2024 |EEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA) | 979-8-3503-6123-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/ETFA61755.2024.10710740

Toward Automating the Composition of Digital
Twins within System-of-Systems

Milapji Singh Gill*, Jingxi Zhang', Andreas Wortmann®, Alexander Fay?
*Institute of Automation Technology
Helmut Schmidt University Hamburg, Germany

milapji.gill@hsu-hh.de
tInstitute of Control Engineering of Machine Tools and Manufacturing Units
University of Stuttgart, Germany
{jingxi.zhang, andreas.wortmann}@isw.uni-stuttgart.de
Chair of Automation
Ruhr University Bochum, Germany

alexander.fay@rub.de

Abstract—Cyber-Physical Production Systems necessitate effi-
cient configuration and continuous reconfiguration to adapt to
evolving requirements and shifting goals. This process involves
integrating various system structures to derive new functions
and behaviors. The concept of the Digital Twin, which allows for
effective integration and testing, is instrumental in facilitating this
task. However, a fundamental prerequisite is that Digital Twins of
individual system components must be composed efficiently and
in accordance with dynamic System-of-Systems. We address this
challenge by introducing an approach for the automated horizon-
tal and vertical composition of Digital Twins, aimed at minimizing
manual intervention and enhancing adaptability. Therefore, a
pipeline specifically designed for this goal is proposed, which
includes the generation of new functions and behaviors. This
approach is intended to provide a foundation for future research.

Index Terms—Digital Twins, System-of-Systems, Composition,
Integration, Cyber-Physical Systems

I. INTRODUCTION

Rapidly changing customer requirements and production
goals increase the demand for modular and interoperable
production systems. In this regard, the System-of-Systems
(SoS) approach offers significant potential for flexible and
adaptable production by incorporating various Cyber-Physical
Systems (CPS) [1], [2]. In this framework, CPSs must undergo
both horizontal and vertical composition with other CPSs
throughout their life cycle, enabling the development of new
functions not possible with standalone systems (see. Fig. 1)
[2]. Horizontally, this composition involves linking systems
across different process steps during operation, thereby fa-
cilitating the exchange of materials, energy, and information
within manufacturing networks [3]. Vertically, CPS composi-
tion encompasses the integration of systems at various hierar-
chical levels within engineering, from field devices up to the
enterprise level (e.g., according to the Reference Architecture
for Industry 4.0 (RAMI 4.0)) [4].

In this context, Digital Twins (DTs), serving as “virtual rep-
resentations” of physical assets, play a vital role in CPSs. DTs
manage and integrate data and digital models across the asset
life cycle, enabling essential digital services [S5]. They support

Process 1 Process n

r———\

f———\

Station

Control
Device

|
I
I
I
I
I
I
I
I
I

I
o
o
||
T
|
|
L
I
I

©)

-~

Field
Device

-~ [

-

Physical Space Virtual Space (Digital Twins)

Fig. 1. Horizontal and vertical composition of DTs

bidirectional data exchange for real-time asset monitoring and
actions in virtual space to adjust the behavior [6]. Moreover,
DTs support varied applications, from virtual commissioning
to predictive maintenance [7]. Their role is also critical in
the automated composition of systems, from individual CPS
to comprehensive Cyber-Physical Production Systems (CPPS)
[8], [9]. However, for the effective deployment, DTs must
be efficiently synchronized with the corresponding composed
SoS. Currently, a high effort and manual intervention is
needed for this task. To increase efficiency, more automation
is required to integrate evolving system structures and develop
composed DT functions and behaviors.

Thus, an outline of a pipeline for the automated com-
position of DTs in the context of SoS is sketched in this
contribution. Sec. II introduces key requirements for this goal,
followed by a description of the pipeline in Sec. III. In Sec.
IV, related approaches are analyzed with regard to specific
pipeline constituents. Finally, Sec. V summarizes the presented
contribution and highlights directions for future work.

Authorized licensed use limited to: Universite de Rennes 1. Downloaded on March 08,2025 at 09:34:48 UTC from IEEE Xplore. Restrictions apply.

