
Towards a Model-Driven Architecture for
Interactive Digital Twin Cockpits?

Manuela Dalibor[0000−0002−1948−0556], Judith Michael[0000−0002−4999−2544],
Bernhard Rumpe[0000−0002−2147−1966], Simon Varga[0000−0002−8351−4394], and

Andreas Wortmann[0000−0003−3534−253X]

Software Engineering, RWTH Aachen University, Aachen, Germany
www.se-rwth.de

Abstract. Digital twins promise tremendous potential to reduce time
and cost in the smart manufacturing of Industry 4.0. Engineering and
monitoring interactive digital twins currently demands integrating differ-
ent piecemeal technologies that effectively hinders their application and
deployment. Current research on digital twins focuses on specific imple-
mentations or abstract models on how digital twins could be conceived.
We propose model-driven software engineering to realize interactive dig-
ital twins and user-specific cockpits to interact with the digital twin
by generating the infrastructure from common data structure models.
To this end, we present a model-driven architecture for digital twins,
its integration with an interactive cockpit, and a systematic method of
realizing both. Through this, modeling, deploying, and monitoring in-
teractive digital twins becomes more feasible and fosters their successful
application in smart manufacturing.

Keywords: Digital Twins · Information Systems · Model-Driven Soft-
ware Engineering · Smart Manufacturing · Industry 4.0

1 Introduction

Motivation and Challenges. Digital Twins (DTs) of Cyber-Physical Production
Systems (CPPSs), including their hardware and software components, promise
tremendous potential to reduce time and cost in smart manufacturing [29]. Engi-
neering and monitoring interactive DTs currently demands integrating different
piecemeal technologies that effectively hinders their application and deployment.
Current research on DTs focuses on specific implementations or abstract models
on how monitored DTs could be conceived. Clearly, DTs need means for in-
formation representation [5], interactive control of CPPSs [30] and optimization
functionalities [35], e.g., for adapting machine configurations to yield higher part
quality. Thus, suitable visualizations of these functionalities and autonomous

? Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany‘s Excellence Strategy – EXC 2023 Internet of Production. We
thank the Institute for Plastics Processing in Industry and Craft at RWTH Aachen
University and the ARBURG GmbH + Co KG for the provided machine equipment.

adaptations must provide information in a human-processable form and enable
controlling the DT. We call these services digital twin cockpit hereafter.

Research Question. How can we facilitate rapid engineering of interactive dig-
ital twin cockpits through integrating architecture and data modeling? Model-
Driven Software Engineering (MDSE) can facilitate producing such cockpits by
synthesizing the necessary implementations and interfaces of a DT and its cock-
pit from various, integrated models according to model centered architecture
approaches [27].

Our Approach. We propose a method to engineer interactive digital twin
cockpits systematically by generating their infrastructure based on common data
models created with Domain-Specific Languages (DSLs). We employ an architec-
ture modeling language to specify the internal structure of the DT, the interface
between the DT and the physical system, and the interface between the DT and
the DT cockpit. This facilitates the engineering of a DT cockpit and ensures
consistent integration with the DT. We conceived a model-driven reference ar-
chitecture for the DT and its integration with a configurable interaction cockpit.
This facilitates creating, deploying, and interactively monitoring the DT.

Outline. In the following, Sec. 2 presents preliminaries. Sec. 3 illustrates chal-
lenges of the problem domain by example of injection molding. Sec. 4 explains
our approach and its reference architecture. Sec. 5 describes how to create a dig-
ital twin cockpit for injection molding. Sec. 6 discusses our approach and related
work. Sec. 7 concludes.

2 Preliminaries

A significant reason for the challenges of modern software systems engineering
lies in the conceptual gap [13] between the problem domains and the solution
domain software engineering. Overcoming this gap with handcrafted solutions
requires immense effort and gives rise to so-called accidental complexities [13],
i.e., problems of the solution domain, which are not conceptually relevant in
the problem domain. MDSE [32] is an umbrella term for software develop-
ment methodologies that employ models as primary development artifacts to
reduce the conceptual gap and with it the accidental complexities. Automation
in MDSE, such as code generation, requires corresponding modeling languages
that describe which models are actually valid, to enable their automated and
meaningful processing.

