
Towards a Systematic Method for Developing Meta
Attack Language Instances

Simon Hacks
Sotirios Katsikeas
Engla Rencelj Ling
Wenjun Xiong

{shacks|sotkat|englal|wenjx}@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology
Stockholm, Sweden

Jérôme Pfeiffer
Andreas Wortmann

{jerome.pfeiffer|andreas.wortmann}@isw.uni-stuttgart.de
Institute for Control Engineering of Machine Tools and

Manufacturing Units (ISW)
University of Stuttgart
Stuttgart, Germany

Abstract
The successful deployment and use of domain-specific lan-
guages (DSLs) demand that language engineers consider
the future organizational context of the languages. Design
science research, and in particular action design research
(ADR), provide conceptual frameworks for this. Yet, their
application to the engineering of DSLs has not been inves-
tigated. In this paper, we investigate applying ADR to the
development of threat modeling languages based on theMeta
Attack Language (MAL), a metamodeling language for the
specification of domain-specific attack languages. To this
effect, we conducted a survey with experienced MAL devel-
opers regarding their activities in the development of MAL
DSLs. We extract guidelines and align these, together with
established DSL design guidelines, to the conceptual model
of ADR. The research presented, aims to be the first step
to investigate whether ADR can be used as a basis for the
systematic engineering of DSLs.

CCS Concepts: • Software and its engineering → Do-
main specific languages; Software development techniques.

Keywords: Software Language Engineering, Action Design
Research

ACM Reference Format:
Simon Hacks, Sotirios Katsikeas, Engla Rencelj Ling, Wenjun Xiong,
Jérôme Pfeiffer, and Andreas Wortmann. 2021. Towards a System-
atic Method for Developing Meta Attack Language Instances. In
tbd. ACM, New York, NY, USA, 19 pages. https://doi.org/tbd

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE’21, 17-19 October 2021, Chicago, Illinois
© 2021 Association for Computing Machinery.
ACM ISBN tbd. . . $tbd
https://doi.org/tbd

1 Introduction
Cybersecurity continues to be a key concern and a fundamen-
tal aspect of information technology (IT) and operational
technology (OT) systems [54], from water or energy distri-
bution systems to online banking services. Cyber-attacks on
these systems can have severe consequences for individuals
and organizations, such as the Ukraine major power outage
[9], the WannaCry ransomware attack [41], and the Florida
water supply attack [23].

At the same time, it is difficult to assess the security level
of IT systems. Despite being challenging, it is necessary to
identify all relevant system assets, their weaknesses, and pos-
sible mitigations. To proactively deal with security concerns,
threat modeling [55, 68] and attack simulations [25] can be
used to assess the cybersecurity of systems and make it more
difficult for attackers to accomplish their malicious intent.
Threat modeling includes holistic identification of the main
assets within a system and threats to these assets. These
threat models then serve as inputs for attack simulations
based on system models to simulate cyber-attacks, identify
weaknesses, and provide quantitative security measurements
for the system [12, 22]. With the concepts required to model
threats being highly domain-specific (i.e., modeling automo-
tive threats leverages concepts different from Industry 4.0
threats), the employed threat modeling languages should be
highly domain-specific as well.
Previously, the Meta Attack Language (MAL) [25] was

proposed, which serves as a basis to develop domain-specific
languages (DSLs) for specific attack contexts and generate
attack graphs from the models. MAL is a meta-language fea-
turing generic concepts that need to be instantiated properly
for modeling systems, threats, and attacks in different do-
mains. These resulting instances of MAL are domain-specific
threat modeling languages, i.e., DSLs. To date, several MAL
DSLs have been proposed, such as vehicleLang [32] for mod-
eling cyber attacks on vehicle IT infrastructures, coreLang
[31] for modeling attacks on common IT infrastructures,
powerLang [17] for modeling attacks on power-related IT
and OT infrastructures, SCL-Lang [49] for modeling attacks

https://doi.org/tbd
https://doi.org/tbd

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

on power system substations, and enterpriseLang [69] for
modeling attacks on enterprise systems.
However, the development process of these MAL DSLs

varies a lot. For example, some of them involved the desired
end-users in the development process [19], while some have
no stakeholders involved; some validate the instances by
creating test cases [32], while some by modeling real-world
attacks [17, 69]. To unify the development of MAL DSLs, we
propose a software language engineering (SLE) approach
to develop MAL instances (i.e., MAL DSLs) using action
design research (ADR). This approach aims to systematically
collect guidelines and structure them to get a comprehensive
overview for the development of MAL instances. To this end,
we conducted a survey with experienced MAL developers
to understand their approach to developing MAL instances.
From these surveys, we extract guidelines and align these,
together with established DSL design guidelines, with the
conceptual model of ADR. Our approach, thus, is the novel
application of ADR to develop DSLs through the lens of MAL
instances. As such, it is a first step towards systematically
engineering DSLs that we aim to generalize in the future.

The contributions of this paper are threefold:
1. We provide the first systematic ADR-based approach

towards the systematic development of MAL DSLs.
2. We provide a comprehensive overview of how DSL

guidelines can be used for developing MAL DSLs.
3. We demonstrate our approach on three existing and

documented MAL DSLs.
In the following, Section 2, we present the background

of this work. Section 3 describes the method of developing
our approach. Section 4 describes the approach in detail. Sec-
tion 5 demonstrates our findings related to the already devel-
oped MAL DSLs. Section 6 discusses observations. Section 7
reviews the state-of-the-art. Finally, Section 8 concludes.

2 Background
Following, we give a short introduction to the different foun-
dations that we use within this work. Firstly, we present
MAL, a framework for which we design a systematic ap-
proach for creating DSLs. Secondly, we give an overview
of the basic language engineering concepts, which are of
relevance for our work. Finally, we introduce the method
of design science research (DSR), which is an often-used
approach to create artifacts in information systems research.

2.1 Meta Attack Language
First of all, a MAL DSLs contains the main elements that
are encountered on the domain under study, those are called
assets. The assets contain attack steps, which represent
the actual attacks/threats that can happen to them.
An attack step can be connected with one or more

following attack steps so that an attack path is created.
Those attack paths are then used to create attack graphs

Figure 1. The metamodel of MAL

which are facilitated when the attack simulation is run. An
attack step can be either of the type OR or of the type
AND, respectively indicating that performing any individual
parental attack step is required (OR) or performing all
parental attack steps is required (AND) for the current
step to be performed. Attack steps of type OR are defined
by the symbol | while AND attack steps are defined by the
symbol & before their names. Additionally, each attack
step can be related to specific types of risks.

Furthermore, defenses are entities that do not allow con-
nected attack steps to be performed if they have the
value TRUE which represents them to be enabled. Finally,
probability distributions can be assigned to attack
steps in order to represent the effort needed to complete
the related attack step or the probability of the attack
step to be possible. This is defined after the name of the
attack step as it happens on the attack step on line 20 of
the exemplary MAL code.

Assets have relations between them that are used for the
creation of a model, those relations are called associations
in MAL and are defined by the <- - and - -> symbols. When
associations are specified a name for the association as well
as cardinalities for both assets should be defined. Inheritance
between assets is also possible and each child asset inher-
its all the attack steps of the parent asset. Additionally,
the assets can be organized into categories for purely or-
ganization reasons. A diagram of the MAL metamodel can
be seen in figure 1.
Listing 1 presents an example of a MAL DSLs. In this

example, four modeled assets can be seen together with the
connections of attack steps from one asset to another. In the
Host asset on line 6, the connect attack step is an OR attack
step while access is an AND attack step. Then, the -> symbol
denotes the connected next attack step.

For example, if an attacker performs phish on the User, it
is possible to reach obtain on the associated Password and
as a result finally perform authenticate on the associated
Host. In the line 29 to 39 of the example, the associations
between the assets are defined.

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

Listing 1. Exemplary MAL Code
1 c a t e go ry System {
2 a s s e t Network {
3 | a c c e s s
4 −> ho s t s . connec t
5 }
6 a s s e t Host {
7 | connec t
8 −> a c c e s s
9 | a u t h e n t i c a t e
10 −> a c c e s s
11 | guessPwd
12 −> guessedPwd
13 | guessedPwd [Exp (0 . 0 2)]
14 −> a u t h e n t i c a t e
15 & a c c e s s
16 }
17 a s s e t User {
18 | a t t emp tPh i s h i ng
19 −> ph i sh
20 | ph i sh [Exp (0 . 1)]
21 −> passwords . o b t a i n
22 }
23 a s s e t Password ex t ends Data {
24 | o b t a i n
25 −> hos t . a u t h e n t i c a t e
26 }
27 }
28
29 a s s o c i a t i o n s {
30 Network [networks] ∗
31 <−− NetworkAccess −−>
32 ∗ [h o s t s] Host
33 Host [hos t] 1
34 <−− C r e d e n t i a l s −−>
35 ∗ [passwords] Password
36 User [u s e r] 1
37 <−− C r e d e n t i a l s −−>
38 ∗ [passwords] Password
39 }

For a detailed overview of MAL, we refer readers to the
original paper [25].