II. REQUIREMENTS

R1: Domain-Specific Semantic and Standard-Based Ex-
pression of DT Information

The first requirement focuses on integrating and ensuring
interoperability among DT components, such as data, digital
models, and digital services. The varied origins of DTs present
challenges in harmonizing their structures, functions, and
behaviors, complicating automated composition. To address
this, a formal semantic model is necessary, based on domain-
specific standards, that clearly and unambiguously describes
all relevant DT information [10], [11]. This semantic model
alongside a meta model, which includes information of the
targeted SoS, is essential for facilitating further composition
and ensuring consistent integration across the pipeline.

R2: Parsing of DT Information for Composition

The composition of DTs relies on seamless interoperability
of DT components. DTs contain data and digital models
from different domains, necessitating cohesive meta models
for input artifacts that integrate diverse domain expertise and
distributed data [10]. Leveraging domain-specific languages
(DSLs) allows domain experts to contribute effectively, us-
ing their preferred modeling methods [12]. These DSLs are
commonly designed in language workbenches (LWBs) that
automatically provide an infrastructure for model parsing and
interpretation.

R3: Automatic Generation of Composed DT Functions

In CPPS, CPSs are often composed both horizontally and
vertically, requiring efficient, automated generation of corre-
sponding composed DT functions [2]. To ensure consistency,
correctness, and interoperability across abstraction layers, it
is essential to use a formal representation of DT components
[13]. These formal models enable a systematic synthesis of
data and logical inference of new DT functions, facilitating the
integration and inference of higher-level DT functions using
domain-specific knowledge [14]. This ensures reliable and
accurate automatic generation of new DT functions, crucial
for the effective operation of CPPS.

R4: Automatic Generation of Composed DT Behavior

Another key pipeline constituent is the automated generation
of DT behavior according to newly composed DT functions.
Effective automation requires addressing challenges in gen-
erating diverse behavior models from these functions. These
include maintaining precision in behavior rules, ensuring flex-
ibility for dynamic changes, achieving interoperability across
CPS components, and allowing domain experts to influence
behavior specifications easily. Additionally, automated code
generation is necessary to efficiently translate these behavior
models into executable code. Addressing these issues is crucial
for maintaining the consistency, correctness, and adaptability
of DT behavior. [3]

RS: Automatic Validation and Verification

Automated validation and verification of DTs must re-
solve component conflicts to ensure specifications and CPS
integrity. It is crucial to confirm that composed DTs function
as intended and implement their behaviors correctly in real-
world contexts. Semantic soundness validation is essential,

requiring checks against domain-specific rules and objectives
[15]. This includes assessing how well DTs meet targets, such
as providing a comprehensive manufacturing system overview
as key performance indicators. Finally, detailed reports must
document the process’s effectiveness, offering insights into the
performance as well as reliability of composed DTs.

III. PIPELINE FOR THE AUTOMATIC COMPOSITION OF
DIGITAL TWINS

A. Overview

We propose the following pipeline in Fig. 2 with differ-
ent engines for the composition of DTs to accomplish an
automated integration. The input includes the semantic DT
model, supplemented by formal artifacts such as rules and
constraints, and meta models for specific pipeline constituents.
These are parsed into an abstract syntax tree (AST) containing
all semantic DT information required for composition (/.
Parser Engine). From this AST, the semantic DT model, which
includes the formal description of functions, is used together
with the meta model as well es formal rules for inferring new
functions with reasoning mechanisms and a rule engine (2.
Composition Engine). Naturally, the automatic composition
can result in unwanted functions and safety risks. Therefore,
formal validation is necessary to comply with rapidly changing
safety regulations (3. Validation Engine)'. Finally these new
composed DT functions are used for code (behavior model)
and report generation (4. Generator Engine).

