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Abstract
There is a software language engineering gap between meta-
model-based languages and grammar-based languages. Gram-
mars can support integrated definition of concrete syntax
and abstract syntax, which facilitates processing models, but
usually prevents reusing the variety of language tools op-
erating on Ecore metamodels (such as editors, interpreters,
debuggers, etc.). Existing work on translating grammars to
Ecore metamodels features very cursory translations only,
which requires re-engineering intricacies natural to gram-
mars for the metamodels again. We conceived a translation
from an EBNF-like syntax to Ecore metamodels that consid-
ers the grammars’ intricacies. This translation is realized as
a fully automated toolchain from grammars into Ecore &
OCL using the language workbench MontiCore. Using this
translation enables grammar-based languages to leverage
the benefits of Ecore-compatible language tools while sup-
porting natural definition of concrete and abstract syntax.

CCS Concepts • Software and its engineering → Soft-
ware notations and tools; Domain specific languages;
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1 Introduction
Model-driven development (MDD) [15, 44] lifts models to pri-
mary development artifacts. It has been successfully applied
to various challenging domains, including automotive [4],
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avionics [14], and robotics [45]. The automated analysis and
transformation of models requires their adherence to soft-
ware languages, which can be general modeling languages
(e.g., UML [27], SysML [16]), applicable to a variety of chal-
lenges and domains, or domain-specific languages (DSLs).
Independent of their nature, the success of software lan-

guages depends on the available tooling (editors [42], com-
pilers [1], interpreters [5], etc.). For metamodel-based lan-
guages implemented with Ecore [35], a large body of tooling
is available in the Eclipse environment. However, metamod-
els describe abstract syntax (structure) of a language only
and their concrete syntax usually is defined through editors.
The ongoing success of textual languages for software

developers indicates that text is their preferential model
representation. This is in line with the observation that
textual model presentation facilitates reusing established
tooling for common activities (editing, differencing, etc.).
Textual languages can be defined with grammars [22] eas-
ily [13, 33, 39, 40]. However, these usually lack integration
with Ecore to benefit from the the wealth of existing tool-
ing. Consequently, such tooling must be co-developed and
evolved alongside the grammar, which requires significant
additional efforts. On the other hand, the parsers gener-
ated from grammars often support forms of model valida-
tion (e.g., checking complex cardinalities) that cannot be
expressed by metamodels only and require additional efforts
from metamodel-based languages. To facilitate integration
of language concerns realized within different technological
spaces and reusing Ecore-based tooling with grammar-based
languages, bridging these different spaces is necessary [21].

To reduce the gap between grammar-based languages and
Ecore-based languages, and to facilitate the development of
language processing tooling for textual languages, we con-
ceived and developed a translation from grammars to Ecore
metamodels. In contrast to naive translations, the generated
metamodels are augmented with OCL [17] constraints and
Java methods to capture grammar intricacies, such as com-
plex grammar expressions (e.g., multiply nested iterations
and disjunctions), that represent several systems of linear
equations to ensure the metamodel adheres to the implied
cardinalities. Using the MontiCore [33] language workbench,
the translation not only supports EBNF, but leverages fea-
tures of MontiCore’s metalanguage to establish associations
between different parts of the abstract syntax. Overall, the
contributions of this paper towards bridging the gap between
grammarware and modelware are:
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Automaton  = 'automaton' Name '{' <Element> '}';
Element = Variables | States | Initial | Transition;
Variables = 'vars' Name ['=' Int] <',' Name ['=' Int]> ';';
States     = 'states' Name {',' Name} ';';
Initial    = 'initial' Name ';';
Transition = Name [ '(' Cond ')' ] '->' ['/’ Action] Name ';';
Condition  = Name ('<' | '>' | '==') Int;
Action     = Name ('='| '+=' | '-=') Int;
NonZero = '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';
Digit = '0' | NonZero;
Int = NonZero { Digit };

01
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03
04 
05
06
07
08
09
10
11

EBNF

automaton SodaMachine {
vars input, nWater = 10, nCoke = 10;
states idle, water, coke, error;
initial idle;
idle  (input  == 1)-> water;
idle  (input  == 2)-> coke;
water (nWater > 0)-> /nWater-=1 idle;
water (nWater == 0)-> error;
coke  (nCoke > 0)-> /nCoke-=1 idle;
coke  (nCoke == 0)-> error;
error              -> idle;

}

01
02
03
04 
05
06
07
08
09
10
11
12

Model

iteration

disjunction

optionality

non-empty iteration

(nWater > 0) 

/nWater -= 1

(nCokes > 0) 

/nCokes -= 1

idle

water

error

coke

graphical representation 
of the same automaton

Figure 1. EBNF grammar of an automaton language (top),
corresponding textual model (bottom left), and graphical
representation (bottom right).

• A concept for translating EBNF-like grammars into
accurate metamodels that leverages OCL constraints
and additional Java solvers to capture the intricate and
implicit grammar cardinalities.

• A realization of this translation that translates Monti-
Core grammars into Ecore metamodels.

In the following, Section 2 motivates the benefits of bridg-
ing both worlds by example before Section 3 presents pre-
liminaries. Section 4 introduces our translation concept and
Section 5 presents its realization. Afterwards, Section 6 il-
lustrates its benefits through a case study and Section 7 dis-
cusses observations. Ultimately, Section 8 highlights related
work and Section 9 concludes.

2 Motivating Example
Consider developing a textual domain-specific language to
describe manufacturing processes and their integration with
cyber-physical production systems (CPPS). These languages
are becoming common [47] with Industry 4.0 [6] and related
advances, such as the Japanese Industrial Value Chain Ini-
tiative [37] or the Advanced Manufacturing Initiative in the
United States [38]. Part of this language is describing the dis-
crete state-based behavior of CPPS through finite automata
by the CPPS developers (e.g., [24, 29]).
The simplified grammar in EBNF for the syntax of such

automata over variables and integer numbers is illustrated
in Figure 1. It defines that an automaton features at least
one Element (l. 1), which can be a list of variables, a list
of states, an initial state, or a transition (l. 2). Variable lists
feature optional initial value assignments per variable (l. 3),
list of states consist of an iteration of names (l. 4), and initial

A = {BBB | CCCC};
B = 'b';
C = 'c';

01
02
03

EBNF bbbbbb
ccccbb
ccccccccbbb

01
02
03

Modelsthree
models

A

B C

MMbs

* *

cs 02:A

C

Invalid
Instance

C C C B B

iteration over a disjunction in EBNF

Figure 2. EBNF grammar (top left), corresponding textual
models (top right), naively derived metamodel (bottom left),
and corresponding instance (bottom right).

state declarations yield a single name (l. 5). Transitions fea-
ture two names directed at state, a single Boolean condition
over an integer and an action assigning, incrementing, or
decrementing a value (ll. 6-8).

