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Abstract—Engineering software languages demands consider-
ing many different aspects, including syntax, semantics, tooling,
variability, usability, and many more. Engineering efficiency
depends largely on our capability of reusing language parts in
other contexts. Currently, most language reuse focuses on few
isolated aspects. We have devised the component-based SCOLAR
framework for the novel integrated reuse of concrete syntax,
abstract syntax, well-formedness rules, and code generators.
SCOLAR supports black-box embedding of language parts,
yielding composed languages, and, consequently, models (e.g.,
expressions embedded into Statecharts). This is insufficient when
aiming to integrate languages such that their models should
be loosely coupled only. We, therefore, present an extension of
SCOLAR towards the black-box integration of language com-
ponents through language aggregation, yielding a loose coupling
between their models (e.g., Statecharts referring to class diagram
types). To this end, we analyzed the requirements for language
aggregation and devised compact extensions to SCOLAR to also
support the latter. This enables a novel integration of language
components through aggregation, which can facilitate reusing
software languages and, hence, advance their application.

Index Terms—Software Language Engineering, Language
Components, Language Aggregation

I. INTRODUCTION

Software engineering always has been a quest for increasing
abstraction from punch cards, to assembler code, to program-
ming languages, to modeling languages. One main driver for
the success of software engineering is our ability to reuse soft-
ware parts in a black-box fashion. The success of model-driven
engineering thrives on the availability of useful modeling
languages. Engineering such languages still is challenging and
reusing language parts can mitigate this. Yet, language reuse
(e.g., through aggregation, embedding, inheritance, merging,
...) generally still is understood on selected combinations of
language implementation aspects only.

To address the challenge of reusing holistic, in the sense of
comprising concrete syntax, abstract syntax, well-formedness
rules, and code generators, languages, we have devised the
SCOLAR framework [1]. With SCOLAR, language implemen-
tations are encapsulated into components of stable interfaces,
making their provided and required extensions explicit, thus
supporting their black-box composition to facilitate reusing
language parts. SCOLAR arranges Domain-Specific Language

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under grant no. 441207927.

(DSL) components in product lines and supports composition
in form of language embedding [2], which produces new
languages by embedding the components of selected language
product line features into another, yielding languages (and
models) featuring selected syntax and code generators from
the individual components.

This is insufficient when aiming to integrate languages
such that their models should be loosely coupled only. For
instance, where Statecharts use class diagram types, their
models remain isolated aside from resolving names used in
them to check the well-formedness of their integration (such
as to check whether methods referenced in the Statechart
exist in the class diagram). We, therefore, present a small
extension of SCOLAR towards the black-box integration of
DSL components through language aggregation, yielding a
loose coupling between their models.

Therefore, we analyzed the requirements for language ag-
gregation and devised compact extensions to the language
interfaces of SCOLAR components as well as to its compo-
sition mechanisms. This paper presents these extensions and
illustrates their application. The contributions of this paper,
thus, are:

1) An analysis of the requirements of language aggregation.

2) A method for the black-box aggregation of DSL compo-

nents using the SCOLAR framework.
Overall this is an important step towards enabling the integra-
tion of language components through aggregation, which can
facilitate reusing software languages and, hence, advance their
application.

In the remainder, Sec. II introduces preliminiaries, Sec. III
highlights requirements for language aggregation, and Sec. IV
explains its integration into the SCOLAR framework. After-
ward, Sec. V presents its application and benefits by example,
before Sec. VI discusses observations, and Sec. VII relates our
apporach to related research. Sec. VIII concludes.

II. BACKGROUND
A. Language Aggregation

Language aggregation composes multiple languages by em-
ploying name-based mapping between them [3], [4]. This
means, that named abstract syntax elements of languages can
refer to each other. In contrast to the other language composi-
tion mechanisms, e.g., embedding, or inheritance, the models
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Figure 1: The composition of two DSL components processes
all bindings, and updates the interface of the resulting DSL

component accordingly. If all mandatory required extensions
have been fulfilled, a new DSL can be derived. [1]

remain separated in different artifacts [5], which facilitates
loose coupling, and, thus, independent reuse and maintenance.
However, models of the composed languages are understood
together and contribute to a common modeling goal. Language
aggregation is suitable for modeling different aspects of a
system where each aspect is described by an individual model,
e.g., behavior aspects in statecharts, and structural aspects in
class diagrams. With aggregation, a coupling between those
models can be achieved, despite, the models can be reused in
different combinations and in a modular way.