B. Semantic Digital Twin Model

Given the diversity of DTs from various manufacturers and
the heterogeneity of their data sources, a unified semantic DT
model employing domain-specific standardized terminology
and relationships is crucial for integrating data, digital models,
and digital services throughout the pipeline. The use of formal
models like ontologies provides machine-readable descrip-
tions vital for automated integration and enables reasoning
mechanisms in the Composition Engine to accurately infer
new functions from updated structures. Selecting a top-level
ontology relevant to the specific domain is essential for ef-
fectively integrating and ensuring the interoperability of DTs.
This ontology serves as the foundational semantic framework
for the composition process. Thus, a comprehensive semantic
DT model must encompass details about both the DT and
its physical counterpart. Additionally, specifying the technical
interfaces necessary for function execution is essential for
operation. Beyond the content of the semantic DT model, the
use of modular and standards-based ontology design patterns,
tailored to specific information needs and use cases, is vital for
continuous adaptation of the semantic DT model [11]. These
design patterns provide standardized templates that experts
can employ to describe relevant aspects of the DT, including
its functions, structures, and behaviors. For the integrity and
validity of the composed DTs, providing validation rules and

'OSHA safety regulation standards:

interlinking/standards/1910.212

https://www.osha.gov/laws-regs/

Authorized licensed use limited to: Universite de Rennes 1. Downloaded on March 08,2025 at 09:34:48 UTC from IEEE Xplore. Restrictions apply.

¢ : "-\ K’ \
| Semantic DT Model : 1. Parser Engine Lesend
_______________________ egen
t ~ 1 MetaModelsof & . |
i ' | Semantic DT Models | £ nema Artifacts
! 1 e — X a | representation —f 000000000 tomomememeomemoocooeoooooooooo
] ! ; ;] | |
' Rules a.nd Ontology Design Patterns i >i Semantic DT N-’Iode\sE _______ AST . [Pipeline Constituents]
N - SN J
——» Artifact Flow
3. Validation Engine 4. Generator Engine
”””””” i Elpgrmnimrea Qe : P Emposed BT
> I Function Rules ! :Design Patterns: \ Behavior |
| posed DT — ’ ____Report —— Cly o | s
> ion E P — o Y —— P —— o — ‘
i function | i Composed DT ¥ Composed DT | | “Composed DT} *'Composed DT}
_ ... Function ‘ Functlon/ L_..function _..Function__

Fig. 2. Pipeline for the composition of DT functions, divided into four core steps.

constraints to the Validation Engine is advantageous. In this
context, the Shapes Constraint Language (SHACL) can be uti-
lized for data structure validation in order to ensure adherence
to the defined semantic DT model. Furthermore, applying the
Semantic Web Rule Language (SWRL) can enforce complex
rules (e.g. regulatory rules), ensuring consistent and correct
functions across the composed DTs.

C. Parser and Composition Engine

For effective DT function composition, semantic DT mod-
els are parsed into an AST for internal representation and
reuse. These models, along with the semantic DT function
descriptions, are utilized in the following process. When
considering DT functions and interfaces of DTs, it’s necessary
for functions required by one DT and provided by another
to conform to a specific schema. Each DT function, tied to
both structure and behavior models, must define clear pre-
and post-conditions related to its potential behavior. Based
on defined structure models with an underlying meta model,
models can be composed by integrating one structure with
another. Behavior models must be adapted to conform to
both the structure and the meta model. Importantly, behavior
models must also adhere to a meta model. For instance,
structural integrity can be leveraged to infer new structures,
and defined behaviors can predict all potential behaviors.
Using an ontology of behavior and structure combinations,
models can be composed with reasoning mechanisms and
a rule engine. Syntactic correctness is ensured as the new
composed DT function adheres to predefined syntax, while
semantic correctness is verified by validating the composed
function models. In adaptation to previous research [3], the
composition of Business Process Model Notation (BPMN) for
modelling the behavior alongside of class diagrams as a struc-
tural component can be treated as a horizontal composition.
While an abstraction in a vertical direction involves creating an
overview of the system as a whole. For instance, a horizontal
composition involves integrating a machine tool with a multi-
axis robot, while a vertical composition integrates this system
into a product assembly line. As the DT functions are related to
their behaviors, the latter are derived from the former. Overall

a composed DT function will provide a composition of these
pre- and post-conditions. These conditions can be considered
for validation against validation rules.