Below this grammar, Figure 1 depicts a conforming model
that describes a soda dispensing machine. The machine ini-
tially provides ten bottles of water and ten bottles of coke
(l. 2). Upon pushing one of its two buttons, it either dispenses
a bottle of water or a bottle of coke - if available (ll. 5-10).
Otherwise, it reaches an error state from which it can only
return to its initial state idle (l. 11).
Developing a language for such automata, however, re-

quires more than syntax [9], such as well-formedness rules,
realization of semantics, analyses, editors, documentation,
and more. Hence, prior to producing a potentially shippable
prototype to the customer, producing corresponding tool-
ing requires significant effort and the Ecore infrastructure
can help with that. Therefore, instead of developing, for in-
stance, an editor, from scratch, reusing frameworks such as
Sirius [42] can facilitate language tool engineering.

However, translating grammars manually to metamodels
is costly, error prone, and only half the way: instances of
textual models must be translated into Ecore metamodel in-
stances also. Existing approaches to this [2, 19, 43], however,
do not consider the constraints imposed by implicit cardinal-
ities of grammar rules in the metamodel. Considering, for
instance, the grammar depicted in Figure 2 (top left), which
accepts multiples of three bs or four cs. A naive translation,
as performed, e.g., by Xtext [43], derives a concept A with
lists bs and cs relating to B and C instances accordingly and
some validity checking in the generated editors. While this
enables capturing all models of the grammar, it also supports
nonconforming models, such as the second model ccccbb
(top right) as depicted by the compatible instance (bottom
right), when instantiating the models through other means
(e.g., programmatically or via graphical editors that are not
directly related to the Xtext approach itself). Consequently,
when developing tooling for such a language, these intri-
cacies must be considered manually (e.g., within its editors,
generators, etc.). Automatically deriving context conditions
restricting the numbers of bs and cs from the grammar and
integrating these directly into the metamodel liberates from
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their manual definition. This facilities engineering of tooling
for textual languages.
To this end, we propose generating linear equation sys-

tems (LESs) for each concepts’ context conditions that have
a solution if a model provides a correct number of model
element instances. For the metamodel of Figure 2 (bottom
left), the LES over variables x , y representing the iterations
of block alternatives could be:

|bs | = 3 ∗ x (1)
|cs | = 4 ∗ y (2)

Then, each data structure with fixed numbers of bs and cs
is a valid instance of the metamodel, if there is a solution
to this LES. For instance, this would rule out the second
model, ccccbb, as there is no integer solution for |bs | = 2
and |cs | = 4.
The next sections present a translation from grammars

into accurate metamodels that adhere to the grammars’ im-
plicit cardinalities by adding generated LESs to correspond-
ing solvers invoked by OCL invariants.

3 Preliminaries
We realize our translation from grammars to metamodels
using the MontiCore language workbench and Ecore meta-
models with attached OCL. This section describes all three.

3.1 MontiCore
MontiCore [18, 33] is a language workbench for engineering
compositional DSLs1. Its languages are defined as extended
context-free grammars (CFGs) that enable integrated devel-
opment of concrete syntax and abstract syntax. From this
grammar, MontiCore generates abstract syntax classes, a
parser translating textual models into abstract syntax trees
(ASTs), i.e., instances of these classes, symbol tables, a model
checking infrastructure, and an infrastructure for template-
based code generation. The model checking infrastructure
is used, e.g., to execute handcrafted context conditions to
check well-formedness properties not expressible with CFGs
(e.g., duplicate occurrence of the same name). Symbol ta-
bles store symbols, i.e., essential information on model parts,
meant as interface for other languages. Symbol tables of a
class diagram model, for instance, could comprise informa-
tion about the names of the contained classes, their method
signatures or relations, but hide information on their meth-
ods’ implementations. Once a model is translated into an
AST, its symbol table is created, and its well-formedness
is checked. Code generators then transform ASTs of well-
formed models into target language artifacts (e.g., Java, XML,
or anything else that can be represented as text). For com-
positional language engineering, MontiCore also supports
(1) aggregation: a loose coupling between symbols of dif-
ferent languages; (2) embedding: a combination of abstract
1MontiCore on GitHub: https://github.com/MontiCore/monticore

01 grammar Automaton extends MCBasics { 
02   Automaton = "automaton" Name "{" Element* "}" ;
03   Element = Variable | State | Transition;
04   symbol Variable = "var" Name ("=" IntLiteral)? ";" ;
05   State = "state" Name ("<" ["i"] ">")? ("<" ["f"] ">")? ; 
06   Transition = from:Name Condition? "->" Op? to:Name ";" ;
07   Condition = Name@Variable ("<" | ">" | "==") IntLiteral;
08   Op = Name@Variable ("="| "+=" | "-=") IntLiteral;
09 }

MCG

production rule language extension

block

cardinality

nonterminal reference

nonterminal

symbol definition

terminal

Figure 3.MontiCore grammar of an automata language.

syntax classes through underspecification in the host lan-
guage; and (3) extension: in which one language inherits all
productions of its parent languages).
Figure 3 illustrates the quintessential elements of a Mon-

tiCore grammar: Each grammar begins with a name and a
list of possibly extended grammars (l. 1). Here, Automaton
extends MCBasics to inherit the productions Name (cf. l. 1)
and IntLiteral (cf. l. 4), which are translated into the data
types String and Integer. A grammar’s body contains pro-
duction rules that define the abstract syntax types. Here,
for instance, the type Automaton is defined to yield an at-
tribute Name and a list of Element instances. This rule also
defines the concrete syntax of Automaton instances, which
begin with the keyword automaton, followed by a name, and
a body of elements delimited by curly brackets. To define
production rules, MontiCore supports the usual EBNF oper-
ations, i.e., iteration (l. 2), disjunction (l. 3), and optionality
(l. 4). Additionally, it supports the definition of symbols (l. 4),
which can be referenced from ASTs, if declared via nontermi-
nal references (l. 7). Here, Name@Variable denotes that the
name used in the left-hand side of a Condition must refer-
ence the name of an existing Variable instance of the same
model. The generated abstract syntax classes are augmented
with methods resolving instances of the referenced nonter-
minals through the symbol tables. Leveraging the symbol
table enables MontiCore to express not only the contain-
ment trees typical for grammar-based metalanguages, but
also associations between the tree’s different branches, i.e.,
graph structures of the abstract syntax. As with EBNF, Mon-
tiCore supports the definition of languages with intricate
implicit cardinalities by nesting disjunctions and iterations
in hierarchical blocks.

