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Abstract—Digital twins are a new kind of software systems
for which corresponding architectures in different engineering
domains have emerged for enabling the efficient interaction of
software systems with physical systems to realize cyber-physical
systems (CPS). To facilitate the development of digital twins,
various software platforms emerged in recent years, which often
come with a certain architecture for the developed systems
together with a set of domain-specific languages (DSLs) that
help domain experts to configure the platform and implement
the digital twins. This results in a set of architectures and DSLs
which are currently used to realize the various concerns of digital
twins. Thus, creating a comprehensive digital twin for a given
system requires the combination of several architectures and
DSLs, which is challenging as (i) the components of the different
architectures have to be combined on a technological level, and
(ii) the concerns specified with the different DSLs are developed
in isolation which potentially leads to inconsistencies, especially
during the evolution of digital twins.

To tackle these challenges, we outline our vision of a product
line architecture that explicitly specifies the different concerns
of digital twins and their alignment on both, the technological
level considering the different architectural elements as well as
on the language level considering the different language elements.
As a result, glue code that is currently required to compose the
individual features together into particular digital twin systems is
automatically generated. We demonstrate the applicability of this
approach by (i) specifying an example product line architecture
for selected structural and behavioral concerns of digital twins,
and (ii) configuring an existing digital twin based architecture for
self-adaptive systems based on this product line architecture by
(iii) applying the selected platforms realizing these concerns to a
smart room use case. Finally, we discuss expected benefits of the
presented approach, such as plug-&-play of digital twin modules,
as well as sketch out future work to realize the presented vision.

Index Terms—Digital twins, domain-specific languages, prod-
uct lines, software integration

I. INTRODUCTION

Today Digital Twins (DTs) are utilized in many domains,

such as manufacturing [1], injection molding [2], or even

farming [3], leveraging different use cases, such as predictive

maintenance, reactive planning [4], or self-adaptation [5].

As a result, the different usages of DTs have resulted in

software architectures to satisfy these different purposes [6]–

[8]. In these architectures, DTs are leveraged to, e.g., enable

a bi-directional synchronization to a physical system (i.e.,

get/send data from/to the physical system) [1], or to perform

experiments based on a formal description of the expected

behavior of a physical system [9]. Various platforms emerged

to provide tooling to support the development of different

concerns of DTs such as providing access to the structure [10]

or behavior [4]. As features of DTs usually have to be spec-

ified by domain experts which are not necessarily experts in

software engineering, the emerging platforms are often model-

driven, i.e., the software is configured by models conforming

to a Domain-Specific Language (DSL) [10]. Thus, they imply

a certain architecture on the developed systems.

For integrating these different concerns into an overarching

software architecture, glue code needs to be written to glue

the individual parts, i.e., platforms and realized components,

together. This is particularly challenging because different

platforms usually realize DTs with different architectures and

DSLs. Thus, the glue code to integrate different concerns has

to be rewritten for every platform combination on both levels:

(i) language level to bridge the DSLs and (ii) technology

level to bridge the different software components. Although

there are already approaches to automate the integration of

different DSLs, e.g., [11], or the integration of software com-

ponents, e.g., [12], these solutions currently do not consider

the coupling of both, DSLs and software at the same time.

To tackle this challenge, we present our vision of a product

line architecture [13] that explicates and aligns different con-

cerns of DTs as DT features. This product line can be used

to integrate DT features into different software architectures

based on the specific available platforms and their imposed ar-

chitectures for particular features. The novelty of this approach

lies in the integrated reuse of both DSLs and software com-

ponents for building new architectures that leverage common

features of DTs. We showcase our idea with an initial product

line architecture of DTs in the context of self-adaptive systems.

More precisely, this product line architecture describes (i) the

system structure and data of a physical system using a monitor,
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Fig. 1. An exemplary software architecture for digital twins realizing the
MAPE-K loop based on [5].

executor, and a structural DSL based on platforms provided

by Microsoft Azure1, Amazon Web Services2, and Eclipse3,

as well as (ii) the behavior of a physical system described

in a state chart used by a planner. We demonstrate how a

chosen structural and behavioral platform is configured for

the example of a smart building use case.