This section introduces our notion of DTs, the architecture modeling lan-
guage MontiArc, and the generator framework MontiGem that we leverage to
visualize DTs in DT cockpits.

Digital Twins in Smart Manufacturing. The main goals of applying mod-
eling to Industry 4.0 are reducing development and production times as well as
lowering costs [33]. DTs are often described as a digital duplicate of a physical
entity [11], sometimes also enabling its management and control [10] or support-
ing design and production decisions, and thus speed up the development process.

DTs rely on information about the current system state to provide, e.g., predic-
tive maintenance or design support [22]. Since modern CPPSs are equipped with
various sensors and produce large amounts of data, it is crucial to reduce the data
into an amount that the DT can process. Thus we introduce the Digital Shadow
(DS). A digital shadow is a set of models and data traces, that in addition to the
data also includes context describing metadata for its intended purpose. Hence, a
DS contains precisely the data that the DT requires to perform its task and can,
e.g., be enriched with information about the data’s origin or accuracy. A com-
monly accepted definition for DTs still is lacking though realizations for various
use cases exist. Based on a survey among the participants of the German cluster
of excellence “Internet of Production”1, which comprises 25 departments and
200 researchers that conduct research in artificial intelligence, computer science,
labor science, mechanical engineering, and production technology, we conceived
the following definition for a DT: A digital twin of a system consists of a set of
models of the system, a set of digital shadows and their aggregation and abstrac-
tion collected from a system, and a set of services that allow using the data and
models purposefully with respect to the original system.

Thus digital twins might comprise, for instance, engineering models (e.g., ge-
ometries, physical behavior, energy consumption, etc.), software models (struc-
ture, behavior, deployment, etc.), and services (such as cockpits visualizing data
and providing services, optimization of CPPS use etc.).

MontiArc [9,16] is an architecture description language [19] based on the Focus
calculus [7]. Its elements comprise component types that exchange messages
through their interface of typed, directed ports (cf. Fig. 1). Components are
connected via unidirectional connectors and support hierarchical decomposition
through which a system’s functionality can be decomposed hierarchically. A
component encapsulates a subset of the system’s functionality, and either is
composed or atomic. Composed components contain hierarchical configurations
of subcomponents that exchange and their behavior emerges solely from the
subcomponents and their interaction. Atomic components perform computations
via embedded behavior models or handcrafted behavior implementations.

MontiArc models have been translated to Java [23] for educational purposes,
to Python [1] for operations with industrial-strength service robots, and Mona
for model checking. Leveraging results from software language engineering, its
language and code generation capabilities can be extended flexibly [8].

MontiGem generates web-based Enterprise Information System (EIS), e.g., for
finance cockpits [3] or IoT dashboards using Class Diagrams (CDs), OCL, tag-
ging and GUIDSL models, describing Graphical User Interfaces (GUIs), as input.
The provided domain models directly influence the generated data structure, the
database schema, the GUI layout, and view models. Integrating these DSLs, a va-
riety of aspects of the resulting application can be modeled. Based on these mod-

1 Internet of Production: https://www.iop.rwth-aachen.de/cms/~gpfz/

Produktionstechnik/?lidx=1

https://www.iop.rwth-aachen.de/cms/~gpfz/Produktionstechnik/?lidx=1
https://www.iop.rwth-aachen.de/cms/~gpfz/Produktionstechnik/?lidx=1

Robot

IntegerUltraSonic
sonic

RobotController
ctrl

data dist

composed component type MAsubcomponent “ctrl” of component type “RobotCtrl”

Motor
left

Motor
right

ls

rs

Float

Float

incoming Port “dist“ of
data type “Integer”

outgoing Port “rs“
of data type “Float”

spd

spd

unidirectional
connector

Fig. 1. The Robot component type features a front-mounted ultrasonic (component
sonic) sensor to detect obstacles and two parallel motors (components left and right)
to propel the robot. The component ctrl receives inputs from sonic, decides on the
next action and passes it to the two motors.

els as input, MontiGem produces code for a pre-existing application framework
that is used to build and execute the EIS. To ensure consistency-by-construction
between front- and backend, models are used as a common source for informa-
tion. Using CDs, we generate data classes and the database schema, the com-
munication infrastructure using the command pattern and default website GUIs
and views [14]. Additional GUI and view models can be used to detail and
customize the layout of the generated pages. View models are aggregated data
objects based on the application‘s data structure and can be directly specified
in GUI models. This enables defining the view models in place, where they are
to be displayed. From an OCL/P [25] model that constrains the data structure,
the generator derives validators for data objects that conform to this structure.
We use a Tagging Language [15] to enrich models with additional information
for enabling different generator configurations or adding implementation-specific
adaptations.