2.2 Design Science Research
In information systems research, DSR is a popular approach
to develop and evaluate designed artifacts. Usually, DSR is at-
tributed to Hevner et al. [20], who distilled seven guidelines
as characteristics for this research approach. Mainly, they
stress the need for a viable artifact, which addresses a prob-
lem relevant to the business. Then, the artifact is evaluated
based on the properties of the problem, while ensuring a con-
tribution to research. The entire design and evaluation pro-
cess needs to follow a rigorous method and equals a search

process. Finally, the resulting artifact should be presented to
other researchers as well as business representatives.
As these guidelines seemed to be too abstract to effec-

tively steer research, several concrete processes realizing
DSR have been proposed. One of the most popular is related
to Peffers et al. [46], who propose an iterative six-stepped
process: First, the researcher defines the problem. Second,
the objectives of a suitable artifact are determined. Third,
the actual artifact is designed. Fourth, it is demonstrated
that the designed artifact solves the given problem. Fifth, an
evaluation is conducted, in which the researcher shows that
the new artifact is performing better than existing solutions.
Finally, the outcomes are communicated.

Peffers et al.’s process has been criticized for not involving
stakeholders sufficiently. Therefore, Sein et al. [52] devel-
oped that process further by joining action research (AR)
and DSR to ADR. ADR is characterized by a much closer
exchange between researchers and stakeholders and mimics
the development from the waterfall process to agile methods
in software engineering.

3 Method
To design our approach to guide the development of MAL
instances, we follow a four-step process: First, we opt for a
guiding approach already established in research. Concretely,
our approach shall rely on the principle of DSR [20] since we
are creating a concrete artifact (a MAL DSL) that will be used
in an information systems environment. Over time, various
interpretations of DSR have been developed and Venable et
al. [61] sketch decision support that helps to choose the best
fitting approach. Therefore, they differentiate between objec-
tivist, positivist methodologies and subjectivist, interpretive
methodologies. They argue if one expects the designed arti-
fact to be the best solution for a generalized target group that
behaves the same, then one should opt for one of the objec-
tivist, positivist methodologies. In our case, we expect that
each created language will serve a certain purpose and might
not be generalizable to every need [16]. Thus, we opt for a
subjectivist, interpretive methodology. Those methodologies
are distinguished by the domains they address. Venable et
al. [61] state that "If you have a single client that wants to
engage in a research undertaking with you. Then choose
ADR". As most of the MAL DSLs are developed for or to-
gether with a single organization, we decide to adapt ADR
[52] for our approach by considering the knowledge of MAL
DSL developers and existing research presented next.

Second, we investigate how other research addresses the
different stages of ADR. For the stages "Problem Formula-
tion", "Reflection and Learning", and "Formalization of Learn-
ing", we consider articles citing the original ADR description
[52] explicitly addressing these stages. While we assume that
the aforementioned stages are somehow similar for all kinds

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

Figure 2. Time needed to develop the MAL language

of designed artifacts, the second stage "Building, Interven-
tion, and Evaluation" is strongly dependent on the artifact(s)
to be developed. Consequently, we consider for this stage re-
search on building threat models [3, 11, 36, 51, 58, 65, 70] and
creating DSLs []. Next, we follow the conceptual-to-empirical
approach of Nickerson et al. [43] based on the identified lit-
erature and create categories and labels that could be used to
classify the different tasks performed during the creation of
MAL instances. This is independently performed by two of
the authors, who subsequently discuss their results to come
to one set of categories and labels. Doing so, we reduce the
subjective influence on the definition of our categories and
labels. We used deductive coding [39], which means that
the labels are defined before the coding process starts, and
therefore the survey responses do not influence the labels
that are chosen.

Third, we perform a survey among experienced developers
of MAL DSLs to gather information on how they developed
the languages. We received eleven fully answered question-
naires. Considering 19 languages that we are aware of [16],
this corresponds to a return rate of 63 %, which is satisfying
for an online survey [10]. Moreover, we check if the survey
is answered for all published MAL instances, which indeed is
the case. According to the respondents of the survey, for de-
veloping aMAL instance, 72.7% of the respondents have been
worked in a team, and 27.3% of them are worked individu-
ally. In terms of the time needed to develop a MAL instance,
it takes 54.5% of the respondents more than 6 months to
develop the language, and 27.3% of them take less than 3
months to develop the language (see Figure 2).
The questionnaire consists of 7 sections with 30 main

questions and in total 41 questions since we ask for further
details depending on how the person answered the previous
question. The first section comprises questions about the
MAL developer’s background, such as the educational and
professional background. The second section asks questions
regarding which MAL instance the respondent is referring
to when answering the survey. The third section inquires
about the purpose of the MAL instance, the fourth section
asks about the language engineering approach, and the fifth
section about the language artifact itself. Finally, the last two
sections comprise validation and maintenance questions.

Since the survey consists of open-ended questions, mean-
ing that the respondents can answer the question in their
own words, we need a method of quantitatively analyzing a
0MAL Survey https://forms.gle/Wuv5sJgqZSctgP4LA (Accessed 1 June 2021)

large amount of free text. The choice was made to use cod-
ing, which is a method of assigning labels to text to identify
recurring themes [48]. The labels and categories were found
in the process described in stage 2. This method is suitable
as we aim to find and categorize common or contradicting
methods of developing MAL instances.

We split the team of the authors into two groups that work
independently to codify the findings of the survey and align
it with the stages of ADR. Given the categories and labels
from the second step (i.e., reflection on existing research), the
answers are classified. Following the empirical-to-conceptual
approach of Nickerson et al. [43], we complement the cat-
egories and labels if we identify an aspect not covered by
the literature. Afterward, the groups discuss their results
to come to a unified understanding of the actions in the
single stages presented in Section 4. Finally, we reflect our
newly designed approach on the documented development
processes of three MAL DSLs in Section 5.

4 The Approach
Next, we present the approach itself (cf. Figure 3), which we
derived following our method presented before.

4.1 Stage 1 - Problem Formulation
The first stage of ADR is about the formulation of the prob-
lem to be solved. A problem can typically be identified either
by practitioners or by researchers of the domain. In this first
step of the ADR process, the initial scope of the problem, the
roles and scope of each stakeholder, and the initial research
questions are defined.
The problems formulated in this stage can be assigned

to one of the following two problem principles: i) practice-
inspired research, and ii) theory-ingrained artifact. In the
first principle, the problem that is perceived by practitioners
should be induced to a class of problem(s), a process that
creates an opportunity for new knowledge to be generated.
The problem identified will then be used to exemplify that
knowledge. In the second principle, it is suggested that all the
artifacts that are created to solve a problem are based on some
previous theory or theories. The uses of such prior theories
can be: 1) to structure the problem, 2) to identify solution
possibilities, and 3) to guide the design of the artifact.
The labels that were detected from the reviewed litera-

ture and correspond to the formulation of the problem can
be categorized into three discrete categories, as presented
below.
G-1.1: Problem definition The first category, which elab-
orates on encountering and realizing the problem, is com-
prised of the following dimensions. Those dimensions corre-
spond to the labels we have detected from the literature. First,
performing a systematic literature review (SLR) is one way
of detecting and formulating a problem [1, 15, 26, 38, 44].

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

1. Problem Formulation

3. Reflection and Learning

G-1.1: Problem definition
G-1.2: Stakeholder involvement
G-1.3: Problem-specific types

G-3.1: Co-Creation
G-3.2: Stakeholder involvement
G-3.3: Stakeholder motivation

2. Building, Intervention, and Evaluation

DSL based guidelines
G-2.1: Define language rules
G-2.2: Specification by a language metamodel
G-2.3: Error prevention and model checking
G-2.4: Comprehensibility and learnability
G-2.5: Language extensibility
G-2.6: Adopt existing domain notations
G-2.7: Design for language evolution
G-2.8: Balance generality and specificity
G-2.9: Reuse and compose existing language definitions
G-2.10: Assessment of quality and correctness
G-2.11: Perform analytical methods

Threat modeling-based guidelines
G-2.16: Adopt existing domain terms
G-2.17: Use an appropriate ontology
G-2.18: Interview domain experts
G-2.19: Stakeholder involvement

G-2.12: Perform experimental testing
G-2.13: Compare to language design patterns
G-2.14: Appropriateness
G-2.15: Testing on language users

4. Formalization of Learning
G-4.1: Outcome of formalization
G-4.2: Design principles

G-4.3: Formalization approach
G-4.4: Artifact contribution

G-4.5: Artifact nature
G-4.6: Contribution maturity

Figure 3. ADR Method: Stages and Guidelines (adapted from Sein et al. [52])

Other possible ways are through systematic empirical in-
vestigations, focus groups meetings, or expert interviews
[38, 44]. A problem can also be encountered during the typi-
cal operations of an organization [38]. Finally, cause-effect
diagram modeling can also lead to the detection of a problem
[1].
G-1.2: Stakeholder involvement The next category of la-
bels is related to the type of the stakeholders and their in-
volvement in the problem formulation process. The possible
involved stakeholder types are: 1) researchers, 2) end-users,
and 3) practitioners [15, 38]. Then, the involvement of the
stakeholders can typically be achieved via participation in
the following detected dimensions/labels: 1) expert inter-
views [38, 44], 2) focus groups [38, 44], 3) surveys [44], and
4) status seminars [44].
G-1.3: Problem-specific types In the last category, some
labels for the categorization of the problem itself and the
research gap were identified in the literature. First, the prob-
lem itself can either be categorized as an abstract problem or
an instantiated problem [1]. Then moving on to the property
of the problem, we can differentiate two types of research:
theoretical gap or design gap [1]. In the case of a theoreti-
cal gap, theoretical knowledge is missing that is needed as
justification for the design of the artifact. On the other hand,
the design gap refers to knowledge that is missing or not yet
validated and has to do with the created artifact rather than
the theoretical foundations.