3.2 EMF Ecore and OCL
The Eclipse Modeling Framework (EMF) [34] is a Java frame-
work for model-driven engineering that is part of the Eclipse
infrastructure. To describe domain models, it features the
graphical Ecore metalanguage (similar to class diagrams) and
generates a tree-based editor to instantiate these. In combina-
tion with various other Eclipse-based frameworks and tools
(e.g., Sirius [42] for more precise graphical concrete syntax,
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01  grammar G1 extends MCBasics {

02    A = b:B;

03    B = name:Name;

04  }

A
b 11

B

String name

MCG

CD

nonterminal name

nonterminal type

Figure 4. Simple nonterminal attributes are translated into
compositions between the class representing the grammar
rule and its nonterminal attribute.

OCL [17] for well-formedness checking, or Xtend [3] for
code generation), Ecore is suitable for language engineering.

The Object Constraint Language (OCL) [10, 30] is a declar-
ative specification language over object structures devel-
oped to constrain UML [27] models. It enables specifying
constraints that cannot be (easily) represented by the un-
derlying model itself. For instance, OCL enables restricting
class diagrams to yield no classes featuring methods of the
same names. The Eclipse OCL plugin enables specifying con-
straints for Ecore models to describe their well-formedness
in terms of invariants, preconditions, and postconditions for
metamodel concepts.

4 Translating Grammar Rules to
Metamodel Concepts

This section introduces our translation from grammar rules
into metamodel concepts by presenting how the different
kinds of grammar rules are derived into metamodel concepts
with related OCL constraints. The translation rules cover
all kinds of grammar rules of MontiCore’s extended CFGs,
which covers complete EBNF [33]. Therefore, this transla-
tion concept enables translating arbitrary EBNF grammars to
metamodels. We chose MontiCore for illustration nonethe-
less, as its support for nonterminal references enables meta-
models that are graphs instead of trees only.
Exclusive disjunctions, however, cannot be represented

into metamodels natively. For this, we present OCL invari-
ants to ensure both representations of the language accept
the same models. Moreover, the implicit cardinalities pre-
scribed by nested blocks of exclusive disjunctions entail LESs
(cf. Figure 2) that cannot be represented by comprehensible
OCL easily. We delegate this to a solver, which is invoked
from OCL instead. This section presents derivation of meta-
model classes, construction of production graphs, and their
translation into LESs that are invoked from the generated
OCL invariants.

01  grammar G2 extends MCBasics {

02    A = b:B* c:C+ d:D? ;

03    B;

04    C;

05    D;

06  }

MCG

CD

A B
b 0..*1

C
c 1..*1

D
d 0..11

optionality

non-empty iteration

normal iteration

Figure 5. Grammar cardinalities are translated into compo-
sitions with the corresponding cardinalities.

4.1 Derivation Rules
MontiCore’s extended CFGs comprise nonterminal defini-
tions, iterations, optionality, explicit cardinalities, disjunc-
tions, interface production rules, abstract production rules,
and nonterminal references. This section describes their
translation into accurate metamodels.

NonterminalDefinitions: Nonterminal definitions become
concepts of the same name in the metamodel. For each non-
terminal used in the right-hand side of a nonterminal defini-
tion, the corresponding concept yields an association of the
nonterminal’s name and type. References to basic types (e.g.,
numbers, strings, Booleans) instead become basic data types
in the metamodel. Figure 4 illustrates this. The grammar G1
(top) comprises the nonterminal definitions A (l. 2) and B
(l. 3). The production rule of A contains the nonterminal b of
type B. The production rule B contains the nonterminal name
of type Name. The corresponding metamodel (bottom) conse-
quently consists of the two classes A and B. Class A contains
a composition of name b and cardinality one to class B. Class
B yields an attribute name of type String, because Name is a
special non-terminal that translates to the type String.

Cardinalities: As EBNF,MontiCore supports different kinds
of iterations that implicitly express cardinalities. These are
the normal, possibly empty, iteration (*), the non-empty it-
eration (+), the optional, one or none, iteration (?), and the
default cardinality (i.e., 1). All of these become explicit as-
sociation cardinalities in the metamodels as illustrated in
Figure 5: The production rule for A (l. 2) references the non-
terminals B, C, and D (ll. 3-5) – which yield right-hand sides
that are omitted from now on – with different cardinalities
each. For the normal iteration, we implement an associa-
tion with an arbitrary number (0..∗) of entries. Non-empty
iterations become an association of at least one entry (1..∗).
Optional iterations become associations with zero or one
entries (0..1). Moreover, MontiCore supports explicit specifi-
cation of cardinalities. To this end, nonterminal definitions
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01  grammar G3 extends MCBasics {

02    A = b:B*;

03    B;

04    ast A = b:B min=3 max=7; 

05  }

A B
b 3..71

MCG

CD

ast rule

explicit cardinalities

Figure 6. Grammar rules support custom boundaries for the
iteration of nonterminals. These are translated into corre-
sponding cardinality values in the metamodel.