The MontiGem generator framework can generate a complete EIS using only
the domain-specific CDs [14]. With the resulting system, users create, view,
edit, or delete data sets since the application framework already provides basic
functionality such as database management and internationalization.

In these terms, our contribution focuses on developing DTs comprising data
models, architecture models, and GUI models that can represent data traces
purposefully abstracted and aggregated towards system users. Through these,
the DTs provide the services of monitoring and controlling the CPPS as well
as visualizing its data for specific purposes. Per construction, these DTs aim at
producing faithful representations of the data of interest.

3 Modeling Challenges in Injection Molding

Injection molding [24] is a plastic processing technique in which a plastic granule
is heated and injected under pressure into an injection mold. Injection molding is
one of the leading production techniques for plastic parts and can be considered

User Interface

Control CabinetClamping Unit

Hopper

Injection Unit

Fig. 2. The ARBURG Allrounder 520 injection molding machine from example.

as a representative of a classic mass production process. Fig. 2 illustrates the
typical components of an injection molding machine.

The machine operator can configure the operation point via the user inter-
face. A plastic granule is inserted into the machine through a hopper. Within
the injection unit, the plastic granule is heated and molten into the desired
consistency. The screw transfers the plastic to the nozzle. Next, the injection
unit injects the molten plastic into the mold while applying high pressure. The
clamping unit keeps the mold closed during injection so that the applied pres-
sure is countered and the mold halves do not open up. After a cooling time, the
machine ejects the workpiece from the mold. Depending on the application, the
quality criteria for the workpieces differ. Usually, the quality criteria include part
dimensions and surface properties. Various device components with multiple in-
fluencing variables and process parameters are directly involved in the successful
realization of an injection molded part. During the injection molding process,
temperature and pressure sensors measure the process parameters. These already
indicate the quality of the produced workpiece, and an experienced operator can
derive how to adapt the configuration to produce higher quality. Therefore, it is
essential to provide this information in time and in a human-processable format
to ensure that operators adapt the configuration in time, and the machine pro-
duces fewer defect goods. Injection molding machines are sensitive to stress and
contextual changes as, e.g., in the environmental temperature. Thus, the same
configuration does not always yield workpieces of equal quality. Visualizing such
process and context information for users to make these changes traceable and
automating countermeasures (e.g., increasing the pressure) before the defective
product is finished can significantly reduce time and material consumption. To
support such operations, a DT cockpit should:

C1 Provide real-time information about machine states and operating context,

C2 Provide role-specific views and aggregated data showing information at dif-
ferent levels of detail,

C3 Remain consistent with the DT if the DT is adapted to and deployed on
new CPPS,

C4 Allow for interaction with the DT and to call specific operations on the DT
and the CPPS

4 Modeling Digital Twin Cockpits

Developing a controlling cockpit for DTs is paramount to facilitate the trust of
machine operators and customers in the twin’s activities. Since the DT consists
of many components, we aim at reusing models that describe its structure or
behavior and derive the cockpit’s code. By generating the cockpit, it remains
adaptable and can evolve if the underlying domain model or the DT evolves
(challenge C3). Fig. 3 shows the MontiArc architecture of our system. The
architecture structures into five layers: (1) Cyber-Physical Layer, (2) Data Layer,
(3) Connection Layer, (4) Application Layer, and (5) Visualization Layer.

The main components are (A) the CPPS, describing the actual machine and
its control interface, (B) the Digital Twin which monitors and influences the
machine, (C) the Data Lake including all data from different information sources
that the DT relies on and the DT cockpit can visualize and (D) the DT Cockpit

which monitors the twin’s state, provides aggregated information and visualiza-
tions of the system’s state and enables interaction with the DT. Separate models
describe each of the layers in Fig. 3. By combining these models, we realize a
consistent representation of the production system and minimize the effort for
the creation and adaption of the DT Cockpit. At the same time, since we de-
scribe all components with MontiArc, components of the DT can be exchanged
to include new functionalities.