4.1.1 Application on MAL DSLs. The survey that was
performed with MAL DSLs developers showed that in most
cases the definition of the problem that the developed MAL
DSL tries to solve was identified through interviews with
experts and by performing an SLR. In the question about
who the different stakeholders are, as shown in Figure 4, the

Figure 4. Stakeholder involvement (who)

Figure 5. Stakeholder involvement (how)

most common answer was that they come from the indus-
try, and are therefore practitioners of the field, while the
second most popular reply was that they are researchers in
the field. In some other cases, sponsors are also considered
as stakeholders, but then they have minimal influence in
the design process. The involvement of stakeholders in the
design process was most commonly achieved through focus
group meetings and by performing surveys (see Figure 5).
Finally, the participants stated that the problem was originat-
ing from a gap in the design and not a gap in the knowledge,
while the percentage of the instantiated types of problem is
larger than the abstract types, as shown in Figure 6.

4.2 Stage 2 - Building, Intervention, and Evaluation
The second stage of ADR builds upon the problem formu-
lation tasks of stage 1. On these premises, stage 2 employs
an iterative design cycle with three steps to achieve the re-
alized design of the artifact. The three steps are 1) building

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

Figure 6. Challenge addressed

of the IT artifact, 2) intervention in the organization, and 3)
evaluation (BIE).
The initial design of the artifact is based on the problem

statement of stage 1. After the first BIE cycle, the artifact
is refined and build upon the feedback from the previous
BIE cycle. By deploying the artifact to the organization early,
practitioners get to experience and test the design. They
can influence it by giving feedback on how well the design
performs compared to their expectations and assumptions.
During one BIE cycle, the problem and the artifact are

continuously evaluated by deploying the artifact in the or-
ganization early and improved by building and refining the
IT artifact based on the feedback. This feedback is evaluated
and in case the organization adopts or rejects the artifact, a
new BIE cycle starts.
The labels identified from the literature paper that are

related to the second stage can be classified into two parts:
1) DSL guidelines and 2) threat modeling guidelines.

4.2.1 DSL Guidelines. To achieve a better quality of the
language design and improve acceptance among language
users, DSL guidelines guide language designers in the process
of DSL development. Next, a selection of DSL guidelines is
presented that apply to the development of MAL languages
as well as DSL development in general.
G-2.1: Define language rules [34] Models often have to
adhere to rules derived from the domain they are applied to,
the language itself, or usage conventions. These rules may
be strict by informing about missing elements or incorrect
usage. They even can support conventions and default val-
ues. Language rules or well-formedness rules enable early
error detection and prevent invalid or unwanted models.
G-2.2: Themodeling language is specified by a language
metamodel [24] Specifying the modeling language in a lan-
guage metamodel includes defining the abstract syntax, con-
crete syntax, well-formedness rules, and semantics in a meta-
modeling language. This languagemetamodel facilitates easy
understanding of the scope and elements of the language
and provides a standardized way for further changes and
adaptions. Consequently, missing metamodels impedes the
development, use, extension, and reuse of DSLs.
G-2.3: DSL’s support for error prevention and model
checking [27] Error prevention and model checking are
important for producing reliable programs. Because often
the inspection of all relevant parts of a model for errors and
completeness are either missing or incomplete, DSLs need

improvement in this area. Consequently, when designing
a modeling language, providing model checking and error
prevention measurements plays an important role in helping
modelers to build reliable solutions to their problems.
G-2.4: Comprehensibility and learnability [27] For DSLs
to be comprehensible, language elements have to be under-
standable, e.g., by reading their description or doing a tuto-
rial. This facilitates learning the DSL and to design programs
with it. When DSLs are overly complex and do not have any
documentation, they are hard to understand and thus, drive
potential users away
G-2.5: Provide for language extensibility [53] Software
languages are software too [6] and, hence, often subject
to evolution beyond the conceptions leading to its first re-
lease(s). This especially holds where languages are relatively
generic and will be specialized by future users, such as the
UML with MechatronicUML [4] or UML/P [50]. Without lan-
guage suitable extension mechanisms [21], users will aban-
don such a language and create their variants from scratch.
G-2.6: Adopt existing domain notations [13, 30, 34, 40,
63, 67] For the language to be suitable, its concrete syntax
should reflect concepts known by the modeler. These con-
cepts, generally, originate from related domains, that flatten
the learning curve by providing an intuitive understanding
of notations.
G-2.7: Design for language evolution [33, 37, 62, 63] As
languages will evolve, they should be designed accordingly.
This includes the modularization of concepts. Evolution in
language design enables the modification of dedicated as-
pects of a language, instead of causing extensive changes.
G-2.8: Balance generality and specificity [30, 63, 67]Mod-
eling languages should abstract from implementation details.
However, at the same time, they have to offer expressive
modeling techniques to be appropriate for their use case. Be-
cause these requirements often contradict each other, finding
an appropriate balance between both is crucial.
G-2.9: Reuse and compose existing language definitions
[30, 33, 40, 63] Modeling languages often are composed of
and reuse existing concepts of other languages. To reduce
the implementation and maintenance effort, it makes sense
to reuse existing language definitions on the technical level
as well [5]. Composing multiple fragments is a powerful
technique to increase sustainability in developing new lan-
guages.
G-2.10: The language is assessable regarding its qual-
ity and correctness [24] To ensure a certain quality and
correctness of the language, the DSL should be evaluated
and refined constantly throughout the development process.
G-2.11: Perform analytical methods [60] To ensure that
the modeling language fulfills certain functional require-
ments it is important to perform analytical methods, e.g.,
static analysis, architecture analysis, optimization, and dy-
namic analysis.
G-2.12: Perform experimental testing, and descriptive

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

methods [60] To measure and to ensure that the language
in development fits functional and non-functional require-
ments, experimental and descriptive methods should be ap-
plied.
G-2.13: Compare to language design patterns [2] Re-
search already published a multitude of language design
guidelines, patterns, and best practices. During the develop-
ment process of DSLs, they should be constantly compared
to these guidelines to further improve the DSL in the next
development iteration.
G-2.14: Users can recognize whether the DSL is appro-
priate for their needs [27] For the DSL to be success-
ful it needs to fulfill the requirements stated by its users.
To achieve this, the users should be enabled to recognize
whether or not the DSL is appropriate for their needs.
G-2.15: Testing: Test the language design on language
users [66] For the DSL to meet the language user’s needs,
it is important to constantly involve the intended users in
the development process by letting them test the language
design.

4.2.2 Application ofDSLGuidelines toMALDSLs. This
section summarizes our findings after we performed the sur-
vey. The survey that was performed with MAL DSL develop-
ers showed that some of the guidelines presented above were
already included in the MAL development process. The sur-
vey indicates that most of the language developers defined
language rules for their languages.
The presented DSL guidelines are taken into account at

different stages of stage 2. When designing or building their
DSL, they reused existing documentation or reused already
existing language definitions to define the rules for their
language. 75% of the survey participants explicitly stated
that they designed their DSL for language evolution. For
instance, they used abstract assets to be easily extendable in
future versions. Regarding balancing specialty and generality,
some participants answered that they wanted their DSL to
be specialized enough to cover the security aspects of their
application, but also wanted it to be general enough for it to
be applied to other domains.
In the intervention, often, adopting the existing domain

notation was a requirement for the design of the developed
DSL, e.g., the DSL should enable tomodel the security aspects
of AWS as close as possible. This was ensured by involving
stakeholders of the language and users that can recognize
whether the DSL is appropriate for their application.

For the evaluation, the language developers performed a
static analysis of their languages and models by constructing
attack paths as well as unit tests. By using their language to
model-real world attack scenarios for cloud environments,
e.g., AWS, and model known security issues, they performed
experimental testing. Only a few of the participants evalu-
ated their DSL by comparing it to existing language design
patterns.

4.2.3 Threat Modeling Guidelines. In addition to the
DSL guidelines addressed above, the labels identified from
the reviewed literature that correspond to threat modeling
guidelines are presented as follows.
G-2.16: Adopt existing domain terms In the building stage,
using easy-to-understand icons (symbols) associated with
the elements of a threat modeling language supports the com-
munication among participants with different backgrounds.
Also, the threat modeling language should be easily under-
standable for practitioners, and be sufficiently precise to
allow in-depth risk analysis [65].
In addition, a threat library can be used to guide the identi-
fying and analysis of threats. A threat library can reduce the
expertise required for threat modeling [11, 58].
G-2.17: Use an appropriate ontology An appropriate on-
tology is needed for modeling threats to the system by pro-
viding a formal and comprehensive knowledge base [51].
G-2.18: Interview domain experts Interviewing domain
experts can be involved during threat modeling (by identify-
ing threats and countermeasures), as well as validating the
threat modeling approaches and results [51].
G-2.19: Stakeholder involvement through brainstorm-
ing or the Delphi method The most important assets of
the system are identified in a brainstorming session with se-
curity experts [56]. This expert knowledge can be used as an
information source for threat modeling. The Delphi method
can be used to identify a possible weak spot because of its
dependency on who is participating from the stakeholders
[36].

4.2.4 Application of threatmodeling guidelines toMAL
DSLs. According to all the answers to the questionnaire,
all the four categories above are addressed. Regarding the
requirement of building a DSL, 81.8% of the respondents
require to reuse a threat library/existing artifacts/standards
[11, 58], and 27.3% of them require to use an appropriate on-
tology [51]. To customize the DSL, 72.7% of the respondents
require to use easy-to-understand icons (symbols) [65]. In
terms of validating the DSL, 90.9% of the DSLs are validated
through test cases, while only 9% of the DSLs are validated
through industry/security experts or Turing tests.

However, some dimensions are missing from the answers,
e.g., validating the modeling language by the Delphi method
[8]. Specifically, threat modeling work can lack semantics
making it difficult for both humans and systems to under-
stand the architecture deception exactly and commonly, and
ontology-based approaches can be applied to solve this issue
[29]. Also, the Delphi method has not been addressed by
the answers or at least fully used when evaluating the built
DSLs, which is a forecasting process framework based on the
results of multiple rounds of questionnaires sent to a panel
of experts. While security experts, domain experts are found
to be involved in the intervention and evaluation steps of

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

several DSLs, e.g., sclLang [49], powerLang [17], azureLang
[19], and coreLang [31].

4.3 Stage 3 - Reflection and Learning
While in the two previous stages the focus on a problem and
its solution for a single instance, in stage 3 the solution is con-
ceptualized to address a broader class of problems [52]. Stage
3 parallels the previous stages and fosters a conscious reflec-
tion on the problem, the applied theories, and the emerging
artifact. Moreover, the researchers should alter the research
process based on evaluation results if necessary. To reflect
on the developed artifact, the developers of MAL DLSs men-
tioned different approaches that were also highlighted in the
literature.
G-3.1: Co-Creation For learning activities, the co-creation
of artifacts [18] between MAL developers and stakeholders
have reported. However, Haj-Bolouri et al. [18] additionally
emphasize that for successful learning a tight coupling be-
tween researchers and stakeholders is necessary as well as a
continuous exchange between these two groups.
The latter is also observable in the questionnaires, as some
of the participants acknowledge a continuous evaluation of
the artifact in close exchange with the stakeholders. Comple-
mentary, Haj-Bolouri et al. [18] name also prototypes, the
direct implementation in an organization, and continuous
documentation of the artifact as means for reflection.
G-3.2: Stakeholder involvement According to our partic-
ipants, the exchange between the developers and the stake-
holders takes place in workshop formats, in which the ar-
tifacts are presented and discussed. Additionally to these
workshops, scientific literature [18] mentions training ses-
sions to foster teach the stakeholders about the artifact. Such
training sessions can be a useful supplement to the existing
approaches to communicate MAL DSLs.
G-3.3: Stakeholder motivation There are two drivers for
the stakeholders to participate in the aforementioned work-
shops. On the one hand, the stakeholders are interested in
assessing the security of their systems. On the other hand,
the interest is on automating the existing assessment. Hence,
we can see a maturation of the stakeholders’ interest in MAL
related to their actual application of security measures.

4.4 Stage 4 - Formalization of Learning
Finally, in stage 4, the objective is to formalize the findings
by providing a general solution to a class of problems [52].
Therefore, the researcher is supposed to reflect on the ac-
complishments realized in the artifact and characterize the
organizational impact.
G-4.1: Outcome of formalization Research related to the
formalization differentiates between two different artifact
types in the realm of ADR [18, 38]: either the solution is
focused on an information system or on changing the organi-
zation. As expected, we found in all answers of the question-
naire that the research was related to information systems

and not to the organizations themselves.
Unfortunately, we could not generate deeper insights for the
formalization with the questionnaires. Most likely, this is
caused by the fact that MAL DSLs are usually designed to
solve a certain problem and the efforts to generalize these
languages to a broader corpus of problems are omitted. Ex-
ceptions can be found in the approach of Hacks and Katsikeas
[16], who propose an ecosystem of MAL DSLs to foster reuse
among the languages, and coreLang [31] providing abstract
assets that fit for different domains. To enable future formal-
ization, the development of MAL DSLs can benefit from the
existing DSR.
G-4.2: Design principles One approach to formalize the
outcomes of the research is to distil design principles. These
design principles can relate to the artifact itself [7, 15, 59, 64]
and its properties [7, 14, 15], the purpose and context of
the artifact [7, 15, 59, 64], the design process of the artifact
[7, 64], and the evaluation process of the artifact [7, 15].
G-4.3: Formalization approachThe formalization can also
be guided by different approaches such as problem structur-
ing [15, 59], utility theory [59], hypothesis building [59],
grounded theory [15, 38], heuristic theorizing [15], or en-
gaged scholarship [15, 44].
G-4.4: Artifact contribution Another way of formalizing
is to reflect on the contribution of the artifact. Depending
on the abstraction level of the solution, we can differentiate
between three classes of solutions [14, 59]: a well-developed
design theory, a nascent design theory, and a situated im-
plementation. For classical MAL DSLs (e.g., [17, 32]), the
contribution is expected to be a situated implementation,
while for some approaches (e.g., [16, 31]) one can also argue
for a nascent design theory.
G-4.5: Artifact nature The resulting artifact can either be
of descriptive or prescriptive nature [1, 14]. The MAL DSLs
describe classically known vulnerabilities related to certain
assets and their relations. Hence, the contribution is descrip-
tive. However, those descriptive languages can be used to
describe possible future configurations and, thus, the contri-
bution can be prescriptive.
G-4.6: Contribution maturity The contribution can be
classified to its maturity [14]. If a known solution is applied
to a known problem (Routine Design), there is no significant
contribution to the work. If an existing solution is extended
to a new problem (Exaptation), there is a research opportu-
nity and a knowledge contribution. The same contribution
holds for the cases if there is a new solution for a known
problem (Improvement) or if there is a new solution for a new
problem (Invention). As MAL DSLs are relying on an existing
solution (i.e., MAL) and are developing for a new domain
that is not covered yet, the contribution is expected to be an
exaptation. If a language is redesigned, an improvement is
also possible.

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

Table 1. Addressed categories in documented MAL DSLs

vehicleLang coreLang powerLang
Stage 1 G-1.1

G-1.3
G-1.3 G-1.2

G-1.3
Stage 2 G-2.15 G-2.6

G-2.15
G-2.6
G-2.8
G-2.9
G-2.15
G-2.16

Stage 3 - G-3.2
G-3.3

-

Stage 4 - G-4.1 G-4.2
G-4.3

5 Demonstration
To demonstrate how our findings relate to already developed
MAL DSL, we will discuss the approach followed for the
development of already presented MAL DSLs. Table 1 sum-
marizes shortly the found labels in the different languages.

5.1 vehicleLang
We start with vehicleLang [32], which is a DSL for the auto-
motive domain, and the problem that tries to solve is how
to perform cyber-attack simulation on vehicular infrastruc-
tures. In the process followed for the development of this
language and by following the four stages of the ADR we
can identify the following labels.

Stage 1. Regarding the first stage, the main method for
information gathering and defining the problem was an SLR
of the domain (G-1.1) and some limited input from experts.
Then the problem that this language tries to solve can be
categorized as an instantiated problem (G-1.3).

Stage 2. Moving on to the second stage, which involves
the BIE cycle. The building of the language was heavily
based on existing literature and therefore clear language
rules were set. Additionally, since MAL was used as the de-
velopment framework, a metamodel frames the structure of
the language. When it comes to stakeholder intervention/in-
volvement, this was minimal in this work since only a few
interviews with one domain expert were conducted during
the development phase. Then, regarding validation, again
one interview with a domain expert was used together with
unit tests (G-2.15).

Stage 3. Coming to the third stage, a reflection on the
created artifact was done both by writing a scientific paper
but also on presenting it in both a conference but also a
workshop. Finally, as it mostly happens with all MAL DSLs,
a formalization and generalization of the created artifact was
not done on this work since an attempt to solve a very spe-
cific problem was the main goal of it. Discussing what could

have been made better on this work, we first require higher
involvement of the stakeholders, which are the automotive
domain experts, because this would also allow a higher level
of validation of the artifact in stage 2.

Stage 4. Finally, we can argue that processes of the final
stage of the ADR process are completely missing from this
work. To correct this, the solution would be to try to perform
some of them, for example, build the language with future
extensions in mind. One more thing that could be done is to
also try to elaborate on how the designed artifact could be
used towards solving a broader group of problems.

5.2 coreLang
coreLang [31] is another MAL DSL that was designed as a
boilerplate language for other MAL DSLs because it includes
all the basic and common IT components that are found on
IT systems of different domains.

Stage 1. Although how the problem was identified is not
clearly stated, it seems that the main developers of that lan-
guage were aware of the problem of double work needed
in other MAL DSLs to cover similar elements of different
infrastructures. For that reason, they aimed at creating a
fundamental language. The problem can be characterized as
an instantiated problem that addresses an implementation
gap (G-1.3).

Stage 2. For coreLang to be abstract enough but widely ac-
ceptable also, it adopts a common terminology (G-2.6) found
on all IT infrastructures. When it comes to stakeholder inter-
vention/involvement, this is an example of high involvement
since weekly meetings with domain experts were conducted
during the whole development phase for both brainstorm-
ings but also for providing feedback back to the developers
and suggestions on possible improvements in the language.
Finally, regarding the evaluation of the language, both test
cases and unit tests (G-2.15) were used.

Stage 3. Because of the aforementioned high involvement
of the stakeholders, we can state that this is one of the few
languages that covers most of the processes found on this
stage (G-3.2 and G-3.3). Additionally, due to the abstraction
of the language, a conceptualization of how a broader class of
problems can be solved comes as a natural consequence. This
was supported, on that work, by trying to evaluate coreLang
against the MITRE ATT&CK matrix of possible attacks.

Stage 4. Adhering to the authors’ goal, coreLang was built
with future extensions in mind, and even more, on top of
that, a whole MAL DSL ecosystem was also proposed based
on coreLang [16] (G-4.1).

5.3 powerLang
powerLang [17] is a MAL DSL that was designed to enable
organizations in the power domain to assess the security

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

of their IT and operational technology (OT) environments.
Therefore, it reuses two existing languages (coreLang [31]
and sclLang [49]) to provide assets for office and for sub-
station environments. To bridge the gap between these two
worlds, icsLang is proposed that is thought to represent the
environment controlling the substation.

Stage 1. It is not explicitly elaborated how the problem
founding the need for powerLang was identified. From the
background of this language, we can deduce that the lan-
guage is developed in a research project, and stakeholders
(researchers and practitioners) might have been involved
in the problem definition during the proposal writing (G-
1.2). The problem itself can be categorized as instantiated
addressing a design gap (G-1.3).

Stage 2. One main characteristic of powerLang is that it
reuses and composes existing language definitions (G-2.9) by
using coreLang and sclLang and linking them to each other.
To ease the use of powerLang by practitioners, it further
adopts their common terminology (G-2.6, G-2.16). However,
to find a balance between generality and specificity (G-2.8),
icsLang –as a subset of powerLang– uses the terminology of
industrial control systems, but is not further tailored to the
power domain. Thus, icsLang should allow being used also
in non-power domains.

The development process of powerLang is not further de-
tailed. It is solely stated that icsLang is build using MITRE
ATT&CK for Industrial Control Systems1. Thus, the direct
involvement of stakeholders is unlikely. Concerning evalu-
ating the language (G-2.15) unit tests have been developed
to ensure the correct functionality of the language and it is
demonstrated on a real-world attack.

Stage 3. As there have been no activities conducted to
foster the exchange between the language developers and
possible stakeholders, there have been also no joint learning
activities. Consequently, stage 3 has not been addressed in
the development of powerLang.

Stage 4. Similarly, it is not stated that any efforts have
been taken to formalize the results beyond solving the given
problem. However, there are two contributions to formaliza-
tion. Firstly, icsLang is designed to cover also other domains
than power (G-4.3). Secondly, in the related articles design
principles are suggested that are thought to ease the linking
of different MAL DSLs (G-4.2).

Reflecting on the development process of powerLang, we
can presume that there is an opportunity for improvement.
Especially, it is recommended to involve stakeholders to a
greater extend. This includes the problem definition, but also
the development of the language and the paralleling learning
activities. Further, the article presenting powerLang would
have benefited from elaborating more extensively on the

1https://collaborate.mitre.org/attackics/index.php/Main_Page

scientific contribution and trying to formalize the findings
more.

6 Discussion
Hitherto, we have developed a method to guide the instan-
tiation of MAL and demonstrated its application based on
three published languages. However, several points offer the
possibility for improvement.
Firstly, our survey had a quite small number of partici-

pants, which was mainly caused by a small population of
available persons, who developed a MAL DSL so far. More-
over, we achieved a response rate of 63 %, which is above
average for online surveys [10]. Apart from the number of
participants, the participants were also from only two dif-
ferent organizations, which are additionally closely linked
to each other. On the one hand, there are no other organiza-
tions in which MAL DSLs have been developed yet. On the
other hand, we could have taught other language developers
MAL to gather their experiences. However, we did not opt
for this option, because a developer would have developed
an entire language from scratch. This would have been too
time-intensive for our needs.

Secondly, there are different options related to the design
of the surveys. We opted for open-ended questions as we
wanted to gather a wide spectrum of answers regarding the
design of MAL DSLs and not to steer the answers of the
participants in the direction of our thinking. However, the
formalization of these answers becomes more challenging
and subjective. Alternatively, we could use closed questions,
which would ease the formalization and lead to more objec-
tive results. Nonetheless, we prioritized the opportunity to
gather unexpected results over more objective results, which
we will address in our future work.

Another means to ease the formalization could be to apply
machine learning techniques. This would be challenging as
we were using open questions, but not impossible. Neverthe-
less, we emphasized human intuition in our formalization
of the survey results, which could not be mirrored by ma-
chine learning. Yet, we are considering machine learning to
analyze the outcomes of surveys with closed questions.

As indicated before, we manually performed the coding of
the survey answers. To reach a consensus, we presented our
decisions to each other and if necessary, we discussed our
results. This is prone to human effects, such as single per-
sons can dominate the discussion and influence the outcome.
We tried to create an open space to value all opinions the
same, but we cannot guarantee that subliminal tendencies
might remain. Therefore, we plan to experiment with more
subjective approaches, which rely on numerical measures
[45].

Thirdly, applying Venable et al. [61] results in the recom-
mendation to rely on our method on ADR. This was also in
line with our expectations as ADR emphasizes the exchange

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

with stakeholders during the artifact development. However,
it might be that other DSR approaches or a combination of
them suit the development of MAL DSLs better. To deter-
mine this, several applications of our method are necessary
that show what needs to be improved.

Finally, the generalization of our approach to other DSLs
should be researched. We assume that most parts of our
method can be applied to DSLs, too. Just the guidelines that
are related to threat modeling (cf. Section 4.2.3) might be
removed or replaced by guidelines that are tailored to the
respective domain.

7 Related Work
In this work, we provide guidelines for developing MAL
DSLs and since MAL is both a domain-specific and a threat
modeling language framework, we consider both as related
work. First, there are guidelines for framing the design of
DSLs. With the same intention as our work to help guide
the development of a DSL, Mernik et. al. describe patterns
in the different phases of the development [40]: decision,
analysis, design, implementation, and deployment. Two of
their patterns have been adapted in our work and are the
guidelines "Adopt existing domain notations" and "Reuse
and compose existing language definition". Mernik et. al. do
not, however, define patterns for the implementation phase
as they see it as out of scope for their paper. The method
of assigning patterns is similar to our method of assigning
labels per phase according to the survey responses. Gabor et.
al. do not define patterns but instead guidelines according
to the categories purpose, implementation, contents of the
language as well as concrete and abstract syntax [30]. Three
of their guidelines have been adapted in our work, namely
"Adopt existing domain notations", "Balance generality and
specificity" and "Reuse and compose existing language defini-
tions". Compared to our guidelines, they do not provide any
guidelines regarding reflection and learning but focus on the
development itself. Second, in a systematic literature review
of threat modeling by Xiong and Lagerström [68] several
articles are identified that either describe threat modeling or
a specific process of developing a threat model. Especially,
the latter articles can be compared to our approach. One
paper divides the process into first determining scope, then
gathering background information, describing the compo-
nent, and recording any weaknesses [57]. Finally, the author
outlines how to gather threats for the model by brainstorm-
ing. The process is based on the author’s previous experience
in developing threat models. This is similar to how we base
our approach on previous MAL developer’s experience but
we fit this into the DSR framework.

Another paper describes a process of four steps [11]. These
four steps are to first create a Dataflow Diagram (DFD), gath-
ering attacks with the help of a threat library, assessing the
risks, and mitigating the risks. The third article describes

the process as iterative and consisting of six stages [28]. The
stages are identification of assets, architectural overview,
fragmentation of the system, identification of threats, docu-
mentation of these threats, and lastly rating them. Overall,
these guidelines, are similar to those in stage 2 of the ADR
but do not focus on insights into the other three stages.
In addition, there have been developments of artifacts,

other than languages, where the ADR process has been used.
ADR has been used for developing concept generation and
selection methods where the authors determined that using
ADR was feasible for their project even though they saw
some weaknesses [47]. ADR has also been used for creat-
ing an Inter- Organizational Social Networking Information
System (IO SNIS) [42] and Organisational Culture Assess-
ment Instrument-Spilter (OCAI-Spilter), which is a culture
measurement tool [35].

8 Conclusion
We have investigated whether ADR, a form of DSR tailored
to creating IT artifacts that are shaped by their organiza-
tional context during development and use, can be used to
create DSLs (i.e., instances) of the Meta Attack Language.
To this end, we have surveyed experienced developers of
such languages. From their answers and literature on DSL
development, we extracted guidelines for the development
of MAL DSLs using ADR. Through this, we identified many
guidelines for the BIE stage of ADR but only a few for the
problem formulation, reflection, and formalization of learn-
ing stages. At the same time, we recognized that these stages
were also neglected in documented MAL DSLs [17, 31, 32].
This suggests that ADR might be a suitable framework for
the systematic engineering of (MAL) DSLs. However, it also
hints that there are gaps in systematically embedding DSLs
in organizational contexts that demand further research, es-
pecially concerning the non-BIE stages. Moreover, we aim
to research if our approach applies to other DSLs.

Acknowledgments
This project has received funding from the European Union’s
H2020 research and innovation program under the Grant
Agreement No. 832907, the Swedish Centre for Smart Grids
and Energy Storage (SweGRIDS), and theDeutsche Forschungs-
gemeinschaft (DFG) under Grant Agreement No. 441207927.

References
[1] Hazbi Avdiji and Robert Winter. 2019. Knowledge Gaps in Design

Science Research. In International Conference on Information Systems
(ICIS) 2019. https://www.alexandria.unisg.ch/258227/

[2] Ankica Bariic, Vasco Amaral, and Miguel Goulão. 2012. Usability
evaluation of domain-specific languages. In 2012 Eighth International
Conference on the Quality of Information and Communications Technol-
ogy. IEEE, 342–347.

[3] Ankica Barišić, Vasco Amaral, Miguel Goulão, and Bruno Barroca.
2011. Quality in Use of Domain-Specific Languages: A Case Study.
In Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and

https://www.alexandria.unisg.ch/258227/

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

Usability of Programming Languages and Tools (Portland, Oregon, USA)
(PLATEAU ’11). Association for Computing Machinery, New York, NY,
USA, 65–72. https://doi.org/10.1145/2089155.2089170

[4] Sven Burmester, Holger Giese, andMatthias Tichy. 2005. Model-Driven
Development of Reconfigurable Mechatronic Systems with Mecha-
tronic UML. In Model Driven Architecture, Uwe Aßmann, Mehmet
Aksit, and Arend Rensink (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 47–61.

[5] Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen,
Bernhard Rumpe, and Andreas Wortmann. 2020. A Library of Liter-
als, Expressions, Types, and Statements for Compositional Language
Design. Special Issue dedicated to Martin Gogolla on his 65th Birthday,
Journal of Object Technology 19, 3 (October 2020), 3:1–16. Special Issue
dedicated to Martin Gogolla on his 65th Birthday.

[6] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. 2016. Engineering Model-
ing Languages: Turning Domain Knowledge into Tools. Chapman &
Hall/CRC Innovations in Software Engineering and Software Devel-
opment Series.

[7] Stefan Cronholm and Hannes Göbel. 2018. Guidelines supporting the
formulation of design principles. In 29th Australasian Conference on
Information Systems (ACIS), Sydney, December 3-5, 2018.

[8] Norman Dalkey and Olaf Helmer. 1963. An Experimental Application
of the DELPHI Method to the Use of Experts. Management Science 9
(1963), 351–515. Issue 3. https://doi.org/10.1287/mnsc.9.3.458

[9] Defense Use Case. 2016. Analysis of the cyber attack on the ukrainian
power grid. Electricity Information Sharing and Analysis Center (E-
ISAC). Available: https://ics.sans.org/media/E-ISAC_SANS_Ukraine_
DUC_5.pdf.

[10] Elisabeth Deutskens, Ko De Ruyter, Martin Wetzels, and Paul Oost-
erveld. 2004. Response rate and response quality of internet-based
surveys: an experimental study. Marketing letters 15, 1 (2004), 21–36.

[11] Danny Dhillon. 2011. Developer-Driven Threat Modeling: Lessons
Learned in the Trenches. IEEE Security & Privacy 9, 4 (2011), 41–47.
https://doi.org/10.1109/MSP.2011.47

[12] Mathias Ekstedt, Pontus Johnson, Robert Lagerström, Dan Gorton,
Joakim Nydrén, and Khurram Shahzad. 2015. Securi CAD by Foreseeti:
A cad tool for enterprise cyber security management. In 2015 IEEE
19th International Enterprise Distributed Object Computing Workshop
(EDOCW). IEEE, 152–155.

[13] Ulrich Frank. 2013. Domain-Specific Modeling Languages: Require-
ments Analysis and Design Guidelines. In Domain engineering.
Springer, 133–157.

[14] Shirley Gregor and Alan R Hevner. 2013. Positioning and presenting
design science research for maximum impact. MIS quarterly (2013),
337–355.

[15] Robert Wayne Gregory and Jan Muntermann. 2014. Research Note
—Heuristic Theorizing: Proactively Generating Design Theories. In-
formation Systems Research 25, 3 (September 2014), 639–653. https:
//doi.org/10.1287/isre.2014.0533

[16] Simon Hacks and Sotirios Katsikeas. 2021. Towards an Ecosystem of
Domain Specific Languages for Threat Modeling. In Proc. of the 33rd
International Conference on Advanced Information Systems Engineering
(to be published). 1–15.

[17] Simon Hacks, Sotirios Katsikeas, Engla Ling, Robert Lagerström, and
Mathias Ekstedt. 2020. powerLang: a probabilistic attack simulation
language for the power domain. Energy Informatics 3, 1 (2020).

[18] Amir Haj-Bolouri, Lennarth Bernhardsson, and Matti Rossi. 2016.
PADRE: A Method for Participatory Action Design Research. In Tack-
ling Society’s Grand Challenges with Design Science, Jeffrey Parsons,
Tuure Tuunanen, John Venable, Brian Donnellan, Markus Helfert, and
Jim Kenneally (Eds.). Springer International Publishing, Cham, 19–36.

[19] Ahmad Hawasli. 2018. azureLang: a probabilistic modeling and simula-
tion language for cyber attacks in Microsoft Azure cloud infrastructure.

Master’s Thesis. KTH Royal Institute of Technology, Stockholm, Swe-
den.

[20] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004.
Design science in information systems research. MIS quarterly 28, 1
(2004), 75–105.

[21] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. 2018.
Software Language Engineering in the Large: Towards Composing
and Deriving Languages. Computer Languages, Systems & Structures
54 (2018), 386–405.

[22] Hannes Holm, Khurram Shahzad, Markus Buschle, and Mathias Ekst-
edt. 2015. P2CySeMoL: Predictive, Probabilistic Cyber Security Model-
ing Language. IEEE Transactions On Dependable And Secure Computing
12, 6 (2015), 626–639.

[23] Industrial Defender. 2021. Florida Water Treatment Plant Hit With
Cyber Attack. Available: https://www.industrialdefender.com/florida-
water-treatment-plant-cyber-attack/.

[24] Sven Jannaber, Dennis M Riehle, Patrick Delfmann, Oliver Thomas,
and Jörg Becker. 2017. Designing a framework for the development of
domain-specific process modelling languages. In International Confer-
ence on Design Science Research in Information System and Technology.
Springer, 39–54.

[25] Pontus Johnson, Robert Lagerström, andMathias Ekstedt. 2018. AMeta
Language for Threat Modeling and Attack Simulations. In Proceedings
of the 13th International Conference on Availability, Reliability and
Security. ACM, 38.

[26] Coquessa Jones and John R. Venable. 2020. Integrating CCM4DSR
into ADR to Improve Problem Formulation. In Designing for Digital
Transformation. Co-Creating Services with Citizens and Industry, Sara
Hofmann, Oliver Müller, and Matti Rossi (Eds.). Springer International
Publishing, Cham, 247–258.

[27] Gökhan Kahraman and Semih Bilgen. 2015. A framework for quali-
tative assessment of domain-specific languages. Software & Systems
Modeling 14, 4 (2015), 1505–1526.

[28] R. Kamatchi and Kimaya Ambekar. 2016. Analyzing Impacts of Cloud
Computing Threats in Attack based Classification Models. Indian
Journal of Science and Technology 9 (06 2016). https://doi.org/10.17485/
ijst/2016/v9i21/95282

[29] Dongwoo Kang, Jeongsoo Lee, Sungchul Choi, and Kwangsoo Kim.
2010. An ontology-based Enterprise Architecture. Expert systems with
applications 37, 2 (2010), 1456–1464.

[30] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Mar-
tin Schindler, and Steven Völkel. 2009. Design Guidelines for Domain
Specific Languages. In Domain-Specific Modeling Workshop (DSM’09)
(Techreport B-108). Helsinki School of Economics, 7–13.

[31] Sotirios Katsikeas, Simon Hacks, Pontus Johnson, Mathias Ekstedt,
Robert Lagerström, Joar Jacobsson, Max Wällstedt, and Per Eliasson.
2020. An Attack Simulation Language for the IT Domain. In Graphical
Models for Security, Harley Eades III and Olga Gadyatskaya (Eds.).
Springer International Publishing, Cham, 67–86.

[32] Sotirios Katsikeas, Pontus Johnson, Simon Hacks, and Robert Lager-
ström. 2019. Probabilistic Modeling and Simulation of Vehicular Cyber
Attacks: An Application of the Meta Attack Language. In Proceedings
of the 5th International Conference on Information Systems Security and
Privacy (ICISSP).

[33] Steven Kelly and Risto Pohjonen. 2009. Worst Practices for Domain-
Specific Modeling. IEEE software 26, 4 (2009), 22–29.

[34] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-Specific Model-
ing: Enabling Full Code Generation. John Wiley & Sons.

[35] J. Lee, J. V. Hillegersberg, and K. Kumar. 2015. An Action Design
Research on development and deployment of a computer-based group
discussion support tool for achieving consensus and culture change
at an educational institution. In 2015 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM). 1367–1371.
https://doi.org/10.1109/IEEM.2015.7385871

https://doi.org/10.1145/2089155.2089170
https://doi.org/10.1287/mnsc.9.3.458
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://doi.org/10.1109/MSP.2011.47
https://doi.org/10.1287/isre.2014.0533
https://doi.org/10.1287/isre.2014.0533
https://www.industrialdefender.com/florida-water-treatment-plant-cyber-attack/
https://www.industrialdefender.com/florida-water-treatment-plant-cyber-attack/
https://doi.org/10.17485/ijst/2016/v9i21/95282
https://doi.org/10.17485/ijst/2016/v9i21/95282
https://doi.org/10.1109/IEEM.2015.7385871

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

[36] Engla Ling, Robert Lagerström, and Mathias Ekstedt. 2020. A System-
atic Literature Review of Information Sources for Threat Modeling
in the Power Systems Domain. In Critical Information Infrastructures
Security, Awais Rashid and Peter Popov (Eds.). Springer International
Publishing, Cham, 47–58.

[37] Steve Livengood. 2012. Experiences in Domain-Specific Modeling
for Interface Specification and Development. In Proceedings of the
2nd International Master Class on Model-Driven Engineering: Modeling
Wizards. 1–2.

[38] Giovanni Maccani, Brian Donnellan, and Markus Helfert. 2014. Sys-
tematic problem formulation in action design research: The case of
smart cities. ECIS 2014 Proceedings - 22nd European Conference on
Information Systems (01 2014).

[39] AlyonaMedelyan. [n.d.]. Coding Qualitative Data: How to Code Qualita-
tive Research (Updated 2020). https://getthematic.com/insights/coding-
qualitative-data/

[40] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and
How to Develop Domain-Specific Languages. ACM computing surveys
(CSUR) 37, 4 (2005), 316–344.

[41] Savita Mohurle and Manisha Patil. 2017. A brief study of wannacry
threat: Ransomware attack 2017. International Journal of Advanced
Research in Computer Science 8, 5 (2017), 1938–1940.

[42] Matthew T. Mullarkey and Alan R. Hevner. 2019. An elaborated action
design research process model. European Journal of Information Sys-
tems 28, 1 (2019), 6–20. https://doi.org/10.1080/0960085X.2018.1451811
arXiv:https://doi.org/10.1080/0960085X.2018.1451811

[43] Robert C. Nickerson, Upkar Varshney, and Jan Muntermann. 2013. A
method for taxonomy development and its application in information
systems. European Journal of Information Systems 22, 3 (2013), 336–
359.

[44] Peter Nielsen and John Persson. 2016. Engaged Problem Formulation
in IS Research. Communications of the Association for Information
Systems 38 (05 2016), 720–737. https://doi.org/10.17705/1CAIS.03835

[45] Cliodhna O’Connor and Helene Joffe. 2020. Intercoder Re-
liability in Qualitative Research: Debates and Practical Guide-
lines. International Journal of Qualitative Methods 19 (2020),
1609406919899220. https://doi.org/10.1177/1609406919899220
arXiv:https://doi.org/10.1177/1609406919899220

[46] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir
Chatterjee. 2007. A design science research methodology for informa-
tion systems research. Journal of management information systems 24,
3 (2007), 45–77.

[47] Anna Malou Petersson and Jan Lundberg. 2016. Applying Action
Design Research (ADR) to Develop Concept Generation and Selection
Methods. Procedia CIRP 50 (2016), 222–227. https://doi.org/10.1016/j.
procir.2016.05.024 26th CIRP Design Conference.

[48] Roel Popping. 2015. Analyzing Open-ended Questions by
Means of Text Analysis Procedures. Bulletin of Sociologi-
cal Methodology/Bulletin de Méthodologie Sociologique 128,
1 (2015), 23–39. https://doi.org/10.1177/0759106315597389
arXiv:https://doi.org/10.1177/0759106315597389

[49] Engla Rencelj Ling and Mathias Ekstedt. 2021. Generating Threat Mod-
els and Attack Graphs Based on the IEC 61850 System Configuration
Description Language. In Proceedings of the 2021 ACM Workshop on
Secure and Trustworthy Cyber-Physical Systems (Virtual Event, USA)
(SAT-CPS ’21). Association for Computing Machinery, New York, NY,
USA, 98–103. https://doi.org/10.1145/3445969.3450421

[50] Bernhard Rumpe. 2016. Modeling with UML: Language, Concepts, Meth-
ods. Springer International.

[51] Bilal Al Sabbagh and Stewart Kowalski. 2015. A Socio-technical Frame-
work for Threat Modeling a Software Supply Chain. IEEE Security &
Privacy 13, 4 (2015), 30–39. https://doi.org/10.1109/MSP.2015.72

[52] Maung K Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and
Rikard Lindgren. 2011. Action design research. MIS quarterly (2011),

37–56.
[53] Bran Selic. 2009. The theory and practice of modeling language de-

sign for model-based software engineering—a personal perspective.
In International Summer School on Generative and Transformational
Techniques in Software Engineering. Springer, 290–321.

[54] J. P. Shim, Ramesh Sharda, Aaron M. French, Rhonda A. Syler, and
Karen P. Patten. 2020. The Internet of Things: Multi-faceted Research
Perspectives. Communications of the Association for Information Sys-
tems (2020), 511–536.

[55] Adam Shostack. 2014. Threat modeling : designing for security (1st
edition. ed.). Wiley.

[56] Inger Anne Tøndel, Martin Gilje Jaatun, and Maria Bartnes Line. 2013.
ThreatModeling of AMI. InCritical Information Infrastructures Security,
Bernhard M. Hämmerli, Nils Kalstad Svendsen, and Javier Lopez (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 264–275.

[57] P. Torr. 2005. Demystifying the threat modeling process. IEEE Security
Privacy 3, 5 (2005), 66–70. https://doi.org/10.1109/MSP.2005.119

[58] Anton V. Uzunov and Eduardo B. Fernandez. 2014. An extensible
pattern-based library and taxonomy of security threats for distributed
systems. Computer Standards & Interfaces 36, 4 (2014), 734–747. https:
//doi.org/10.1016/j.csi.2013.12.008 Security in Information Systems:
Advances and new Challenges.

[59] John Venable. 2006. The role of theory and theorising in design science
research. In Proceedings of the 1st International Conference on Design
Science in Information Systems and Technology (DESRIST 2006). Citeseer,
1–18.

[60] John Venable, Jan Pries-Heje, and Richard Baskerville. 2012. A com-
prehensive framework for evaluation in design science research. In
International Conference on Design Science Research in Information
Systems. Springer, 423–438.

[61] John R. Venable, Jan Pries-Heje, and Richard Baskerville. 2017. Choos-
ing a Design Science Research Methodology. In ACIS2017 Conference
Proceeding. University of Tasmania.

[62] Michael Vierhauser, Rick Rabiser, Paul Grünbacher, and Alexander
Egyed. 2015. Developing a DSL-Based Approach for Event-Based
Monitoring of Systems of Systems: Experiences and Lessons Learned
(E). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 715–725.

[63] Markus Völter. 2009. Best Practices for DSLs and Model-Driven De-
velopment. Journal of Object Technology 8, 6 (2009), 79–102.

[64] Jan vom Brocke and Alexander Maedche. 2019. The DSR grid: Six
core dimensions for effectively planning and communicating design
science research projects. Electronic Markets 29, 3 (2019), 379–385.

[65] Fredrik Vraalsen, Mass Soldal Lund, Tobias Mahler, Xavier Parent, and
Ketil Stølen. 2005. Specifying Legal Risk Scenarios Using the CORAS
Threat Modelling Language. In Trust Management, Peter Herrmann,
Valérie Issarny, and Simon Shiu (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 45–60.

[66] Robert Walter and Maic Masuch. 2011. How to integrate domain-
specific languages into the game development process. In Proceedings
of the 8th International Conference on Advances in Computer Entertain-
ment Technology. 1–8.

[67] D Wile. 2004. Lessons Learned from Real DSL Experiments. Science of
Computer Programming 51, 3 (2004), 265–290.