B. A Method for Systematic Language Engineering

Our method for systematic language engineering encapsu-
lates language constituents in DSL components. Components
make their provided and required extensions explicit via an
interface and can be composed according to these guided
by a feature model. All activities are associated with roles
with specific expertise as shown in Figure 1. First, language
engineering experts create reusable DSL components for spe-
cific purposes. Each component contains a combination of
grammars, well-formedness rules, and code generators relating
to these grammars. Language family architects arrange DSL
components into a feature model representing a family of

DSLs. In this feature model, each feature either is related to
a language component or is an abstract feature [6] for logical
grouping. Through this relation, the DSL family architect
decides how the components will be composed when their
related features are selected. Once the DSL family architect
completes the DSL family, DSL owners, who are experts
of the application domains derive a suitable DSL for their
application domain, by selecting appropriate features from
the family in a feature configuration. Based on this, the
related DSL components are composed and their provided and
required extensions are updated accordingly. To compose the
language constituents (i.e., grammars, well-formedness rules,
code generators) of the specific technological spaces (such as
Neverlang [7], MontiCore [8], or Xtext [9]), our framework
provides extension points to delegate to modules specific to
the technological space used. Composition results either in
a new DSL component, if mandatory extensions were not
provided through the family, or a new DSL otherwise. In
the former case, the DSL owner can further customize the
component with information that was either not available
during family creation (e.g., the action language needed for
automata transitions for a specific domain) or not suitable for
the language family (such as numerical parameters). If the
DSL family was well-defined, i.e., options for all required
extensions of its components were provided, the DSL owner
does not need to have any expertise in Software Language
Engineering (SLE) but can derive the most suitable DSL
variant on a push-button basis.

To foster DSL reuse, we have conceived and integrated
modeling languages for describing DSL components and DSL
families. They are tailored to language engineering experts
and support making provided and required DSL component
extensions explicit. Their models form the basis of com-
ponent composition. The latter language is an extension of
features models that support describing DSL families and the
binding of features to extension points of DSL components.
A customization language supports implementing required
extensions of DSL components not provided by their language
family.

1) A Metamodel for Black-Box Language Reuse: Our meta-
model describes the properties of DSL components and DSL
families relevant to their systematic reuse (see Figure 2). For
this purpose, the DSL components do not provide closed
variability themselves, but support customization through their
required extensions. DSL families comprise feature models to
describe closed variability of potential DSLs by arranging DSL
components.

DSL components provide the constituents of a language
definition. They comprise elements of each of the three es-
sential language definition constituents: (1) syntax, (2) well-
formedness rules, and (3) semantics-based code generators.
To this end, each DSL component comprises one grammar
and can comprise multiple sets of identifiable well-formedness
rules, as well as multiple code generator specifications. Com-
ponents expose these constituents through explicit extensions
with cardinalities (optional or mandatory) in their DSL com-
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Figure 2: Overview of the metamodel of our approach, consist-
ing of DSL component, Customization, and Language Family.

ponent interfaces. For grammars and generators, the inter-
faces support both, provided and required extensions, whereas
well-formedness rules are contained in sets that can act as both
provided and required extensions at the same time. Parameters
can be either for well-formedness rules or code generators
and enable more fine-grained customization (such as numeri-
cal constraints, paths, efc.). Provided extensions offer DSL
functionality to be reused by other components. Provided
grammar extensions reference a production in the grammar
that can be reused by other components’ grammars. Provided
generator extensions reference a production for which they
provide a transformation, a reference to a GPL class, and
the interfaces of producer and product. Required extensions
make missing functionality of a DSL component explicit and
can be either optional or mandatory. Required extensions for
grammars reference a production of a grammar that requires
extension. Required generator extensions demand extension
for a specific production, with specific product and producer
interfaces [10]. Parameters can also be either optional or
mandatory and parameterize generators or well-formedness
rules. DSL families [11] describe closed variability via a
central feature model [12], [13]. Features refer to DSL compo-
nents and the arrangement of features define how the related
components will be composed if the respective features are
selected.

Customization configuration describes open variability by
defining multiple bindings between multiple DSL components
to the DSL component that needs customization. Additionally,
the configuration can assign values to parameters.