A B
b1

C
c1

0..1

0..1

class A { /* ... */

invariant parser: ASolver.check(b.size(), c.size());

}

ASolver

boolean check(int b, int c)

MCG

CD

01  grammar G4 extends MCBasics {

02    A = (b:B | c:C);

03    B;

04    C;

05  }

exclusive disjunction

Figure 7. Exclusive disjunctions are translated as indepen-
dent compositions with cardinality 0..1. A generated Solver
verifies that exactly one alternative is present in a model.

can be accompanied by so-called AST rules that support at-
taching additional properties to the resulting abstract syntax
classes, such as methods, derived fields, or boundaries for
iterations. Figure 6 illustrates this with grammar G3, which
contains a nonterminal definition A featuring an iteration
of B instances (l. 2). Additionally, the grammar features an
AST rule describing the boundaries for A’s B instances (l. 4).
Additional AST rule features are presented in [33].

MontiCore also supports defining custom cardinalities by
specifying an explicit number of nonterminal instances. The
production A = BB, for example, describes two occurrences
of nonterminal B. In this case, the generated abstract syntax
class A contains a list bs of arbitrary cardinality. Here, the
parser ensures the correct number of B instances (i.e., two).
The translation principle that considers such intricacies is
explained in the following.

Disjunctions: As EBNF, MontiCore supports exclusive dis-
junctions (i.e., requiring that exactly one of the alternatives
holds). Together with iterations, these prevent a naive trans-
lation from grammars to metamodels as discussed in Sec-
tion 2. Figure 7 (top) illustrates a simple disjunction in the
nonterminal definition of A (l. 2), which can feature exactly
one instance of B or exactly one instance of C, but not both. In
a naive translation, this disjunction between alternatives gets
lost in the resulting metamodel as this cannot be expressed

01  grammar G5 extends MCBasics {

02    interface I = n:Name;

03    A = i:I*;

04    B implements I = x:Name n:Name;

05    C implements I = n:Name;

06  }

MCG

CD

A <<interface>>

I

i 0..*1
B

C

interface rule

interface implementation

String getN()

String x

String n

String n

Figure 8. Nonterminal interfaces are translated into meta-
model interfaces with method signatures for defined at-
tributes.

with metamodels without introducing artificial aggregation
concepts. To enable holding the instance of B or of C, we
introduce associations from A to one instance of each. To
ensure that neither both are absent, nor both are present, we
introduce an invariant to class A checking this.
Generally, this can be ensured by requiring the invari-

ant (self.b->size() == 0) xor (self.c->size() == 0).
However, for more complicated, e.g., nested disjunctions,
this becomes less comprehensible with each alternative (cf.
Figure 2) as OCL is not tailored to specify equation systems.
Instead, we opted for hiding these ‘parsing constraints’ from
the developer within a Java class generated for each meta-
model class that takes care of evaluating the resulting LES
as depicted in Figure 7 (bottom). Here, the generated Java
class ASolver wraps multiple LESs per derived metamodel
concept. Moreover, it yields a single public method taking
the numbers of instances of associations of the related con-
cept and returning true, iff these are a solution of one of the
LESs. The generated invariant parser for metamodel class
A holds exactly if the solver found a solution to the LESs
related to A. Thus, we do not pollute the OCL with LESs, but
keep these out of the developers sight and can solve these
more efficiently than through OCL.

Interface Productions andAbstract Productions: For un-
derspecification and flexible language reuse, MontiCore’s
extended CFGs support interface productions and abstract
productions that operate similar to interfaces and abstract
classes in object-oriented programming. Interface produc-
tions can specify abstract syntax properties of implement-
ing productions. Abstract productions can provide abstract
syntax properties to inheriting productions. Both are trans-
formed to metamodels as expected.
Figure 8 shows how MontiCore grammars can realize in-

terfaces (top) and how we translate these to metamodels
(bottom). The grammar G5 features the interface production
I (l. 3), which prescribes that interfaces must yield a non-
terminal n of type Name, and two implementations of this
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01   grammar G6 extends MCBasics {

02     abstract X;

03     A = x:X*;

04     B extends X;

05     C extends X;

06   }

MCG

CD

A <<abstract>>

X

x 0..*1
B

C

abstract rule

rule extension

Figure 9. Abstract nonterminals are translated into abstract
classes that can be extended by subclasses.

interface (ll. 4-5). From the productions of grammar G5, we
derive the four metamodel classes depicted below the gram-
mar. As expected, the class A contains a list of I instances,
which can be either Bs or Cs. For abstract grammar nontermi-
nals this translation is similar, as depicted in Figure 9. Here, X
is an abstract nonterminal that is translated into an abstract
metamodel class and the derived classes B and C inherit from
it accordingly.

NonterminalReferences: Grammars generally express con-
tainment trees, i.e., nonterminal definitions contain instances
of other nonterminal definitions, whereas metamodels gen-
erally define multi-graphs of classes. MontiCore alleviates
this by featuring nonterminal references that enable creating
associations from nonterminals to symbols (cf. Section 3.1) of
other nonterminals. Grammar productions that define refer-
enceable nonterminals must start with the keyword symbol
and must contain a name on their right-hand side. Other
grammar productions then may reference this name, i.e.,
the symbol with this name. For each nonterminal reference,
MontiCore generates the abstract syntax classes such that
these use the symbol table to resolve the symbol correspond-
ing to the targeted nonterminal. From this symbol, its AST
can be retrieved.

Figure 10 illustrates this with the grammar G7, which con-
tains the nonterminal A, for which MontiCore also produces
a symbol (l. 2). Further, it contains the nonterminal B, which
features the nonterminal reference ref that points to an A
instance. We translate this into a metamodel class A as usual
and a metamodel class B that is associated to one instance
of A, but instead of featuring a normal attribute ref of type
String, this attribute is derived and points to the associated
A instance. Consequently, we also introduce two constraints.
The first marks attribute name as id, which requires that
all names used by instances of class A are unique. The sec-
ond defines the derived attribute ref. The derivation rule
ensures that ref actually holds the name of the referenced
A instance. We prescribe the latter to prevent prescribing
specific implementations of the metamodel classes.

01  grammar G7 extends MCBasics {

02    symbol A = Name;

03    B = ref:Name@A;

04  }

A

String name

B

/ String ref

refA1

MCG

CD

symbol definition

nonterminal reference

01  class A { /* ... */

02    attribute name : String[1] { id };

03  }

04  class B { /* ... */

05  attribute ref : String[1] { derived }

06    { // Check whether refA.oclIsUndefined() ...

07      derivation: refA.name;

08    }

09  }

OCL

Figure 10. Nonterminal references are translated into ex-
plicit associations. An OCL rule defines the derivation for
the original String attribute.