II. MOTIVATING EXAMPLE

The approach presented in this paper is demonstrated in the

exemplary context of DT architectures realizing self-adaptive

systems using the MAPE-K pattern [14]. A reference software

architecture realizing this pattern is depicted in Fig. 1 [5]. Such

DT architectures consist of four components. A Monitor
receives the data emitted from the cyber-physical system

(CPS), and converts it into a digital shadow, an abstraction of

the actual data. The Analyzer then receives these shadows

and identifies potential anomalies in the data, and subsequently

notifies the planner to react on this anomaly. The Planner
creates a plan to correct the anomaly and sends the plan

to the Executor, which then sends a control command

that is processable by the connected CPS. Additionally, the

Planner stores successfully executed plans in the knowledge

base. In [5], this architecture is realized with MontiArc [15],

a component & connector architecture description language.

It uses component types with interfaces consisting of typed

ports, that are connected by unidirectional connectors for trans-

mitting data. Components can be decomposed into multiple

connected subcomponents. Specific to this architecture is the

usage of different modeling languages to configure each of the

components. For instance, the Monitor and Executor use

data and constraint models, e.g., class diagrams to interact with

the CPS. Furthermore, the Planner has a behavior model,

e.g., a statechart to react on erroneous behavior of the CPS

recognizable through the data. Thus, there is (i) a relation

1https://azure.microsoft.com/products/digital-twins/
2https://aws.amazon.com/iot-twinmaker/
3https://www.eclipse.org/vorto/
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interface Thermostat {
tags { ["id", "dtmi:id:Thermostat;1"],
["context", "dtmi:context;2"] }

property timeSeries double temp;
function setTemp(double t);

}
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Fig. 2. Implementation of a DT module comprising software and language
components for Microsoft Azure Digital Twin Definition Language (DTDL).

between the software components of the architecture that send

data to another, e.g., the monitor sends digital shadows to the

analyzer, and (ii) a relation between the models that are used

by these components, i.e., the statechart using the types defined

in the data models, to react on values on the data. Thus, when

exchanging the Planner using statecharts with a Planner
using, e.g., PDDL [16] or other planning formalisms, not

only the planner and its specification have to be replaced, but

also the glue code that aligns the planning DSL and software

with other parts of the architecture needs to be updated, i.e.,

(i) relations from statecharts to other models, (ii) relations

from the statechart language to other DSLs, and (iii) the

code in components that send data to the Planner (i.e.,

the Analyzer sends the goal information). This is also the

case when replacing a data modeling language such as class

diagrams with, e.g., the proprietary data modeling languages

of cloud vendors that are emerging [10], [17]. This exchange

is complex, and thus, cost- and time-intensive as the engineer

has to understand the specifics of both, software and language

implementations and their reuse to realize their combination.

III. VISION

This section describes our envisioned approach towards

a product line architecture for DTs. This includes a novel

approach for modules for DT architecture implementations

comprising both software components (SC) as well as lan-

guage components (LC) in one module of reuse. These mod-

ules are then generalized into DT features and aligned into

a product line to derive a specific software architecture for

DTs, potentially tailored to a specific use case, and derive

particular implementations based on the selected module im-

plementations.

A. Digital Twin Modules

The main entity of our approach are the DT modules. Each

module consists of (i) language components [11], and (ii)
software components that use or are configured by models

conforming to the language component.
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SC

statechart TemperatureControl {
states Idle, TempTooLow, TempTooHigh;
Idle -> TempTooLow [temp < 19.5] / {setTemp(20)};
Idle -> TempTooHigh [temp > 20.5] / {setTemp(20)};
TempTooLow, TempTooHigh -> Idle [temp >= 19.5 &&

temp <= 20.5]/{};
}
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interface Thermostat {
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Fig. 3. Overview of the envisioned solution comprising a product line. Components are realized through DT modules. By the configuration of the product
line, a specific DT architecture and language is generated.

Fig. 2 shows such a DT module for the structural concern,

i.e., structure of the data exchanged between CPS and DT. The

module comprises a language component for the Microsoft

Azure Digital Twin, that can be used to describe structural

aspects of a CPS [10]. A language component [11] contains

the syntax, in terms of a grammar and semantic definition

including well-formedness rules and code generators, of a

DSL. Language components can be reused and extended by

other language components via their interface. We distin-

guish between a provided interface, i.e., language concepts

that are exposed to be reused, and a required interface that

exposes concepts to be realized by provided extensions of

other language components and enables language evolution,

e.g., new concepts of the Digital Twin Definition Language

(DTDL)4. When composing two language components, a new

language component emerges, where both languages are either

embedded in each other [11], enabling modelers to build

one model that comprises concepts of both languages, or

aggregated [18] where one language can reference concepts of

another language. In this paper, we only showcase aggregation

due to space limitations. Besides, the module comprises a

software component, in our example, a monitor component

that parses data of the CPS using a DTDL model. For

the software component to be compatible with the existing

architecture for MAPE-K DTs, the software component has

to realize the ports imposed by the concern for which it is

intended to be inserted, e.g., the DTDL monitor has to provide

4https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/
dtdlv2.md

the same interface regarding input and output ports, and their

types as the monitor of the architecture in Fig. 1.

B. A Product Line Architecture for Digital Twin Engineering

In our envisioned approach, various DT modules as de-

scribed above are arranged into a product line architecture

for DTs. From this product line architecture, product owners

can select one variant for a specific DT kind, in our example

an architecture realizing the MAPE-K pattern for DTs as

proposed in [5]. Selecting a feature of the product line archi-

tecture requires to select one implementation of the DT module

available for this feature, and thus, effects the reuse of both

language and software components at the same time. After the

selection at configuration-time, the software components are

available in the particular implementation of the architecture,

and the corresponding languages are integrated with each other

via the mechanism of composing language components.

Fig. 3 depicts an excerpt of our envisioned product line

architecture for the creation of MAPE-K DTs. In the upper

part, the product line architecture with its features is depicted.

For the structural description of the underlying system, the

product owner can decide between Eclipse Ditto, AWS IoT

TwinMaker, or Azure DTDL realization. The feature of Azure

DTDL is realized by a module (cf. Fig. 2) comprising a

language component containing the language definition of

DTDL, and two software components for monitor and ex-

ecutor that use models of this language. Besides, the product

line architecture has a feature behavior where either timed-

statecharts [19], with transitions based on timing constraints,
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or basic statecharts (BSC) with states, transitions, guard con-

ditions, and actions, for the definition of behavior can be

selected. In our example, the product owner selects the fea-

tures Azure DTDL and basic statecharts at configuration-time.

Afterwards, a DT software architecture (cf. [5]) is generated

that comprises the software components of the modules of

the selected features of our product line. In addition, these

components use models conforming to the languages defined

in the language components of the modules of the selected

features. Furthermore, like the software components that are

able to interact with each other via their interface, the language

components are composed, which has the effect that the

models of the basic statechart language can now reference

DTDL models.

In our example, the DT of a building is created, where

the statechart defines when to increase or decrease the room

temperature, and the DTDL model provides the information

about the datatypes and methods available to do so. Thus, our

approach facilitates the reuse of existing DT software and lan-

guage implementations, by using DT modules, e.g., the Azure

DTDL structure module and basic statechart module. Their

alignment in a product line architecture enables product own-

ers to configure their desired DT features at coconfiguration-

time to generate a DT architecture that comprises the software

and models to realize the selected features for a given physical

system. Hence, the product owner does not need to take care

of how to compose the software components or the modeling

languages that are used by these components.

IV. DISCUSSION & CONCLUSION

In this paper, we presented our envisioned approach to

realize a product line architecture for DT software archi-

tectures. The product line architecture consists of features

for concerns of the DT. These features are realized by DT

modules containing language and software components. We

demonstrated our vision with a product line architecture for

structural and behavioral concerns of a DT architecture realiz-

ing the MAPE-K pattern. This enables developing new digital

twin architectures based on existing software and language

components going beyond the borders of single digital twin

platforms. However, it is up to future work to evaluate our

concept with other DT architectures and their modules.

In the future, we aim to identify abstract commonalities

between the realizations of these concerns, e.g., structural

aspects of DTs are similarly described [10], and derive generic

software components and languages to further extend them

with use case specifics for enabling portability. Moreover, we

aim to clarify the constituents of the interface of DT modules

to finally connect and compose these modules as well as

to extend our product line architecture with more features

for DTs [20]–[22]. Finally, our approach may be generalized

beyond the application of DTs.
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