Bindings relate to the connection between DSL compo-
nents. The current approach supports two kinds of bindings:

« Extension bindings map provided grammar or generator

extensions of one DSL component to required grammar
or generator extensions of another component.

o Well-formedness rule binding can be either a rule
embedding by joining a well-formedness rule set of one
component to the set of another component or be an
addition where a complete well-formedness rule set is
added en-bloc to the composed component.

2) Composing DSL Components: The composition of two
DSL components is the directed application of bindings be-
tween these components. After the application of a binding, the
cardinality of required extensions becomes optional. Currently,
SCOLAR supports embedding of extensions of other DSL
components by binding their provided extensions to required
extensions of the embedding component. This produces a
novel component resulting from adding selected provided
extensions of the embedded component into the respective
required extensions of the embedding component. This con-
sists of two main activities: (1) Composing the components’
interfaces; and (2) Composition of the comprised language
definition constituents (grammars, well-formedness rules, code
generators); When composing the components’ interface, we
differentiate between the kinds of bindings. In the case of
extension binding, the required extensions of the embedded
component are added to the embedding component together
with associated generator parameters (only when the extension
binding is between generator extensions). In the case of
well-formedness rule set composition, either the set is joint
with a set of the embedding component or is added next
to existing sets. The composition of the comprised language
definition constituents is specific to the technological space
used. Thus, our toolchain [1] provides extension points for
software modules realizing the technological space-specific
composition of the associated artifacts.

C. MontiCore

To realize our approach, we use the language workbench
MontiCore [8] as proof of concept. MontiCore is a language
workbench for the development of textual, external DSLs.
Context-free grammars comprise the definition of the inte-
grated concrete and abstract syntax of a DSL. From this, Mon-
tiCore generates language tooling including an abstract syntax
data structure, a parser that instantiates this data structure,
a symbol management infrastructure, a visitor infrastructure
for traversing the abstract syntax, and infrastructures for
defining and checking well-formedness rules as well as for
generating code from models conforming to the grammar.
Well-formedness rules in MontiCore are realized as Java
classes and are checked against the abstract syntax leverag-
ing the generated visitor infrastructure. Code generation is
realized through template-based code generators based on the
FreeMarker [14] template engine. Figure 3 shows a MontiCore
grammar by example. Each MontiCore grammar starts with
the with keyword grammar, followed by the name of the
grammar (see l. 1). The body of a grammar (ll. 2-6) contains
grammar productions. By default, the first production is the
start production of a grammar. On the left-hand side, each



01| grammar Automaton { concrete syntax only iteration

02| symbol AutMain = "automaton" Name "{" (State | Transition)* "}";
03| Transition = Name "->" Name;

04| interface symbol State = Name;
05| State implements IState = "state" Name ";" ;
06|}

MCG

interface production

interface implementation

Figure 3: Example MontiCore grammar of an automaton DSL

production defines a nonterminal, e.g., AutMain (l. 2). On the
right-hand side, a production can contain terminals (in double
quotes) and nonterminals (starting with upper case letter) as
well as iterations "+, ’+’ )’ ?”), alternatives (’ | ), and concate-
nations (* ) thereof. Nonterminals starting with the keyword
symbol define symbols (I. 2). In MontiCore, Symbols are
named nonterminals of the language that enable resolving
names within and across models. Interface nonterminals can
underspecify a right-hand side or prescribe abstract syntax
elements (I. 4). Other productions can implement interface
productions (I. 5). If the right-hand side prescribes abstract
syntax elements, implementing nonterminals must provide
these. The generated parser treats the usage of an interface
nonterminal equal to an alternative overall nonterminals de-
fined by productions implementing the interface nonterminal.

III. AGGREGATING DSL COMPONENTS

Performing language aggregation between DSL components
is an extension to our existing SCOLAR framework. Thus,
to make language aggregation fit into SCOLAR, requirements
derived from 1) language aggregation and, 2) from our existing
approach exist. The composition workflow for DSL compo-
nents has to fulfill all of these requirements. Therefore, the
following presents requirements to language aggregation in
our approach, and introduces extensions to the composition
workflow to enable both, language embedding and, now, also
language aggregation.