A = (B? C) | (CC | D)+ ;

MCG PG

? +

?

+

B

C

C D

C

Figure 11. Production rule (left) and its corresponding graph
(right). Nonterminals are represented as squares and blocks
as circles.

4.2 Production Graphs
Considering more complex productions with nested implicit
cardinalities, the fixed cardinalities of pure metamodels are
insufficient to represent exclusive disjunctions. In Figure 11,
we illustrate this with the nonterminal definition A that either
yields a single instance of C that can optionally be preceded
by an instance of B (left side of the disjunction) or an even
number of C instances (right side) with optional single oc-
currences of D instances before or after each second C. While
this could be mapped to a metamodel class A with multiple
associations to Cs of different cardinalities, maintaining this
in the language processing software is unfeasible.
To consider these implicit cardinalities properly, we dis-

tinguish the grammar rules’ explicit cardinalities – which
become cardinalities in the metamodel – from the gram-
mar rules’ implicit cardinalities. The latter are delegated
to a solver in the related concepts’ invariants. To prevent
confusing the different cardinalities, we denote the explicit
metamodel cardinalities as global cardinalities (in the sense
that these define the global lower and upper bounds of an
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PG PG

CB CB

Figure 12. Eliminating blocks of default cardinality.

association) and the implicit metamodel cardinalities as local
cardinalities.
Figure 11 illustrates the difference between the global

cardinality of A’s C instances, which overall can occur an
arbitrary number of times, and their local cardinality, which
describes under which circumstances nonterminal instances
may occur. This also includes the coherence with the distri-
bution of other variables. For example, the disjunction’s left
part features an optional variable B followed by an instance
of C. This implies that if B occurs, we require exactly one
instance of C. If no B occurs, we may have an arbitrary even
number of Cs, or a single C. Thus, an instance of A is valid
exactly if it either features (1) a single instance of B and
a single instance of C; (2) a single instance of C; or (3) an
even number of instances of C and an arbitrary number of
instances of D.

In the following, we describe computing the local cardinal-
ities and attaching these to generated metamodel’s classes.
To this end, we propose constructing so-called production
graphs (PGs) for each production rule in the grammar. Each
graph represents the possible ‘paths’ a parser can follow
through the corresponding production rule and these paths
are translated into a set of LESs describing the production
rules’ local cardinalities. The PGs are hierarchically layered
as usual with trees and each graph yields two types of nodes:
nonterminal nodes and block nodes. The former are labeled
with nonterminal names and denote that the specified non-
terminal must occur at this specific position on each path
through this node. The latter are labeled with block identi-
fiers and denote opening or closing of a block. Succession in
paths through the production graph denotes concatenation
of nonterminals and sibling relations (i.e., nodes on the same
hierarchy level of the PG) denote alternative paths. Moreover,
each production graph yields a single root node.

Figure 11 illustrates translating the production rule A into
its corresponding production graph. According to the dis-
junction of A, the production graph yields two alternatives.
The first (left) begins with an optional block containing a
nonterminal node requiring an instance of B if this path
is taken. The second (right) begins with an iteration block
containing either two subsequent instances of C or a single
instance of D. From these paths, we can derive the LESs that
yield solutions if an instance of A is correct regarding As
implicit cardinalities.

?

?

PG PG

CB Ɛ CB

A = (B | C)? ; A = (B | C | Ɛ) ;

Figure 13. Replacing blocks of optional (i.e., ?) cardinality
by blocks of default cardinality featuring an ε node.

*

+

+

*

PG PG

CB

CB

CB

A = (B | C)+ ; A = (B | C)* (B | C) ;

Figure 14. Replacing blocks of non-empty iteration (i.e., +)
by blocks of default cardinality followed by blocks of arbi-
trary iteration (i.e., *).

In the following, we normalize PGs to facilitate their trans-
lation in LESs. To this end, we convert the branches in such
a way that the graph only contains blocks of iterations (e.g.,
* cardinalities). The next paragraphs therefore describe elim-
ination of block nodes labeled with the default (i.e., 1), ?,
and + cardinalities. Figure 12 illustrates elimination of blocks
with default cardinality. Here, the block node is removed and
its content is directly attached to its parent (the predecessor
node one level higher in the production graph hierarchy).
If that block contains a disjunction, its alternative paths
become attached to the parent. Blocks denoting optional car-
dinality are eliminated by introducing the alternative of not
processing any nonterminal. We denote this by nodes labeled
with ε . Paths featuring this node do not have to process a
nonterminal at this position. As depicted in Figure 13, this
introduces a new branch to express omitting a nonterminal.
The non-empty iteration requires for each contained block
that at least one of its contained elements occurs. Regarding
the number of related instances, this amounts to enforcing
a single occurrence of the contained elements followed by
an arbitrary number of iterations. Consequently, we express
blocks of non-empty iteration as a single mandatory block
followed by a block indicating arbitrary iterations. In Fig-
ure 14, the block containing at least one B or one C becomes
a block containing exactly one B or C followed by a block
containing arbitrary numbers of both. After iteratively ap-
plying all eliminations, the normalized production graph
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C

A = (B? C) | (CC | D)+ ; A = Ɛ C | BC | CC (CC | D)* | D (CC | D)* ;

Figure 15. Normalizing a production graph and variable
assignment to branches of normal iteration (star) blocks.

|B| = 0

|C| = 1

|D| = 0

|B| = 1

|C| = 1

|D| = 0

|B| = 0      .

|C| = 2 + 2 * x1

|D| = x2 .

|B| = 0      .

|C| = 2 * x1.

|D| = 1 + x2

LES
I: II: III: IV:

Figure 16. Resulting set of LESs for existing variables of the
production in Figure 11.

consists of a single root node, nonterminal nodes, and arbi-
trary iteration blocks only. For the production graph depicted
in Figure 11, this results in the normalized production graph
depicted in Figure 15 (right), which is equivalent to its former
representation, but facilitates further analysis.

