments input setting for E3.

Apartment A B C D E F G H

Module ID 0 1 0 1 0 1 2 3 0 1 2 3 4 0 1 2 0 1 2 3 4 0 1 2 0 1 2
Type 0 1 0 1 0 1 1 2 1 0 1 1 2 0 1 2 0 1 1 1 2 2 0 1 1 2 0
Light 2 3 4 3 0 3 2 5 0 3 2 3 2 0 2 5 0 0 4 3 3 3 0 2 2 2 3
Fig. 10. Four randomly selected alternatives out of 43 from BFS (Table 2).
As for constraints, we have implemented three geometrical con-

straints in the solver to prove the concept: overlapping, light, and

privacy. In the light constraint, light rays originate from each face and
10
will get calculated if caught by the light catchers. For the privacy con-

straint, each pair of modules is evaluated based on the distance between

windows and an angle corresponding to the observable volume.
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Fig. 11. Four valid alternatives from DFS (no cost assigned, Table 2).
Fig. 12. Four valid alternatives from DFS (cost assigned to the framed module).
Fig. 13. Four valid alternatives from DFS (eight floors and apartments, Tables 3 and 4).
Future improvements for our solver include: (1) Developers can add
new constraints. These constraints can be existing simulators imple-
mented as black boxes within the solver. However, the efficiency of
these simulators may vary due to differences in data modeling struc-
ture. Future research can explore adapting their logic to a similar data
model as our solver. (2) Developers can add heuristic search methods
that allow designers to perform A* search, greedy best-first search, and
explore the design space more effectively in large-scale problems. (3) A
survey can be conducted to compare the process of designing using our
solver with other solvers that rely on purely mathematical inputs. (4)
Finally, the solver can be made available as a plugin for Grasshopper.
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