A. Requirements Derived from Language Aggregation

Extending the SCOLAR framework with aggregation entails
several requirements that are presented in the following. Some
are derived from the characteristics of language aggregation,
and others are general concepts of our framework that have to
hold for language aggregation too.

R1: Keep grammars separated. When aggregating two
languages, their models remain separated afterward. However,
they contribute to one modeling goal. To facilitate extending
and reusing both aggregated languages, but make their inter-
connection explicit, their grammars should be kept separated
in the composed DSL component.

R2: Aggregation is uni-directional. In aggregation, the di-
rection matters. For instance, it makes a difference whether
automatons aggregate class diagrams or class diagrams ag-
gregate automatons. In the former case, in automaton types,
defined in class diagrams are referenced per name. In the
latter, class diagrams reference automatons by their name
to for instance, define a method’s behavior with an external

automaton model, which happens to have the same name as the
method. Hence, aggregation is a uni-directional binding from
a provided extension of one DSL component to a required
aggregation extension of another DSL component.

R3: Required extensions make the purpose of aggregation
explicit. Because aggregation is unidirectional and because the
Language Engineering Expert knows where aggregation could
be possible, she should decide on the language elements that
require aggregation and be able to make them explicit. With
this, the DSL Family Architect can use DSL components as
black-boxes and can identify via their interface which required
extensions should be bound for aggregation.

R4: Provided extensions are not exclusive for aggregation
or embedding. Since aggregation is uni-directional, it is not
necessary for the provided extensions to know whether it is
embedded or aggregated to other DSL component’s required
extensions. For instance, when aggregating class diagrams to
automatons, the automaton language requires aggregation for,
e.g., the definition of variable types and uses classes contained
in a class diagram for this. Thus, the automaton language
knows the need for aggregation and also knows class diagrams
that define variable types. The class diagrams however do not
know anything about how they are used. They just provide
the named language elements that can be either used to be
embedded or aggregated.

RS: Once bound, required aggregation extensions are
optional. When a DSL component contains mandatory ex-
tensions, its language misses an implementation for this ex-
tension. Thus, it is not possible to derive the language’s
implementation without this required extension being bound.
To indicate that a required aggregation extension has been
bound in the composition step, the extension’s optionality
should change to optional afterward.

R6: Provided extensions of aggregated language stay
available. Since both languages stay separated within a DSL
component, they can be refined further independently. Thus,
other languages should be able to reuse provided extensions
as well as parameters.

R7: Required extensions of aggregated language stay
available. Furthermore, to keep DSL components extensible
and enable evolution beyond one composition step, all required
extensions of both involved components should stay available
after the composition.

R8: Derive language infrastructure automatically. If the
DSL component resulting from the aggregation does not have
any remaining mandatory required extensions, our approach
can automatically derive a DSL from the component. For this,
it is required that aggregation on the level of the technological
space is possible and that the implementation of the mapping
infrastructure is derivable.

R9: Referenced productions must have a named right-hand
side. Whenever two language elements are aggregated, they
are mapped via their name. This requires both productions,
the production of the required extension and the one of the
provided extension to have a name on their right-hand side.
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B. Integrating Aggregation into the DSL Component Compo-
sition Workflow

The extension of our approach with aggregation leads to
a new DSL component composition workflow depicted in
Figure 4. It describes the composition of two DSL components
A and B. As long as there are unprocessed bindings (R2)
between both components, e.g., originating from unprocessed
features of the DSL family, the composition takes place.
If the required extension of A is of type embedding, the
provided extension of B is embedded into A. Binding well-
formedness rules is supported out-of-the-box in our approach.
When aggregating, well-formedness rule sets can be either
added to the composed component separately or added into an
existing well-formedness rule set to contribute to the common
modeling goal of the aggregated languages. Both ways are
already possible in the existing composition workflow (cf. [1]).
If the binding binds a provided extension of component B (R4)
to a required aggregation extension of component A (R3), the
following step is executed in the particular technological space
that is used (indicated by green box and fork icon) (R8). In
the case of a grammar extension binding, the production of
the provided extension of component B is aggregated to the
production of the required aggregation extension of A. In the
latter case, the generator of the provided extension of B is
aggregated to A. In both cases, the optionality of the bound
required extension of component A are set to optional (RS).
Afterwards, all generator parameters and specifications, all
provided and required extensions (R6, R7), and all grammars
(R1) of the aggregated component B are added to the aggre-
gating component A. If there are no unprocessed bindings left,
the process returns the composed component and terminates.

Figure 5 visualizes the aggregation between two DSL
components, CD and Aut. They each contain a grammar
realizing their abstract and concrete syntax. The component CD
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Figure 5: Aggregation of two DSL components. The au-
tomaton language aggregates class definitions from the class
diagram language to use them for specifying variable types.

provides a grammar extension ClassDef for the definition of
classes in class diagrams, and requires a extension IMethod
for the implementation of method bodies in classes of class
diagrams. The component Aut provides an extension for the
definition of automatons, requires a mandatory aggregation
VarType for defining types of variables, and requires an
optional extension IGuard for the realization of guards on
transitions. When aggregating ClassDef ® VarType, a
novel DSL component CD ® Aut is created. This component
comprises all provided and required extensions of the aggre-
gated components. Furthermore, it contains both grammars of
the aggregated extension separately. To realize the aggregation
from ClassDef to VarType, an adapter is generated in the
respective technological space.
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IV. IMPLEMENTING LANGUAGE AGGREGATION

This section describes how language aggregation is inte-
grated into the existing approach. For this, the metamodel and
the toolchain are adjusted to realize the aggregation of DSL
components and to fulfill the presented requirements.

A. Extensions of the Metamodel

The requirements derived from language aggregation de-
mand for an extension of the metamodel of our approach.
These changes on one hand affect the DSL component inter-
face and on the other hand the artifacts of the selected tech-
nology space. The extended metamodel of DSL components
is depicted in Figure 6. In the artifacts of the technological
space, the cardinality of referenced grammars are no longer
limited to only one referenced grammar. Because, in contrast
to embedding, the grammars remain separated and exist inde-
pendent from each other after the aggregation took place, it is
now possible to reference 1 to many grammars to fulfill R1.

Requirement R2 is already fulfilled by our existing meta-
model through the extension binding (see Figure 2), that is
between a source, provided extension, and a target, required
extension. So it is directed from provided to required extension
per definition. To keep a black-box view on DSL components,
required grammar and generator extensions are extended with
one boolean attribute i sAggregate. This indicates whether
a required extension is expected to be extended by aggregation
(true) or embedding (false) (R3). The provided extensions stay

dsl component Automaton { 5
grammar AutomatonBase;
provides production AutomatonMain;
requires mandatory aggregate production VariableType;
requires optional embedding production Guard;
requires optional embedding production State;

NV A WNER

Figure 7: A DSL component Automaton with an aggregate
production VariableType.

the same as before because as stated in R4 it is not necessary
for them to be constrained to embedding or aggregation. With
this, language engineering experts can make the purpose of
required extensions explicit. Hence, the required composition
operation is directly visible for the DSL family architect when
designing a language family and defining bindings.

B. Extension of the Toolchain

Besides the changes of the metamodel, also the toolchain
(see Figure 8) has to be extended to fulfill the stated require-
ments. For realizing the changes to the metamodel, the DSL
Component Processor is extended. It now can process
DSL component models with multiple grammars and with
explicit aggregation and embedding required extensions (see
Figure 7, 1. 4-6). Thus, fulfills R1 - R4. To fulfill RS -
R7, the DSL Component Composer is extended to realize
the aggregation composition workflow presented Sec. III-B.
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Figure 8: Our framework consists of three main modules
for composing and processing DSL components, managing
language families, and customizing DSL components.

Additionally, the DS, Component Composer is extended
to realize the aggregation composition workflow of DSL
components including changing the optionality of required
extensions, and adding all constituents of the aggregated
DSL component to the composed component. To perform
the aggregation of the language artifacts of the technological
space used (R8), the interface of the Artifact Composer
is extended with methods to generate the aggregation of
grammar production and generators. Since only the meta-
model of DSL components changed, there is no need to
change anything in the Language Family Manager or
the DS, Component Customizer. Furthermore, to fulfill
R9 the DSL Component Processor comprises a well-
formedness rule interface, that checks whether both, the ag-
gregated grammar rule and the rule that requires aggregation,
provide a named element on their right-hand side. This well-
formedness rule is specific to the used technological space.
The well-formedness rule is applied at design time, after the
DSL family architect connected features with realizing DSL
components and defined the bindings between them.

V. CASE STUDY

This section presents an insight into applying our concept
on the example of deriving a DSL for describing automatons
with the specialty that variable types are defined in external
class diagram models. This includes showing the language
family and selecting the required features from it, disclose the
involved DSL components and the referenced grammars and
syntax rules, their composition, and the artifact composition,
exemplified by the aggregation of grammar productions. The
artifacts shown in this example correspond to the technical
space of MontiCore. The artifacts specific to the technolog-
ical space are marked green and the fork icon. Consider a
language family AutomatonFamily (see Figure 9). The
family enables to enhance automatons with guard conditions
formulated with Java or OCL expressions and the feature
CDVariableType enables using types of external class dia-
grams referenced by name when defining automaton variables.
The DSL owner chooses the root feature Automaton and
CDVariableType in her language family configuration. For

the feature Automaton, the language family references a
DSL component aut .comp.Automaton (1. 10, LF). The
DSL component defines a mandatory aggregate production
VariableType (1. 4, LC 1). This production is contained
in the grammar AutomatonBase referenced by the DSL
component (I. 5, MCG 1). The feature CDVariableType
is realized through a component Classdiagram (I. 13,
LF). This component references a grammar CD4A (1. 2,
LC 2) that comprises the syntax for specifying class diagrams,
including a rule for class definitions (Il. 4-5, MCG 2), that
is referenced in the DSL component as a provided exten-
sion (I. 4). The binding defined in the feature definition of
feature CDVariableType connects the provided extension
ClassDef of DSL component ClassDiagram to the re-
quired aggregation extension VariableType of DSL com-
ponent Automaton (I. 14, LF). Based on the feature selection
the composition of the DSL components Automaton and
Classdiagram is performed, resulting in a novel DSL
component AutomatonWithCDVariableTypes. Since
the binding included an aggregation, the composed com-
ponent contains both of the grammars referenced by the
bound extensions (1. 2-3). Furthermore, it contains all
provided and required extensions of both participating
DSL components (1. 5-11). A generated adapter abstract
ClassDef2VariableTypeAdapterTOP realizes the ag-
gregation on grammar level in the technological space by
providing abstract methods. Since the adaptation is not trivial,
these abstract methods have to be implemented by hand.
MontiCore employs named symbols to resolve names within
and across models. The grammar production VariableType
is represented by a symbol VariableTypeSymbol and
the production ClassDef is represented by a symbol
ClassDefSymbol. Thus, for ClassDefSymbol to be
recognizable under the name of VariableTypeSymbol,
the adapter pretends to be a VariableTypeSymbol and
is findable when resolving under this kind of symbol, but in-
ternally the adapter refers to a ClassDefSymbol as adaptee.
Technology space-specific well-formedness rules ensure, that
the grammar productions referenced by the required aggre-
gation extension and the provided extension have a name on
their right-hand side. Figure 10 shows an example of possible
models conform to the DSL resulting from the aggregation.
The automaton specifies the behavior of timed light control
that automatically turns off the light after 10 minutes. The
timer is introduced as a variable of the automaton (1. 4). The
type of the timer is defined as a class in an external class
diagram LightDataTypes. There, the class defines one
attribute and two methods to start the timer and to stop the
timer. Through aggregation, classes, their attributes, and their
methods specified in class diagrams are now referenceable by
name in automatons.

VI. DISCUSSION

Extending our method for systematic language engineering
with the capability to integrate DSL components via aggre-
gation supports aggregation of new language features without



1 rammar AutomatonBase 1 | grammar CD4A { -

2 g symbol AutomatonMain{= MCG 2 symbol CDMain = "classdiagram" Name "{" m

3 "automaton” Name "{“ (Var | State | Trans)* "}"; 3 (ClassDef)* "}"

4 symbol Var = VariableType Name; 4 symbol ClassDef = "class" Name

5 symbol VariableType = TypeName:Name; 5 “{” (Attribute | IMethod)* "}";

6 symbol interface State = Name; 6 Attribute = //..

7 Trans = Name Guard "->" Name; produces 7 interface IMethod;

8 } VariableTypeSymbol class 8 }

-
\ references ’K references

1 | dsl component Automaton {_’J LC 1 1 | dsl component Classdiagram { LC 2 3

2 grammar AutomatonBase; 2 grammar CD4A;

3 provides production AutomatonMain; 3 provides production CDMain;

4 requires mandatory aggregate production VariableType; 4 provides production ClassDef;

5 requires optional production Guard; 5 requires optional IMethod;

6 requires optional production State; 6 }

711}

1 family AutomatonFamily { \ \

2 feature diagram Automaton {

3 optional GuardCondition { realized

4 JavaExpression or OCL; through

5 ( Automaton

6 optional CDVariableType; realized

7 } through

8

9 feature Automaton { . :

10 component aut.comp.Automaton; GuardCondition CDVariable

11 Type

12 feature CDVariableType {

13 component Classdiagram;

14 bind production ClassDef -> VariableType;

15 L JavaExpression OoCL

16 // further feature definitions

17|}
composed DSL
component

1 public abstract class ClassDef2VariableTypeAdapterTOP 1 dsl component AutomatonWithCDVariableTypes {

2 extends VariableTypeSymbol 2 grammar AutomatonBase LC

3 implements SymbolAdapter<ClassDefSymbol> { 3 grammar CD4A; Comp

4 4

5 protected final ClassDefSymbol adaptee; 5 provides production AutomatonBase.AutomatonMain;

6 6 provides production CDMain;

7 public ClassDef2vVariableTypeAdapter(ClassDefSymbol s) { 7 provides production ClassDef;

8 super(adaptee.getName()); 8 requires optional aggregate production VariableType;

9 this.adaptee = adaptee; 9 requires optional production Guard;

1o } implementation 10 requires optional production State;

11 v/ 11 requires optional production IMethodImpl;

12 public String getTypeName(); - __ 12 | }

13 | public ASTNode getASTNode(); — ——====

14 public String toString(); public String getTygeName() {

15 // more to adapt methods return adaptee.getName(); generated abstract

16 | } adapter

Figure 9: A language family for automaton language variants (middle). The top shows the DSL component realizing the features
Automaton and CDVariableType. The bottom section shows the resulting abstract adapter for the aggregated grammar
production, and the resulting DSL component after the composition took place.

requiring deep expertise in their implementation. To this end,
DSL components make their provided and required extensions
explicit and distinguish required extensions between embed-
ding and aggregation per keyword. This supports language
engineering experts, who know the details of the DSL im-
plementation, in defining the components’ stable interfaces
while foreseeing planned reuse through required extensions
for embedding or aggregation. DSL family architects then
can construct language families based on black-box DSL
components and their interfaces without knowing specific
details about their implementation or the technological space
used. In our approach, we opted for a single feature model to
represent both dimensions of reuse (embedding, aggregation)

instead of using different feature models for each dimension.
While we believe that working with a single feature tree
instead of a feature forest eases the understanding of the
complete language family and facilitates its evolution, future
experiments need to validate this. Usability also might benefit
from bundled extensions and extension points that expose
syntax, generator parts, and well-formedness rules that should
be reused together only. This also needs to be investigated.
Currently, our approach is limited to textual, external, trans-
lational DSLs and makes some strong assumptions [1], [10],
[15] about the supported composition mechanisms as well as
how grammars and how code generators are specified. For
instance, our approach requires that the extension points can be



automaton TimedLightCtrl {
initial state Off;
state Off;
——vVvariable Timer timer;
Off - timer.start() > On;
On - [timer.sRunning > 600] / timer.stop() > Off

NOuUuhWNR

}

classdiagram LightDatatypes{
> class Timer {
long sRunning;
void stop();
void start();
}
// more data types
}

ONOUV A WNBR

Figure 10: The models that can be processed by the DSL
resulting from the composed DSL component from Figure 9.

uniquely identified, that composition operates on the level of
abstract syntax types (e.g., if a part of a language is embedded
into an extension point of another language, this embedding
holds for all instances of that extension point), and that
required generator extensions expose the required interfaces
of both the generator to be embedded as well as of the artifact
produced by the embedded generator such that it can be
called from the product of the embedding generator (cf. [1]).
Thus, the black-box aggregation of code generators currently
requires that both products of the generators of aggregated
language parts adhere to interfaces defined at generator design
time. This is a very strong restriction that we plan to alleviate
in the future, e.g., by enabling both aggregated generators to
exchange information about the shape of the produced artifacts
dynamically.