Moreover, we labeled the different paths leaving the root
node, which entail different LESs. Also, we labeled the dis-
tinct branches of the * cardinality blocks. These labels cor-
respond to pairwise disjoint variables. With the normalized
production graph at hand, we can extract equations for each
variable concerning the existing branches. For evaluation,
we interpret different branches of * blocks as multiplication
of the content of the block with the labeled variable (xi ).
The remaining parent-child relations between nonterminal
nodes are evaluated as an addition. Different branches from
* blocks that contribute to the same variable also become
additions. Consequently the normalized production graph
of Figure 15 entails four LESs as depicted in Figure 16.
For each branch of the root node, we derive a dedicated

LES that describes cardinality constraints for each variable
of the complete production rule. Following, e.g., branch III,
we observe that a valid instance of A with respect to branch
III, (1) cannot yield instances of B; (2) must yield two or
more instances of C; (3) must yield an even number of C
instances; and (4) can yield an arbitrary number of instances
of D. This results in the three equations that are depicted
in Figure 16 (III).

After transforming the production graph, we obtain a set
of LESs that represents the local cardinalities of the processed
production rule. To integrate the LESs into the metamodel,

C
c

B
b 0..1

class A { /* ... */

invariant lc: ASolver.check(b.size(), c.size(), d.size());

}

D

ASolver

boolean check(int b, int c, int d)d

MCG

MM

A = B? C | (CC | D)+ ;

0..*

0..*

A

Figure 17. Complete transformation of a production rule
into metamodel classes, OCL, and a Java solver ensuring its
local cardinalities.

we generate a solver for the production rule’s specific set
of LESs that takes the number of instances as input and
applies Gaussian elimination [36]. Therefore, we impose
additional constraints: (1) Only accept whole numbers as
solution since the algorithm may find arbitrary decimals oth-
erwise. (2) Nested iterations require an additional condition
ensuring that the inner loop demands at least one iteration
of the outer loop. (3) Variables marked as unset are always
considered to have zero instances despite their actual value.
If one of the LESs has at least one solution, the model is valid;
otherwise, it is rejected.
We connect the solver to the metamodel by generating

OCL invariants for the metamodel classes that hold if the
solver finds a solution. Figure 17 illustrates this for the pro-
duction rule depicted in Figure 11. First, we translate the
nonterminal definitions to metamodel classes and add cor-
responding associations hold their references instances of
other metamodel classes (nonterminals). For structural refer-
ence, we impose the corresponding global cardinalities onto
each association. To check the local cardinalities, we gener-
ate the additional Java class ASolver. Its check() method
takes the numbers of instances and invokes the LES solver.
An OCL invariant invokes the method and holds if this check
was successful. This concept – naive translation of grammar
rules into metamodel concepts, construction of production
graphs, derivation of LESs, and generation of a solver at-
tached to the metamodel classes through OCL – enables
translating complex grammars into accurate metamodels for
many grammar-based language definition techniques.

5 From MontiCore to Ecore
Translating grammars to accurate metamodels enables to
reuse the available metamodel-based tooling. However, with-
out parsing textual models into metamodel instances, this
loses the benefits of textual modeling. Thus, this section
presents the toolchain translating MontiCore grammars to
Ecore metamodels and translating textual MontiCore models
into Ecore instances.
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5.1 MontiCore Grammars to Ecore Metamodels
MontiCore translates CFGs into Java abstract syntax classes
and generates a parser translating textual models into in-
stances of these classes (the AST). To achieve this, it first
translates the CFGs into UML/P [32] abstract syntax class
diagrams (AS CDs), which normally are translated into Java
artifacts. We extended this toolchain with components (1) en-
riching the AS CDwith EMF-specific methods and attributes,
such as the eGet() and eSet() methods, and ensuring its
classes implement the EMF interfaces related to serialization;
(2) calculating production graphs from MontiCore CFGs;
(3) transforming the AS CD into Java implementations and
the PGs into corresponding solvers; and (4) translating this
Java AS implementation into an accurate Ecore metamodel.

Enriched AS 

Java Classes

MontiCore

Generator

Production

Graph 

Calculator

CD2EMF

Decorator

Java AS

Generator

MontiCore

Grammar

MontiCore

Grammar

Component Diagram

AS CD

Decorated

AS CD

Production

Graphs Ecore

Metamodel

Generator

Ecore

Metamodel

creates AS, parser, symbol table

decorates EMF-specific 
information into the AS CD

computes PGs 
over implicit 
cardinalities

generates Java 
AS classes

serializes the generated AS 
classes into an Ecore metamodel

Figure 18. Component diagram of the MontiCore toolchain
with Ecore metamodel generation.

Figure 18 illustrates these components and their interac-
tion. First, the MontiCore generator processes the grammar
and produces an AS CD, an ANTLR [28] parser capable of
translating textual models into abstract syntax trees, and the
corresponding symbol table infrastructure. The CD2EMF dec-
orator adds EMF-specific information to the AS CD, which is
necessary to serialize the contained classes into naive meta-
models (cf. Section 4.1). The production graph generator
takes the processed grammar, extracts the production rules,
translates these into graph representations, and normalizes
the latter (cf. Section 4.2). The Java AS generator takes the
decorated AS CD and the productions graphs and produces
LES solvers from the production graphs as well as Java AS
classes enriched with information about related solvers. Fi-
nally, the Ecore metamodel generator takes the enriched AS
Java classes and solvers and serializes these into an accurate
metamodel with attached OCL rules invoking the solvers.

5.2 Textual Models to Ecore Instances
Realizing a useful bridge between MontiCore and EMF also
requires translating textual models into metamodel instances.
To this effect, we leverage the EMF-enriched AS classes: After
MontiCore parses and translates the textual models into
ASTs, their AS classes’ EMF attributes and methods already
are EMF-conform models, which only need to be serialized

grammar MontiArc extends MCBasics {
Component = (itf:"interface")? "component" Name Signature TypeArgs?

"{" ArcElement* "}";
Signature  = Parameters? ("extends" Type)?;
Parameters = Parameter ("," Parameter)*;
Parameter  = Type Name ("=" Expression)?;  
ArcElement = (
// Structural Elements
Ports | SubComponent | Connector | 
// Component Mode Elements
ModeController | InitialMode | RecMode | 
// Embedded Behavior Elements
Variable | JavaBehavior | Automaton
// Reuse Elements
RuntimeEnv); 

// Component Body Elements
Ports          = "port" Port ("," Port)+ ";";
Port           = Name (["in"] | ["out"]) Type Names?;
Names          = Name ("," Name)*;
SubComponent = "component" Type Arguments? instances:Names ";";
Arguments      = Expression ("," Expression)*;
Connector      = "connect" source:Name@Port "->" targets:Names ";";

// Component Modes
ModeController = "transitions" "{" (transitions:Transition)* "}";
InitialMode = "initial" Name ";";
RecMode = "mode" modes:Names "{"(Connector | UseStatement)* "}";
UseStatement = "use" components:Names ";";

// Embedded Behavior Elements
Variable       = Type Names? ";" ;  
Automaton      = "automaton" Name? "{" 

(States | InitialStates | Transition )* 
"}"; 

States         = "state" Names ";" ;
InitialStates = "initial" Names ("/" Block)? ";";
Transition     = source:Name ("->" target:Name)? ("[" Expression "]")? 

stimulus:Block? ("/" reaction:Block)? ";";
Block          = "{" (Name "=")? Expression ("," Expression)* "}";

}

01
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Figure 19. Simplified grammar of the MontiArc ADL.

prior to further use. In detail, we leverage EMF’s Resources
as an interface for managing its EObjects. As all AST nodes
are EObjects by construction, MontiCore can serialize the
ASTs into a resource by adding the models’ root nodes to
the corresponding resources.

6 Case Study
Consider developing a textual modeling language for soft-
ware architectures tailored to software developers. When
analyzed by system engineers, these, however, prefer a graph-
ical representation. Translating the language’s grammar to
an Ecore metamodel enables reusing the rich available tool-
ing for this. For this case study, we illustrate translating a
simplified grammar of the textual MontiArc [7, 8, 31] compo-
nent & connector architecture description language (ADL)
into an Ecore metamodel whose instances are visualized
using the Sirius [42] editor framework.
Generally, a MontiArc architecture consists of hierarchi-

cally composed component types that exchange messages
through their typed and directed ports. Components either
are composed and contain configurations of subcomponents
or are atomic and yield a behavior model, which describes
their input-output behavior. The behavior of composed com-
ponents emerges from the behavior of their subcomponents.
The simplified MontiArc grammar depicted in Figure 19 il-
lustrates this: The MontiArc grammar extends MontiCore’s
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component Calculator {

component RNG r0;

component RNG r1;

component Adder add;

component Monitor m;

connect r0.n -> add.a;

connect r1.n -> add.b;

connect add.sum -> m.in;

}

graphical representation of an 
instance of the Ecore metamodel 

generated from MontiArc’s grammar

corresponding textual 
representation

Figure 20. Sirius visualization of a component and connector
architecture, modeled with MontiArc.

built-in MCBasics grammar to inherit its literals, types, and
expressions (l. 1). It defines components with names, signa-
tures, type arguments, and a body of ArcElement instances
(ll. 2-3). The latter is a disjunction over everything allowed
in a component body, such as ports, subcomponents, connec-
tors, reconfiguration models, behavior automata, etc. (ll. 7-
15). Afterwards, the grammar defines these nonterminals
(ll. 18-41).

From this grammar, we can automatically derive the meta-
model illustrated in Figure 21. This metamodel is the product
of the derivation rules presented in Section 4.1 and con-
tains OCL invariants for each class derived from a produc-
tion featuring disjunctions. For all these classes, such as
ASTArcElement, we also generate a solver holding the re-
lated LESs and attach it through the class’ OCL. In case of
ASTArcElement, its invariant invokes the check() method
of the related ASTArcElementSolver. The latter takes the
sizes of all nine outgoing associations of ASTArcElement
and passes these to the solver’s check() method (cf. Sec-
tion 4.2) to ensure that each ASTArcElement holds at most
one instance and the others are empty.

Translating MontiArc’s grammar to an Ecore metamodel
facilitates developing graphical editors for it. For this case
study, we visualize MontiArc components with Sirius [42].
Components become rectangles containing their name and
subcomponents. Ports become smaller squares at each com-
ponents’ border. Incoming ports are on the left, outgoing
ports at the right. Connectors are arrows starting from one
port and ending in another port. Figure 20 presents a Sirius-
based Eclipse editor displaying an example architecture. This
architecture is textually modeled with MontiArc (presented
as overlay in the bottom-right), translated into an Ecore
instance (cf. Section 5.2) and visualized via Sirius.
Even if the generated metamodel is instantiated through

a graphical editor, its constraints on implicit cardinalities re-
main ensured through the generated solvers without requir-
ing additional constraint checking in the employed editor

(or other metamodel-based tooling). Preventing modeling
errors this way facilitates using the language overall.

7 Discussion
Our approach of bridging the gap between grammars and
metamodels is based on generating accurate metamodels
with embedded LESs that represent the implicit cardinalities
raised by (nested) blocks of disjunctions and iterations. For
MontiCore and Ecore, it is realized by decorating the AST
derived from a MontiCore grammar with EMF-specific infor-
mation that ultimately is transformed into (a) abstract syntax
classes conforming to Ecore interfaces, and (b) an Ecoremeta-
model interacting with a generated solver for each concept’s
derived implicit cardinalities. The latter integration is nec-
essary to prevent instantiating invalid (with respect to the
grammar) metamodel instances. Although it is possible to
integrate the LESs directly into the metamodel’s OCL invari-
ants, this becomes confusing even for compact productions.
This is an effect of the different paths through the production
graphs and cannot be mitigated aside from minor syntactic
improvements. Instead we opted for encapsulating these,
ultimately, parser-related checks in the generated solvers.
This prevents polluting the metamodel’s OCL with the LES.

Regarding the solver, we provide a straightforward im-
plementation based on Gaussian elimination. However, due
to the loose coupling and compact interface between OCL
invariants and the solver, employing more sophisticated LES
solvers requires minimal effort.
The availability of efficient LES solving (in cubic time)

also motivated us to use LESs over deterministic accepting
automata (due to determinization in exponential time) for
recognizing (in)valid instantiation of implicit cardinalities in
derived metamodel concepts. However, similar to LESs, en-
coding large automata in OCL reduces its comprehensibility
and should be moved to external Java artifacts.
Our contribution investigates forward translation from

grammars to metamodels only. We currently investigate to
leverage grammar inheritance to derive grammars with a
default concrete syntax from metamodels, such that specific
syntaxes can be integrated through production inheritance.
The feasibility of this approach has to be shown. To this effect,
modifications to the metamodels generated by our approach
currently cannot be mapped back to modifications in the
grammar. Furthermore, modifications of the metamodel can
entail that the generated constraints do not apply anymore.
To express well-formedness of models, many language

workbenches [12] employ specification mechanisms more
expressive than the ones used to describe the languages’
abstract syntaxes. For Ecore, these are OCL constraints, for
MontiCore these are Java-based context conditions. As these
are vital to express well-formedness of models, future work
investigates reusing well-formedness rules from one techno-
logical space to another. As Ecore metamodels support Java
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Figure 21. Excerpt of the metamodel generated from MontiArc’s grammar omitting some classes generated from MCBasics.

well-formedness rules as well, adapting MontiCore’s context
conditions to the corresponding Ecore interfaces might suf-
fice for the translation of MontiCore grammars into Ecore
metamodels. Direct translation between the different for-
malisms can be more challenging.

8 Related Work
The gap between grammar-based and metamodel-based lan-
guages is subject to ongoing research. There are various
approaches to combine textual DSLs with metamodels that
support a coarse translation only that forfeits considering
implicit cardinalities properly. In the following, we discuss
related approaches, which perform transformations between
grammars andmetamodels and compare these to our concept
as well as to its realization in MontiCore.

Xtext [43] is a language development framework that de-
fines DSLs via grammars based on EBNF as well. Based on
these, Xtext generates an abstract syntax EMF metamodel.
Hence, Xtext performs a direct translation from grammars to
metamodels. Moreover, Xtext also produces parsers capable
of transforming textual models into EMF-based models [11].

Xtext, however, does not derive constraints capturing the
implicit cardinalities imposed by its grammars for the meta-
models. Consequently, the generated metamodels support
different (more) instances than specified by the grammars.
Thus, these constraints must be handcrafted instead.

EMFText is an infrastructure for developing textual mod-
eling languages, which is based on EMF metamodels [19]
as well. With EMFText, the concrete and abstract syntax
of a language are defined separately. First, the Ecore meta-
model is created to specify the abstract syntax of a language.
After that, a syntax specification language can be used to
specify the concrete syntax with respect to the underlying
metamodel. With Ecore metamodels not supporting the in-
tricacies of the syntax specification languages, developers
either are restricted to less complex concrete syntaxes or
need to address the challenges of implicit cardinalities man-
ually as well.
Rascal [23] is a metaprogramming language for develop-

ing modeling languages. Rascal languages also are based on
grammars, from which Rascal derives a parse tree data struc-
ture. This data structure can be manually or automatically
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mapped to a handcrafted abstract syntax tree data structure.
The obtained ASTs serve as input for generators, which trans-
form the models into GPL artifacts. There is ongoing work
to bridge Rascal and ECore [41], i.e., enabling processing of
Ecore models in Rascal and deriving metamodels from Rascal
grammars. To the best of our knowledge, there currently is
no publication detailing the concepts of Rascal’s attempt.
Similar to our concept, the approach presented in [46]

suggests parsing grammars and translating their distinct
language elements into analog MOF [25] metamodel repre-
sentation. Here, structural grammar elements, such as se-
quences, iterations, or optionalities, are also represented in
the abstract syntax of the metamodel as annotations. Further
optimizations decrease the number of structural classes, if
possible, to discard unnecessary overhead. However, in gen-
eral, there remain structural parts in the metamodel. This
yields a complete representation of grammar rules in the ab-
stract syntax of the metamodel, but pollutes the metamodels
with annotations. Moreover, the optimizations applied by
this approach on the metamodel introduce a conceptual gap
between grammar concepts and metamodel realizations.

Another approach to transform grammars into EMF meta-
models leverages Xtext as intermediate language represen-
tation [2]. Afterwards, Xtext transforms the grammar into
an Ecore metamodel. To this end, an EBNF meta-grammar is
implemented in Xtext that supports parsing designed EBNF
grammars as Xtext models. These models are translated into
EMF and then transformed into a corresponding Xtext gram-
mar. Finally, the new grammar serves as input for Xtext and
is processed to derive the EMF metamodel. Consequently,
this approach is subject to the same challenges as plain trans-
lation with Xtext.
XMLText [26] is a framework for constructing textual

DSLs for XML-based languages relying on XSD. XMLText
combines different approaches of EMF and Xtext. An XSD
importer automatically retrieves an Ecore metamodel for a
given XML language. Afterwards, the derived metamodel is
normalized to overcome conceptual gaps between the XML
schema and the corresponding Ecore representation. Finally,
XMLText generates an Xtext grammar. Again, this omits
enforcing proper constraints for implicit cardinalities.
The Grammar-to-Model Language (Gra2MoL) [20] is a

transformation language for bridging grammarware and
modelware. It processes textual models conforming to gram-
mars and translates these into model representations con-
forming to target metamodels. Gra2MoL uses ANTLR [28]
to construct a parser that processes textual models and de-
rives their abstract syntax trees. Additionally, the language
developer defines model transformations via Gra2MoL’s
rule-based transformation language. These rules define the
bridge between the parsed textual model and the metamodel-
conform representation. Finally, the transformations are ap-
plied to the syntax tree to retrieve the target model. With
Gra2MoL, only instances of grammars and metamodels are

bridged, but not their definitions. This prevents reusing tool-
ing between the different technological spaces.

9 Conclusion
We presented a concept for translating EBNF-like grammars
into accurate metamodels that employs OCL constraints to
specify the implicit cardinalities imposed by grammar rules
featuring disjunctions and iterations. At its core, implicit car-
dinalities of grammar rules are translated into linear equation
systems that are solved at modeling time to check validity of
models. We also presented a realization of our concept that
translates MontiCore grammars into Ecore metamodels with
OCL incorporating a solver generated for each metamodel
class. Using this realization, we presented a case study trans-
lating the grammar of the MontiArc ADL into an accurate
Ecore metamodel. Leveraging our transformation concept
liberates language developers from manually enforcing that
metamodels representing grammars are accurate. This facili-
tates bridging grammarware and modelware and contributes
to successful software language engineering with truly het-
erogeneous modeling languages.
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