D. Validation and Generator Engine

Other than the DT functions, function rules can be derived
from requirements documents or functionality regulations.
Using a language such as SWRL, these regulations can be
formalized for validation as function rules. This enables test
engineers to verify composed DT functions against constraints
and regulations within their preferred domain. For instance,
a robotic arm’s degree of freedom in a product line might
be restricted to avoid damaging nearby infrastructure due to
space constraints. Test engineers design simulations to test
composed functions, ensuring semantic soundness by defin-
ing function rules, such as preventing contradictory control
commands in machine tool behaviors. The validation strategy
involves checking the generated composed DT function against
function rules. Specifically, the structure and behavior must
be tested against limitations and goals, for example, collision
detection in a simulation using 3D CAD models. Output
artifacts of this step are the validation report and the composed
DT function, which is passed to the Generator Engine. Using
design patterns, these functions are used to generate the code
to provide the composed DT behavior to the physical machine.
These templates are required for code generation, e.g. Java
code or a CNC program.

IV. RELATED APPROACHES

In the context of semantic DT models, the German Industry
4.0 initiative has pioneered setting DT description standards
through Asset Administration Shells (AAS) available in var-
ious serializations like XML and JSON [10]. Bader and
Maleshkova [13] advanced this with a formally structured,
RDF-based AAS, suitable for semantic DT models. How-
ever, for thorough horizontal and vertical DT integration, the
metamodel requires additional refinements. The digital shadow
metamodel by Becker et al. [16] and the ontology development
method by Hildebrandt et al. [11] offer robust frameworks
for expanding these models, focusing on modular, reusable,

Authorized licensed use limited to: Universite de Rennes 1. Downloaded on March 08,2025 at 09:34:48 UTC from IEEE Xplore. Restrictions apply.

and standards-based ontology design patterns for detailed DT
descriptions.

With regard to the Composition Engine, one method for
composing functions involves using an ontology, as demon-
strated by Elhabbash et al. [17], who integrated four key
aspects (user, environment, platform, and services) into an
OWL ontology termed holons. Composing such holons neces-
sitates defining the required and provided interfaces. However,
their work does not address the nuances of horizontal or
vertical composition of functions. In contrast, a model-based
approach by another study [3] facilitates the development of
system functions by modeling machine functions with gaps
filled by domain experts using tools like the BPMN. This
approach leads to an executable BPMN that represents a form
of horizontal composition but lacks a vertical perspective.
Another study [14] focused on a modeling technique for 3D-
CAD information within an ontology, achieving a vertical
composition by integrating kinematic functions with geometric
descriptions. Yet, this approach does not encompass horizontal
composition or a broader model-based strategy. LWBs, such
as Xtext [18], provide an infrastructure for compositional
development and formal validation of domain-specific lan-
guages. Recent enhancements in LWBs support design time
validation of domain-specific languages [12], using rules to
ensure component semantics within specific domains. Further,
validation scenarios defined by Soernig et al. [15] are used
to conform models to metamodels using DSL derived rules,
enhancing DT function validation.

V. SUMMARY AND FUTURE WORK

This paper presented a pipeline designed for the automated
composition of DTs within SoS. It addresses both vertical and
horizontal DT composition by leveraging formal artifacts (e.g.
semantic DT model) and using DSLs. The combination of both
is vital within the pipeline. Firstly, the semantic DT model
is essential for the Composition Engine to develop new DT
functions. Secondly, the output from this step is validated and
verified, enabling the automatic generation of new code for
the revised behavior of the DT with DSLs. This pipeline is
set to support the concurrent composition of DTs within SoS.

Future research should prioritize enhancing the pipeline
constituents introduced here. Critical advancements include
refining the semantic DT model to ensure a standardized, clear
description of both physical and virtual elements, specifically
necessary DT information within CPSs. Additionally, research
should extend to the Composition, Validation, and Generator
Engines. For the Composition Engine, exploring effective
symbolic reasoning approaches is crucial to facilitate the
automated composition of new DT functions. Furthermore, in
the Generator Engine, developing associated behavior models
using DSLs needs exploration to enable diverse digital model
creation, such as simulations and machine learning applica-
tions, for various use cases.

ACKNOWLEDGMENT

This research [project ProMoDi and MBDQ] is funded by
dtec.bw (Digitalization and Technology Research Center of
the Bundeswehr. dtec.bw is funded by the European Union
- NextGenerationEU) and the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation, 505496753)

REFERENCES

[1]1 K. Holldobler, J. Michael et al., “Innovations in model-based software
and systems engineering,” Journal of Object Technology, vol. 18, no. 1,
2019.

[2] J. Michael, J. Pfeiffer er al., “Integration challenges for Digital Twin
Systems-of-Systems,” in Proceedings of the 10th IEEE/ACM Interna-
tional Workshop on Software Engineering for Systems-of-Systems and
Software Ecosystems, ser. SESoS *22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 9-12.

[3] A. Kocher, A. Hayward, and A. Fay, “Model-Based Engineering of
CPPS Functions and Code Generation for Skills,” in 2022 IEEE 5th
International Conference on Industrial Cyber-Physical Systems (ICPS),
2022, pp. 01-08.

[4] M. Hankel and B. Rexroth, “The Reference Architectural Model Indus-
trie 4.0 (Rami 4.0),” ZVEI, vol. 2, no. 2, pp. 4-9, 2015.

[5] F. Tao, H. Zhang et al., “Digital Twin in Industry: State-of-the-Art,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2405—
2415, 2019.

[6] W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, “Digital Twin
in manufacturing: A categorical literature review and classification,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016-1022, 2018, 16th IFAC
Symposium on Information Control Problems in Manufacturing 2018.

[7]1 L. M. Reinpold, L. P. Wagner et al., “Systematic comparison of Software
Agents and Digital Twins: Differences, Similarities, and Synergies in
Industrial Production,” Journal of Intelligent Manufacturing, 2024.

[8] L.-T. Reiche, C. S. Gundlach et al., “The Digital Twin of a System: A
Structure for Networks of Digital Twins,” in 2021 26th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2021, pp. 1-8.

[91 M. S. Gill, L.-T. Reiche, and A. Fay, “Method for selecting Digital

Twins of Entities in a System-of-Systems approach based on essential

Information Attributes,” in 2022 IEEE 27th International Conference on

Emerging Technologies and Factory Automation (ETFA). 1EEE, 2022,

pp- 1-8.

Plattform Industrie 4.0, “Details of the asset administration shell - part

1 the exchange of information between partners in the value chain of

industrie 4.0 (version 3.0rc02),” 2022, accessed on 07 June 2024.

C. Hildebrandt, A. Kocher et al., “Ontology Building for Cyber—Physical

Systems: Application in the Manufacturing Domain,” IEEE Transactions

on Automation Science and Engineering, vol. 17, no. 3, pp. 1266-1282,

2020.

A. Butting, N. Jansen et al., “Towards Modular Development of

Reusable Language Components for Domain-Specific Modeling Lan-

guages in the MagicDraw and MontiCore Ecosystems.” The Journal of

Object Technology, vol. 22, p. 1:1, 01 2023.

S. R. Bader and M. Maleshkova, “The Semantic Asset Administration

Shell,” in Semantic Systems. The Power of Al and Knowledge Graphs.

Springer Nature, 2019, pp. 159-174.

C. Hildebrandt, M. Glawe et al., “Reasoning on engineering knowledge:

Applications and desired features,” in The Semantic Web, E. Blomqvist,

D. Maynard et al., Eds. Cham: Springer International Publishing, 2017,

pp. 65-78.

S. Sobernig, B. Hoisl, and M. Strembeck, “Requirements-driven testing

of domain-specific core language models using scenarios,” in 2013 13th

International Conference on Quality Software. 1EEE, 2013, pp. 163—

172.

F. Becker, P. Bibow et al., “A Conceptual Model for Digital Shadows in

Industry and Its Application,” in Conceptual Modeling, ser. Information

Systems and Applications, Cham, 2021, pp. 271-281.

A. Elhabbash, Y. Elkhatib et al., “Principled and automated system of

systems composition using an ontological architecture,” Future Gener-

ation Computer Systems, vol. 157, pp. 499-515, 2024.

[18] L. Bettini, Implementing Domain-Specific Languages with Xtext and

Xtend. Packt Publishing Ltd, 2016.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Authorized licensed use limited to: Universite de Rennes 1. Downloaded on March 08,2025 at 09:34:48 UTC from IEEE Xplore. Restrictions apply.