The Cyber-Physical Layer describes the production system, which is moni-
tored and controlled by the DT. The CPPS component provides an interface that
enables reading sensor values. Further, it can receive commands via this inter-
face and return feedback after processing these. Runtime data that the sensors
within the CPPS collect is stored in the data lake.

The CPPS is described through architectural models that specify its struc-
ture and behavior models that describe its functionalities. Our DT realization
requires ports for sending commands, receiving feedback and collecting machine-
specific data, as depicted in Fig. 3. We specify the CPPS and its ports in MontiArc
since the language provides typed and directed ports. Thus, we can ensure that
other components access the CPPS’s ports only in the intended ways and that
exchanged data conforms to a specified type.

The Data Lake within the Data Layer is an extensive data storage that can
span multiple databases containing data from the CPPS and its operating con-
text. The encapsulate information can diverge in different CPPS systems. The
Data Lake also encapsulates the MontiGem database that includes all processed
data and additional information, such as user profiles or settings. Clearly, these

Executor

KB

ReasonerEvaluator

Data Processor

CPPS

QueryData

Goal

Solution Feedback

FeedbackCommand

Data

A
p

p
li

c
a
ti

o
n

 L
a
y
e
r

C
o

n
n

e
c
ti

o
n

L
a
y
e
r

D
a
ta

 L
a
y
e
r

C
y
b

e
r-

P
h

y
s
ic

a
l

L
a
y
e
r

Digital Twin

Frontend

MA

Evaluator

State

Reasoner

State

V
is

u
a
li

z
a
ti

o
n

L
a
y
e
rDT Cockpit

Data Lake

Query
Digital

Shadow

Data Connector

QueryData

Logic Processor

QueryDomain

Data

Data Aggregator

Backend

CmdView

Model

Cmd

View

Model

MG-DB DB1 '

Fig. 3. The integrated digital twin and digital twin cockpit architecture in MontiArc.

data structures can be described with class or structure diagrams. Using these
class diagrams as input, MontiGem generates the data structure, the infrastruc-
ture for storing the data of the DT cockpit as well as data update functionalities
or observation methods to recognize data updates. The DT and MontiGem both
rely on data about the CPPS. Thus, the Data Lake must provide an interface
to query data. The DT aggregates, processes, and transforms this data further
to create DSs that represent the CPPS’s state and that MontiGem visualizes.

The components in the Connection Layer communicate with the physical
layer and provide data for the application layer. The DataProcessor compo-
nent within the DT creates and shares knowledge about the system’s state by
producing digital shadows. It receives digital shadow queries from the applica-
tion layer and transforms these into specific queries to collect data from the data
lake. Next, the DataProcessor further processes and transformes this data to
create DSs. The DT cockpit generated by MontiGem visualizes these DSs that
may also contain real-time information about the CPPS’s state to fulfill chal-
lenge C1. The Executor within the DT obtains a solution that describes on an
abstract level what the CPPS is supposed to do and transforms this desciption
into commands that it sends to the CPPS. The CPPS returns a feedback that is

evaluated by the Executor. Depending on the evaluation results, the Executor

sends further commands that contribute to fulfilling the solution.

The DT cockpit handles all access requests to the data layer in the Data-

Connector and provides loaded data as domain objects. Additionally, endpoints
for the communication to the data of the DT components are created. When the
frontend requests new data, the request is handed through to the LogicProcessor
that creates a query for a digital shadow. This query is then sent to the DT.

The components of this layer depend on the descriptions of the exchanged
data. Thus, the structure of the transmitted data must be defined. Again, we
can use CDs to derive the structure of objects exchanged between components
automatically. This enables generating storage and query functionality for the
specified data objects and generating the communication interfaces between the
DT and DT cockpit. As both rely on the same structural description, they al-
ways stay compatible if a model changes.