[68] Wenjun Xiong and Robert Lagerström. 2019. Threat modeling - a
systematic literature review. Computers & Security 84 (2019), 53–69.
https://doi.org/10.1016/j.cose.2019.03.010

[69] Wenjun Xiong, Emeline Legrand, Oscar Åberg, and Robert Lagerström.
2021. Cyber security threat modeling based on the MITRE Enterprise
ATT&CK Matrix. Software & Systems Modeling (2021). https://doi.
org/10.1007/s10270-021-00898-7

[70] Koen Yskout, Thomas Heyman, Dimitri Van Landuyt, Laurens Sion,
Kim Wuyts, and Wouter Joosen. 2020. Threat Modeling: From Infancy

https://getthematic.com/insights/coding-qualitative-data/
https://getthematic.com/insights/coding-qualitative-data/
https://doi.org/10.1080/0960085X.2018.1451811
https://arxiv.org/abs/https://doi.org/10.1080/0960085X.2018.1451811
https://doi.org/10.17705/1CAIS.03835
https://doi.org/10.1177/1609406919899220
https://arxiv.org/abs/https://doi.org/10.1177/1609406919899220
https://doi.org/10.1016/j.procir.2016.05.024
https://doi.org/10.1016/j.procir.2016.05.024
https://doi.org/10.1177/0759106315597389
https://arxiv.org/abs/https://doi.org/10.1177/0759106315597389
https://doi.org/10.1145/3445969.3450421
https://doi.org/10.1109/MSP.2015.72
https://doi.org/10.1109/MSP.2005.119
https://doi.org/10.1016/j.csi.2013.12.008
https://doi.org/10.1016/j.csi.2013.12.008
https://doi.org/10.1016/j.cose.2019.03.010
https://doi.org/10.1007/s10270-021-00898-7
https://doi.org/10.1007/s10270-021-00898-7

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

to Maturity. In Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering: New Ideas and Emerging Results (Seoul,
South Korea) (ICSE-NIER ’20). Association for Computing Machinery,
New York, NY, USA, 9–12. https://doi.org/10.1145/3377816.3381741

https://doi.org/10.1145/3377816.3381741

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

A Labels

Stage Category Label

1. Problem Formulation

Problem definition

SLR
Problem of an organization
Systematic empirical investigation
expert interviews
focus groups
cause effect diagram

Stakeholder involvement (who)
Researcher
end-users
practitioners

Stakeholder involvment (how)

expert interviews
focus groups
survey
status seminars

Problem type abstract problem
instantiated problem

Research gap Theoretical gap
Design gap

2. Building, Intervention,
and Evaluation

Improve usability Use easy-to-understand icons (symbols)

Define language rules

Reuse an existing language
Use an appropriate ontology
Use annotations
Use graphical modeling language
Ad-hoc

Reuse existing model Threat library
Petri Nets

Build a knowledge base Whiteboarding
Interview domain experts

User Error Protection

Define language rules
DSL’s support for error prevention and model check-
ing
Reliability of a DSL is defined as the property of a lan-
guage that aids producing reliable programs (Guide-
line includes model checking ability/preventing un-
expected relations)
Model checking

Modularity DSL is composed of discrete components such that
a change to one component has minimal impact on
other components its elements
Modularize and layer the language: particularly if the
language is going to support multiple viewpoints for
different sub-domains

Adaptability

Provide for language extensibility
Allow for incorporating "foreign" language fragments
in models
Extensibility: The degree to which a language has
general mechanisms for users to add features
Support variability on language level

Reusability

Reuse language definitions
Reuse type systems
Compose existing languages: Reuse existing lan-
guages for the creation of a new one

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

Stage Category Label

2. Building, Intervention,
and Evaluation

The language development is based on existing con-
cepts

Functional Correctness Always start design with a semantics model
The language provides (formal) language semantics

Operability Support model reuse on the language level

Interoperability Provide Integrability
Integrate in an existing IDE support for development
of DSLs with high Quality in Use

Usability evaluation Evaluate a designed artifact by performing usability
evaluation

Problem definition Verify model against intended functions

Validate result security experts
delphi method

Validate method security experts
delphi method

Accessibility

DSL conciseness, which refers to what terms can be
deleted without compromising the domain artifact
representativeness
Avoid redundancy
Clear language to target mapping: There should be a
clear mapping of the language concepts to the con-
cepts of relevant target representations. In an ideal
case, all information required by the target represen-
tations can be extracted from the model
Consistent style everywhere
Simplicity: An easy-to-learn language is easy to use
Homogeneity: Show related concepts in the same way,
and keep them together; show unrelated concepts
differently and separately
Comprehensibility: DSL language elements are under-
standable

Testability

The language is assessable regarding its quality and
correctness
Perform "Care for usability" evaluations
Define the quality criteria to evaluate DSLs
Observational methods include case study and field
study
Perform analytical methods include static analysis,
architecture analysis, optimization, and dynamic anal-
ysis
Perform Experimental, testing, and descriptive meth-
ods
evaluate “how well the artifact supports a solution to
the problem”
use computer and lab simulations, field experiments,
and lab experiments
Quality in Use of a DSL should be assessed experi-
mentally

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

Stage Category Label

2. Building, Intervention,
and Evaluation

Use Evaluation method: Cognitive Dimensions (CD)
that contains 14 dimensions: viscosity, visibility, com-
promise, hidden dependencies, expressiveness role,
error tendency, abstraction, secondary browsing, map-
ping proximity, consistency, diffusion, hard mental
operations, provisional, and progressive evaluation
learnability was measured through the number of
errors a subject committed, divided by effort;
efficiency was measured by the size of the test set
divided by effort
satisfaction was measured in four levels: frustrating,
unpleasant, pleasant, and pleasurable
define quality concerns and associated metrics
Compare DSL to already existing standard DSLs
compare to language design patterns
Maintainability: The degree to which a language is
easy to maintain. DSLs can be altered and new con-
cepts and concept extensions can be added. (modular-
ity is considered here)
Testing: Test the language design on language users
Stakeholder groups are considered during develop-
ment
Define a methodological approach to support the evo-
lution of a DSL’s design based on user experience and
infer its impact on quality improvement during its
lifecycle (e.g. traceability of design decisions)

Stakeholder involvement (who)
Domain experts
Security experts
Language developer

Stakeholder involvement (how) Brainstorming

Appropriateness recognizability

Derive concepts from physical structure
The language considers modelling pragmatics
DSL expressiveness, which refers to in what extend
the DSL represents the domain
Adopt existing domain notations
Derive concepts from Look&Feel
Derive concepts from expected output
Derive notation from corporate identity
Appropriateness: DSL is appropriate for the specific
applications of the domain (e.g., to express an algo-
rithm)
Users can recognize whether the DSL is appropriate
for their needs
The concepts of a modeling language should corre-
spond to concepts prospective users are familiar with.
There should be a clear mapping of the language con-
cepts to the concepts of relevant target representa-
tions.
Provide sufficient level of detail
Balance compactness and understanding

SLE’21, 17-19 October 2021, Chicago, Illinois Hacks et al.

Stage Category Label

2. Building, Intervention,
and Evaluation

Functional Appropriateness

Multiple levels of abstractions: A modeling language
should provide concepts that allow for clearly dis-
tinguishing different levels of abstraction within a
model. Rationale: Conceptual models may represent
different levels of abstraction, e.g., types and – in rare
cases – instances. Overloading a model with differ-
ent levels of abstraction compromises an appropriate
interpretation of a model.
Beware of overgeneralization
The DSPML has a defined scope and purpose
The concepts of a language should allow for modeling
at a level of detail that is sufficient for all foreseeable
applications.
A modeling language should provide concepts that
allow for clearly distinguishing different levels of ab-
straction within a model.
Completeness: All concepts and scenarios of the do-
main can be expressed in the DSL
Flexibility: Give the user flexibility in how to formu-
late a domain-specific program
Usability of a DSL is the degree to which a DSL can
be used by specified users to achieve specified goals

N/A Strive for 80% solution: Provide a solution that covers
80% of activities - more time left to deal with the real
problems
The language is based on requirement analysis

Learnability

Learnability: The concepts and symbols of the lan-
guage are learnable and rememberable
Ask graphic designers for help
Use descriptive notations
Use a mixture of language notations

Usability Detect recurring patterns in design

3. Reflect and Learn

Learning activities
co-creating knowledge
at every stage
tight coupling between researchers and stakeholders

Planning workshop
training session

Evaluate

prototype
implementation in the organization (interaction with
stakeholders)
continuous evaluation
continuous documentation

Reflection
present results
discuss results
collaboration

4. Formalization of Learning

Artifact type IS-related artifact
Organizational solution

Design principles

artifact
purpose
building process
context
artifact properties
evaluation process

Towards a Systematic Method for Developing Meta Attack Language Instances SLE’21, 17-19 October 2021, Chicago, Illinois

Stage Category Label

4. Formalization of Learning

Approach

problem structuring
utility theories
hypotheses
grounded theory
heuristic theorizing
applied science research
action design research
engaged scholarship

Contribution

well-developed design theory
nascent design theory
situated implementation
descriptive knowledge
prescriptive knowledge

Maturity

Invention
Improvement
Exaption
Routine design

	Abstract
	1 Introduction
	2 Background
	2.1 Meta Attack Language
	2.2 Design Science Research

	3 Method
	4 The Approach
	4.1 Stage 1 - Problem Formulation
	4.2 Stage 2 - Building, Intervention, and Evaluation
	4.3 Stage 3 - Reflection and Learning
	4.4 Stage 4 - Formalization of Learning

	5 Demonstration
	5.1 vehicleLang
	5.2 coreLang
	5.3 powerLang

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Labels