Moreover, our approach requires composition to be addi-
tive only (i.e., it cannot remove abstract syntax elements).
While being a restriction, it (a) ensures that all language
products remain compatible w.r.t. the abstract syntax to the
DSL components that they have been composed of, e.g.,
model checkers, analyses, efc. can be reused with the resulting
language product as all types of the abstract syntax are still
available and (b) adding additional well-formedness rules can
be used to restrict languages by prohibiting the occurrence of
instances of particular abstract syntax times nonetheless.

Moreover, even though the optionality of required exten-
sions changes after being bound once, it is not possible to fully
close and remove required extensions from DSL components
due to composition being additive only to rule out future
extensions at this point. Whether such behavior is desirable
needs to be investigated as well.

Further future research will address the inclusion of Lan-
guage Server Protocol! clients to support the composition of
editors, leveraging model-to-model transformation for DSL
components, and the application of SCOLAR to technological
spaces [16] of graphical or projectional software languages.

Thttps://langserver.org

VII. RELATED WORK

Various approaches apply software product line tech-
niques [17] to SLE [11]. However, only a few support (closed)
variability and (open) customization across the constituents
concrete and abstract syntax, well-formedness rules, and code
generators of DSLs. There are two major approaches for
representing language variability in feature models [18]:

(1) Features represent language modules comprising syntax
and semantics. This limits the potential to describe,
e.g., presentational variability [19] and semantic variabil-
ity [20].

(2) Abstract features contain selected dimensions of a lan-
guage (module), such as realizations of abstract syntax
or semantics. Subfeatures complete these by providing
different realizations for missing dimensions, such as e.g.,
a textual a graphical concrete syntax.

Our approach enables DSL components to optionally contain
multiple realizations per constituent kind and, thus, supports
both kinds. Also, our approach uses a loose coupling be-
tween the feature model and DSL components and thus
supports developing DSL families both top-down and bottom-
up [21]. Several language engineering tools such as MPS [22],
Spoofax [23], and Melange [24] provide means for language
composition and customization, but do not provide methods
for systematic reuse through DSL families.

Other approaches for systematically reusing language parts
do not make their interfaces explicit, which hampers reusing
these modules [7], [25]-[27], or do not support all three
component constituents [24], [28].

Overall, our approach builds upon ideas formulated as
concern-oriented language development [29], [30], which pro-
poses to engineer languages based on components (called
“concerns”) with three kinds of interfaces representing their
variability, customization, and use. In this vision, concerns
comprise artifacts linked with each other that conform to meta-
languages which are typed by “perspectives” contained in li-
braries. With respect to this vision, our approach addresses the
componentization of languages and their systematic reuse only.
However, we are unaware of any other similar comprehensive
realizations of this part of the vision.

Another approach [31] introduces variability for graphi-
cal modeling languages by analyzing the metamodel of the
language and automatically deriving the allowed model vari-
ability. In contrast, our approach enables variability across
textual languages and their constituents by composing them
via aggregation or embedding.

A different line of research of the authors presents a similar
approach for building Language Product Lines (LPLs) [15],
[32]. However, our approach is based upon the novel, in-
tegrated modeling languages for DSL components and DSL
families. In models of these languages, provided and required
extension points of DSL components are explicated to enhance
black-box reusability. Furthermore, the approach introduces
parameters for well-formedness rules and explicit open vari-
ability through DSL component customization.
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VIII. CONCLUSION

Efficient software engineering thrives on reuse. For soft-
ware languages, efficient reuse is a crucial. Many approaches
towards reusing language parts focus on a subset of con-
crete syntax, abstract syntax, well-formedness, or semantics
realizations. SCOLAR combines these but supports language
embedding only. We have presented a small extension of the
SCOLAR framework to support language aggregation as well.
This extension rests on the same assumptions than SCOLAR
and requires only a single new modeling element. This enables
DSLs to be aggregated through their DSL component’s in-
terface without knowing specific DSL implementation details
in the respective technological space used. Thus, language
engineering experts can decide which language parts are re-
quired for language embedding or aggregation and make these
explicit in the component’s interface. This greatly facilitates
the reuse of DSLs and makes language development more
accessible. Yet, this extension limited to specific forms of
code generator aggregation, i.e., those where the interfaces
of generated artifacts can be defined at code generator design-
time. We are working on alleviating this constraint.
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