The Application Layer contains the main functionality of the DT including
its ability to detect unintended behavior of the CPPS and deciding on reac-
tions to these. The purpose of the Evaluator is to monitor the system behavior
and detect possible malfunctions. It queries information about the system or its
context from the data processor and receives DSs in return. These DSs contain
precisely the information the Evaluator requires for determining whether the
system and its components behave as intended. If the Evaluator detects an un-
intended behavior, it creates a goal and sends this goal to the Reasoner. The
Reasoner uses knowledge about the CPPS, knowledge about similar systems,
and knowledge about the system’s operating context to decide how it can realize
this goal. If several possible solutions exist, it determines the best solution, e.g.,
depending on costs, energy consumption, or time efficiency. Next, it sends the
solution to the executor. The Evaluator’s behavior is modeled with a domain-
specific event language [6], which describes events based on DSs that encapsulate
data from different points in time. Depending on the information provided by
the DSs, the Evaluator decides which goal to pursuit. The Reasoner’s behavior
is specified as a statechart, that is depending on inputs changes, its states, and
triggers actions while following state transitions. These models can help to trace
and explain the twin’s behavior in the DT cockpit.

In the DT cockpit, the LogicProcessor handles all the relevant data and
state information of the DT, which is not already in the data lake, and adds it to
the MontiGem database. This data can then be queried and further processed by
the DataAggregator. The latter sends commands to the LogicProcessor, which
are evaluated and result in aggregated view models. Those view models can then
be send to the frontend to visualize the system’s data and state. Commands are
used to write data back in the system or set specific goals for the DT. Currently,
only the infrastructure is generated. The behavior of those components needs to
be described by handwritten code.

The Visualization Layer includes all graphical components of the DT cockpit

used to visualize the DT’s and the production system’s state and allow for inter-
action with them. The visualizations of the DT cockpit frontend are generated
from MontiGem GUI models. They are using several predefined visualization
components such as line charts or tables. The data accessible at runtime is part
of the GUI models accordingly to its representation in the CDs. Thus, the visu-
alization is in sync with data provided by the components of the DT stored in
the databases of the data lake.

Different views on the same data objects are available to show different levels
of detail. This allows to use the application in different parts of an organization:
Visualizations with detailed technical information provide in-depth insight into
the current system. Other, more high-level views, display an abstract status,
e.g.,, for management purposes or data analysis. By generating the frontend
based on specifications in the GUI models, we provide role-specific views of the
data provided by the production system and thus meet challenge C2.

The user can supervise the DT and its behavior by interaction through the
GUI, thus, we meet challenge C4. The GUI displays all information provided by
the data processor, e.g., the state of the production system, static information,
such as available users or connected devices. Additionally, dynamic information
can provide an accurate status of the running system, e.g., a currently running
process step of different parts of the system. The user of the digital twin cockpit
directly influences the DT behavior via the GUI, e.g., specify the next goal.

To create the DT cockpit, the information provided by a variety of mod-
els is combined. We reuse the same CDs as to describe the DT data structure,
which has two important advantages: (1) CDs have to be written only once,
(2) the communication between the data processor, and the application back-
end is trivial because they rely on the same data structure. This common data
basis provides consistency-by-construction and has an immediate impact on the
generated code, as the DT cockpit always fits the DT. Moreover, using MDSE
methods, the DT cockpit can adapt to changing requirements flexibly.

5 Application to Injection Molding

To show the practical application of our approach, we have realized a DT and DT
cockpit for injection molding (cf. Sec. 3). Process parameters such as pressures,
paths, and speeds can be controlled or regulated in a variety of ways. As a first
step, we want to display the DSs of the injection molding process to illustrate the
machine state. The pressure curve in the tool places high demands on optimal
process control. If one measures the effective pressures along the process, the
pressure curve, which is decisive for the dimensional accuracy of the molded
parts, is not identical with pressure curves in the driving hydraulics or with
force measured at the worm bearing. In the tool, the pressure arrives delayed
and reduced. Thus the pressures are interesting to monitor along the process.

Models and Generator Infrastructure. The structure of the occurring
data objects of our case study for injection molding is described in Fig. 4. The
injection molding machine is represented by the class Machine. The Machine has

Setting

int machineID

Pressure

double value

Unit unit

hydraulic 1
InjectionShadow

int frequency

1 screwTip

1 sprueClose

1 sprueFar

CD

Temperature

double value

Unit unit

1 1

1

nozzle mold

environment

Machine

Phase phase

boolean running
controls1..* *

digital shadow aggregating
information about the

injection state

domain class representing
the injection molding machine

«Enum»

Phase

Dosing

Injecting

Holding

Cooling

Fig. 4. Domain model describing structure of setting for the injection molding process
and digital shadows that should be monitored.

an identifier, a phase indicating in which phase of the production process the
machine is and a boolean value that is true if the machine is currently running.
Pressures in the system are described by their value and a unit. The same holds
for Temperature. Injection molding machines are typically equipped with two
sensors that measure the pressure during injection. The first sensor’s position
is next to the sprue (sprue close) where the hot material is injected into the
mold and the second sensor’s position is a little further (sprue far) away from
the sprue. These two values can thus indicate if the mold is filled correctly. The
injection pressure is a setting that varies with the flow ability of the material
and is applied at the screw tip. Settings control the behavior of the machine.
They specify which pressure the hydraulics of the system should exert and the
temperature at the nozzle where the plasticized material is injected into the mold
cavity. The digital shadow has a frequency that specifies how often the values
of the system are updated. The digital shadow aggregates pressures that are
measured at the screw tip, close to the sprue, and far from the sprue. This way
the DT determines if the mold is filled correctly. For comparison it also includes
the pressure setting at the screw tip. Furthermore, the digital shadow aggregates
the current environmental temperature and the temperature of the mold. The
DT relies on these values to investigate how the pressure changes depending on
temperatures.

Visualization. We created a dashboard (Fig. 5) for the operator role vi-
sualizing the data in the injection molding process. It shows a sketch of the
currently observed machine as well as pressure and temperature information. In
the top right is a real-time display of the current status of the process. To inter-
act with the machine, there is a button below which triggers a full machine stop.
Other views include raw data from the data lake such as logs for the last pro-
cess events, structural and architectural models as well as data for each pressure
and temperature sensor. For each machine in the production process, there are
visualizations of the status for each machine and statistical information about
their produced parts.

Fig. 5. Screenshot of the dashboard for the injection molding process.

In conclusion, the presented DT connects to the CPPS and creates DSs repre-
senting the CPPS’s state. The DT cockpit integrates with the DT and visualizes
the DSs that the DT provides. Since both, the DT and the DT cockpit base
on the same domain model, and the concrete implementation is derived from
this model, changes within this model are consistently reflected in both systems.
If,e.g., a new sensor is added to the CPPS, only one change in the data model is
required to realize an adaptation in the DT and to add a new graphical element
representing the sensor in the DT cockpit.

6 Discussion and Related Work

Our method to systematically engineer a DT and its interactive monitoring cock-
pit leverages class diagrams for data structure modeling, the MontiArc architec-
ture description language to define the integrated system’s software architecture,
and MontiGem to model aggregation and presentation of manufacturing data.
Besides learning these, operating manufacturing equipment demands for trans-
lating their models into executable programming language artifacts. While in
the past, this might have entailed providing generators for a multitude of lan-
guages, the rise of OPC-UA [18], ROS-Industrial [12] and other manufacturing
middlewares mitigates this.

MontiGem provides a comprehensive language for data visualization. Nonethe-
less, there might be presentation desires that cannot be implemented easily
with it. For these cases, MontiGem models support embedding of HTML and
JavaScript, which enables cockpit developers to harness the full potential of
frontend web development.

We have evaluated our reference architecture in injection molding and ultra-
short pulse laser cutting. While the results indicate that the seamless develop-
ment of digital twins and their cockpits can reduce wastrel and, hence, optimize
the use of resources, we need to evaluate our reference architecture and the
DSLs in a greater variety of contexts. These also should include monitoring and
operating cyber-physical systems from other domains, e.g., assistive systems.

The different parts of our solution are each technical scalable to match future
requirements. The data lake itself is a collection of databases and thus easily
expandable and distributable. Most parts of the DT are stateless, and thus it is
possible to use any number of components simultaneously. Only the knowledge
base has a state, thus, it needs to be scaled accordingly. The DT cockpit already
use docker containers [3] for optimal scalability of each of its parts.

Related research in DTs often investigates their application in IoT or pro-
duction use cases [4,21,34,26]. For instance, [4] describes an architecture that
is similarly layered as our approach and follows a micro-service encapsulation
suited for IoT. The different layers are interconnected with each other and pro-
vide separation of concerns. In [21], an infrastructure for IoT in connection with
smart cities is used to improve the purpose of IoT sensors. [34] uses digital twins
for monitoring and optimization of hollow glass production lines. [26] sketches an
architecture and visualization for digital twins and describes possible views for
an oil separation process use case. In [17], a monitoring and assistance system
for Human-Machine Interaction is described. Our approach differs from those
mentioned in the use of models to describe the architecture and behavior of the
system. Besides that, we completely generate the DT and DT cockpit.

Other generative approaches for EIS are focusing on UML-like or even DSL
models to describe the structure and behavior of an application [20]. Further
approaches consider interface modeling and interface generation [28,31]. In con-
trast, our approach generates a fully runnable EIS [14]. MontiGem uses multiple
different input DSLs and supports an easy to use extension mechanism to provide
adaptability and allow for agility and continuous regeneration [3,2].

7 Conclusion

We have presented an approach to engineer interactive DTs systematically to-
gether with their cockpit. Our approach relies on modeling and generating the
infrastructure of DT and cockpit based on shared data structures. Models of
our DT architecture operate on these data structures. GUI models aggregate,
abstract, and represent their contents to the user in connected DT cockpits. This
facilitates creating, deploying, and monitoring interactive DTs that can provide
real-time information about machine states and the operating context, feature
role-specific views with aggregated data, and adapt to changes in the under-
lying models. Ultimately, this can forster their successful application in smart
manufacturing to optimize manufacturing processes and making better use of
production equipment.

References

1. Adam, K., Butting, A., Heim, R., Kautz, O., Rumpe, B., Wortmann, A.: Model-
Driven Separation of Concerns for Service Robotics. In: Int. WS on Domain-Specific
Modeling (DSM’16). pp. 22–27. ACM (2016)

2. Adam, K., Michael, J., Netz, L., Rumpe, B., Varga, S.: Enterprise information
systems in academia and practice: Lessons learned from a mbse project. In: Digital
Ecosystems of the Future: Methods, Techniques and Applications (EMISA’19).
pp. 1–8. LNI (2019), (in press)

3. Adam, K., Netz, L., Varga, S., Michael, J., Rumpe, B., Heuser, P., Letmathe, P.:
Model-Based Generation of Enterprise Information Systems. In: Enterprise Mod-
eling and Information Systems Architectures (EMISA’18). vol. 2097, pp. 75–79.
CEUR-WS.org (2018)

4. Alam, K.M., El Saddik, A.: C2ps: A digital twin architecture reference model for
the cloud-based cyber-physical systems. IEEE Access 5, 2050–2062 (2017)

5. Bakliwal, K., Dhada, M.H., Palau, A.S., Parlikad, A.K., Lad, B.K.: A multi agent
system architecture to implement collaborative learning for social industrial assets.
IFAC-PapersOnLine 51(11), 1237–1242 (2018)

6. Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D.,
Schmitz, M., Wortmann, A.: Model-driven development of a digital twin for in-
jection molding. In: Int. Conf. on Advanced Information Systems Engineering
(CAiSE) (2020), (in press)

7. Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)

8. Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe, B., Wortmann, A.:
Systematic Language Extension Mechanisms for the MontiArc Architecture De-
scription Language. In: Europ. Conf. on Modelling Foundations and Applications
(ECMFA’17). pp. 53–70. LNCS 10376, Springer (2017)

9. Butting, A., Kautz, O., Rumpe, B., Wortmann, A.: Architectural Programming
with MontiArcAutomaton. In: Int. Conf. on Software Engineering Advances (IC-
SEA). pp. 213–218. IARIA XPS Press (2017)

10. Dietz, M., Putz, B., Pernul, G.: A Distributed Ledger Approach to Digital Twin
Secure Data Sharing, pp. 281–300 (06 2019)

11. Duansen, S., Chen, L., Ding, J.: A hierarchical digital twin model framework for
dynamic cyber-physical system design. pp. 123–129 (02 2019)

12. Edwards, S., Lewis, C.: ROS-industrial: applying the robot operating system
(ROS) to industrial applications. In: IEEE Int. Conf. on Robotics and Automation,
ECHORD Workshop (2012)

13. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. Future of Software Engineering (FOSE ’07) pp. 37–54 (2007)

14. Gerasimov, A., Michael, J., Netz, L., Rumpe, B., Varga, S.: Continuous transition
from model-driven prototype to full-size real-world enterprise information systems.
In: Am. Conf. on Information Systems (AMCIS 2020). AIS (2020), in press

15. Greifenberg, T., Look, M., Roidl, S., Rumpe, B.: Engineering Tagging Languages
for DSLs. In: Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS’15). ACM/IEEE (2015)

16. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of In-
teractive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,
RWTH Aachen University (2012)

17. Josifovska, K., Yigitbas, E., Engels, G.: A digital twin-based multi-modal ui adap-
tation framework for assistance systems in industry 4.0. In: Human-Computer In-
teraction. Design Practice in Contemporary Societies. pp. 398–409. Springer (2019)

18. Leitner, S.H., Mahnke, W.: OPC UA–service-oriented architecture for industrial
applications. ABB Corporate Research Center 48, 61–66 (2006)

19. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on SE (2000)

20. Peñil, P., Posadas, H., Nicolás, A., Villar, E.: Automatic synthesis from uml/marte
models using channel semantics. In: Int. Workshop on Model Based Architecting
and Construction of Embedded Systems. pp. 49–54. ACES-MB ’12, ACM (2012)

21. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service
model for smart cities supported by internet of things. Transactions on Emerging
Telecommunications Technologies 25(1), 81–93 (2013)

22. Rauch, L., Pietrzyk, M.: Digital twins as a modern approach to design of industrial
processes. Journal of Machine Engineering 19, 86–97 (02 2019)

23. Ringert, J.O., Rumpe, B., Schulze, C., Wortmann, A.: Teaching Agile Model-
Driven Engineering for Cyber-Physical Systems. In: Int. Conf. on Software En-
gineering: SE and Education Track (ICSE’17). pp. 127–136. IEEE (2017)

24. Rosato, D.V., Rosato, M.G.: Injection molding handbook. Springer Science & Busi-
ness Media (2012)

25. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer Inter-
national (2016)

26. Schroeder, G., Steinmetz, C., Pereira, C.E., Muller, I., Garcia, N., Espindola, D.,
Rodrigues, R.: Visualising the digital twin using web services and augmented re-
ality. In: Int. Conf. on Industrial Informatics (INDIN). pp. 522–527. IEEE (2016)

27. Shekhovtsov, V.A., Ranasinghe, S., Mayr, H.C., Michael, J.: Domain Specific Mod-
els as System Links. In: Advances in Conceptual Modeling Workshops (ER’18). pp.
330–340. Springer International Publishing (2018)

28. Stocq, J., Vanderdonckt, J.: A domain model-driven approach for producing user
interfaces to multi-platform information systems. In: Proc. Working Conference on
Advanced Visual Interfaces. pp. 395–398. AVI ’04, ACM (2004)

29. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: State-of-the-art.
IEEE Transactions on Industrial Informatics 15(4), 2405–2415 (April 2019)

30. Tao, F., Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards
smart manufacturing. Ieee Access 5, 20418–20427 (2017)

31. Valverde, F., Valderas, P., Fons, J., Pastor, O.: A mda-based environment for web
applications development: From conceptual models to code (03 2019)

32. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki, K.: Model-
Driven Software Development: Technology, Engineering, Management. Wiley Soft-
ware Patterns Series, Wiley (2013)

33. Wortmann, A., Barais, O., Combemale, B., Wimmer, M.: Modeling languages in
Industry 4.0: an extended systematic mapping study. Software and Systems Mod-
eling pp. 1–28 (2019)

34. Zhang, H., Liu, Q., Chen, X., Zhang, D., Leng, J.: A digital twin-based approach for
designing and multi-objective optimization of hollow glass production line. IEEE
Access 5, 26901–26911 (2017)

35. Zhang, H., Zhang, G., Yan, Q.: Digital twin-driven cyber-physical production sys-
tem towards smart shop-floor. Journal of Ambient Intelligence and Humanized
Computing pp. 1–15 (2018)

	Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits

