
A Container-based Approach For Proactive Asset
Administration Shell Digital Twins

Carsten Ellwein, Jingxi Zhang, Andreas Wortmann
Institute for Control Engineering of Machine Tools

and Manufacturing Units (ISW)
University of Stuttgart

Stuttgart, Germany
{carsten.ellwein, jingxi.zhang, andreas.wortmann}@isw.uni-stuttgart.de

Antony Ayman Alfy Meckhael
Faculty of Media Engineering

and Technology (MET)
German University in Cairo

New Cairo City, Egypt
antony.alfy@student.guc.edu.eg

Abstract—In manufacturing, digital twins, realized as Asset
Administration Shells (AAS), have emerged as a prevalent
practice. These digital replicas, often utilized as structured
repositories of asset-related data, facilitate interoperability across
diverse systems. However, extant approaches treat the AAS as
a static information model, lacking support for dynamic service
integration and system adaptation. The existing body of literature
has not yet thoroughly explored the potential for integrating
executable behavior, particularly in the form of containerized
services, into or from the AAS. This integration could serve
to enable proactive functionality. In this paper, we propose a
submodel-based architecture that introduces a structured service
notion to the AAS, enabling services to dynamically interact with
and adapt AAS instances at runtime. This concept is implemented
through the extension of a submodel with behavioral definitions,
resulting in a modular event-driven architecture capable of
deploying containerized services based on embedded trigger
conditions. The approach is illustrated through a case study on
a 3-axis milling machine. Our contribution enables the AAS to
serve not only as a passive digital representation but also as an
active interface for executing added-value services.

Index Terms—Asset Administration Shell, Service, Digital
Twin, Containerization

I. INTRODUCTION

Digital twins (DTs) [1, 2] are software systems [3] that con-
nect to a cyber-physical system (CPS), automatically receive
data from it, perform computations and return instructions to
the CPS [1]. DTs include the physical entities (i.e. CPS), their
data, models, and active software components [2]. An impor-
tant modeling technology in the manufacturing environment
is the Asset Administration Shell (AAS), utilized modeling
products [4], processes [5], resources [6] and their interaction
in the context of production [7].

The AAS models exist in an ecosystem; they can be
provided on a server and refer to current values of the CPS
in their structural description. Therefore, according to the
literature [8–10], AAS (or rather the AAS ecosystem) could
be used as a technology to implement DTs [11]. However,
as outlined in the related work section, the AAS ecosystem

Partly funded by the Federal Ministry for Economic Affairs and Energy
(BMWE) through the projects growING (grant no. 13IPC036G). Partly funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – Model-Based DevOps – 505496753. The authors are responsible for
the content of this publication.

lacks a way to integrate active software components, thus
proactive behavior, in an encapsulated and thus reusable man-
ner. Consequently, the lack of encapsulation and re-usability
prevents the establishment of standardized or shared proactive
AAS components. This research gap is addressed in this
paper. The integration of a container runtime into the AAS
ecosystem enables the encapsulated deployment of software
components. The concept presented in the body of the paper
enables the container runtime behavior to be influenced via
AAS, thus synchronizing software service, data and model.
Our contribution enables the AAS to serve not only as a
passive digital representation but also as an active interface
for executing added-value services.

The remainder of this paper is structured as follows:
Section 2 provides a comprehensive review of the extant
literature on the AAS and the five-dimensional-digital-twin
model. In Section 3, the architecture of the proposed solution
is presented. In Section 4, the feasibility and benefits of this
approach are demonstrated through a case study involving a
3-axis milling machine. Concluding the paper is Section 5,
which outlines directions for future research.

II. RELATED WORK

The 5D-model [2] delineates that DTs comprise five distinct
elements: (i) physical entity, (ii) virtual models, (iii) ser-
vices, (iv) data and (v) the connections, which facilitates
collaboration between the four previous components. The (i)
existence of physical entities within the physical world serves
as the foundational basis for DTs. These physical entities
are governed by physical laws. DTs are designed to replicate
the attributes of their corresponding physical entities, thereby
enabling the simulation of their behaviors. The utilization of
(ii) virtual models has been proven to be an effective method
of replicating both physical entities and the physical properties
and behaviors that are inherent to these entities. This includes
behavior models describing how entities respond to changes in
their environment, rule models providing logical abilities (e.g.,
reasoning or evaluation). The (iii) services offered by DTs
include a range of applications such as simulation, verification,
monitoring, optimization, diagnosis, prediction, prognosis, and
health management. The (iv) data is at the core of the model



and originates from all the previously mentioned elements. As
the (v) connections, data can be created persistently, but can
also be fleeting.

One technology that can be used to implement DTs is the
AAS [11]. The AAS is defined as the digital representation
of the asset containing all its relevant information throughout
its entire lifecycle [12] and is presented as the basis of
interoperability: on the one hand, it holds information of
various types and on the other hand, it functions as the
interface for communication within the I4.0 network through
which information can be exchanged between assets [13].

Since the AAS holds relevant information throughout the
lifecycle of the asset, it must be capable of representing
different sorts of information, such as properties, modeled
functionalities, parameters, a summary of included compo-
nents, as well as data that accrues during manufacturing or
simulation and also descriptions, such as their usage instruc-
tions and technical specifications. This presupposes the ability
to store or refer to heterogeneous data and models [14]. In
relation to the 5D-model, these represent the virtual model.
The AAS is structured within a metamodel which defines
structure and semantics of an AAS, such as the way elements
are related or identified. This metamodel is instantiated in
specific AAS submodels. Each individual submodel of an
AAS is intended to represent one content-related or functional
aspect of the represented asset. Submodels can be created
individually applying the previously introduced metamodel. To
ensure consistency and interoperability, the Industrial Digital
Twin Association (IDTA) provides standardized and publicly
available so-called submodel templates, which we extend
in our concept to enable proactive services in AAS, thus
showing an approach for services in DTs. There is an in-
creasing focus on the representation of software components
in digital twin architectures, a trend that is also evident in
recent advancements within the IDTA submodel ecosystem.
For instance, submodels such as the Software Nameplate and
the Software Bill of Material primarily support documentation
and traceability during runtime. Conversely, submodels such
as Interface Connectors and Computing Platform Resources
furnish structural and deployment-related information that
can be leveraged during the preliminary engineering phases,
including system integration and configuration. Parallel to the
stronger focus on the description of software components, the
software-heavy nature of the AAS itself is also increasing. The
declared aim of some of the projects described in more detail
below is to provide AASs with active behavior, the so-called
proactive asset administration shells.

One work [15] proposes an approach to extend the inher-
ently reactive behavior of the AAS by integrating a proactive
component. Their solution involves engineering a tightly cou-
pled software module that operates in conjunction with an
AAS server. The demonstration shows two AAS, a product
and a storage facility, and multiple bidding apps, that calculate
prices for production and storage, monitor the AAS and
select appropriate actions. Although effective in demonstrating
basic proactivity, the approach entangles software engineering

Physical
Entities

Data

Virtual
Models

Services

Physical
Entities

Data

Virtual
Models

Fig. 1. The current state of the community effort for the development of
AAS (left) vs. the aspired goal within this work (right), based on [2].

logic with domain-specific knowledge, resulting in limited
modularity and a high degree of manual effort on service
implementation. This tight coupling complicates reuse and
scalability, especially when adapting services in different asset
types or operational contexts.

One work [16] proposes a server-based middleware archi-
tecture in which a centralized service bus mediates interactions
between services via RESTful web services. Although this
approach provides a network accessible interface to digital
twin functionality, the paper lacks a detailed description of
internal execution flows or lifecycle management of services
within the middleware. Additionally, although the authors’
ontology-based knowledge structure resembles the role of
multiple submodels in an AAS, their implementation lacks
modularization; all software components are tightly coupled
with a single middleware.

Another relevant contribution is to AI-powered digital
twins [17], which explore the use of runtime-enriched dig-
ital twins for anomaly detection. Their approach uses live
operational data to train and apply AI models within a twin
framework, that they propose. However, their solution does not
align with AAS standards, resulting in a monolithic system
architecture with tightly integrated, non-modular methods.
Consequently, the proposed approach requires more effort to
generalize the approach beyond their case study. This high-
lights a key limitation in current AI-integrated twin research:
the absence of standardized, interface-oriented structures that
enable service composition and reuse. Our work addresses
this gap by introducing an AAS-compliant, submodel-based
mechanism for embedding containerized, AI-ready services
into digital twin systems.

In summary, existing approaches to the AAS predomi-
nantly treat it as a static information model, lacking active
components capable of adapting or influencing the system at
runtime. Integrated into the 5D-model, current AAS imple-
mentations cover the physical entity and their models [11] (cf.
Fig. 1 (left)). The absence of a structured notion of services
within the AAS limits its ability to support proactive behavior
or dynamic system adaptation.

As software becomes increasingly complex, but also central
to industrial systems, this imbalance introduces a critical need
for models and interaction patterns that are not tied to concrete
machine instances.



To address this, we propose an extension of the AAS
that integrates executable services as first-class elements (cf.
Fig. 1 (right)). This enables both human users and automated
algorithms to interact with and adapt the system through the
AAS interface. By establishing a foundation for proactive
behavior, our approach opens the door to future developments
in AI-driven decision-making and added-value services within
digital twin ecosystems.

III. ARCHITECTURE LAYOUT

In order to equip the AAS with proactive software capabil-
ities while staying in conformity with the AAS standard [18],
which requires an explicit definition of identifiers, relations,
versioning, and submodels, it is first necessary to identify
suitable submodels or component representations that can
serve as integration points for added-value services.

In order to provide support for the dynamic deployment of
containerized services based on the AAS standard, a modular,
event-driven architecture is further introduced. This archi-
tecture enables runtime orchestration and contextual service
activation.

The fundamental rationale behind this design choice per-
tains to the objective of decoupling the standardized manage-
ment of AAS submodels from the specialized logic that is re-
sponsible for orchestrating the lifecycle of external container-
ized services. This decoupling facilitates system extensibility,
maintainability, and modular integration of dynamic service
behavior [19].

Our system is designed to operate on the so called AASX
package, a ZIP-based archive intended for the structured
exchange of AAS submodels along with associated supple-
mentary files. A required part of this archive is an XML-
based representation of the supplementary files contained and
information on the submodel. We extend this convention by
introducing a method for co-locating behavioral definitions
alongside declarative submodel elements within the same
package. Such an extension consists of the versioning and
execution of the service, which can be exported to different
AAS.

a) The Service Execution Submodel: To enable the dis-
covery and interpretation of service execution logic, a ded-
icated submodel, the Service Execution Submodel, is intro-
duced. It provides a standardized structure for specifying
container-related metadata, such as execution triggers and
termination policies. The formal specification, a template, and
an example AASX package for this submodel are publicly
available 1. In this sense the service execution submodel rep-
resents added-value services, capable of operating on existing
AAS instances. Consequently, it is imperative that the system
under consideration provides support for explicit references to
both internal and external AAS, their constituent submodels,
and the specific submodel elements that are indispensable
for the system’s operation. Furthermore, a description of

1Service Execution Submodel available via https://doi.org/10.18419/
DARUS-5304.

AASController

DockerOptionsHandler

AASXImporter

AASManager

DockerRepository

+ getAllAAS()
+ startDockerOnDemand(aasId)
+ stopDockerOnDemand(aasId)
+ getas(aasId)
+ updateAAS(aasId)
+ importAAS(MultipartFile)

+ getOpt(Submodel.optIdShort):String
+ applyContainerOptions(Submodel,

AASManager,DockerRepository,aasId)
+ terminateRunningContainers()
+ cleanUpOldContainers(aasIdShort,

dockerSource)

+ importAASX(inputStream,
AASManager, 
DockerOptionsHandler, 
DockerRepository)

+ updateSubmodel(
submodelId, Submodel)

+ createAAS(
AssetAdministrationShell)

+ createSubmodel(Submodel)
+ createConceptDescription(

ConceptDescription)
+ getSubmodel(submdeolId)
+ updateAAS(

AssetAdministrationShell, aasId)
+ getAAS(aasId)

+ unregisterDockerContext(
aasIdShort, dockerSource)

+ getDockerContext(
aasIdShort, dockerSource):Path

+ registerDockerContext(aasIdShort,
dockerSource, dockerSourcePath)

Fig. 2. Conceptual component diagram of the architecture, illustrating the
primary components and their logical dependencies.

the service’s behavior is needed. To this end, we propose
the representation of such behavior as executable software
artifacts, technically realized as containerized packages (e.g.,
Docker images), thereby enabling consistent deployment and
integration.

b) Architecture of the system: The architecture leverages
the general concept of using containers to encapsulate service
logic. For the specific implementation and use case presented
in this paper, we utilize Docker as the container technology.
As such the core architectural components responsible for
processing these enriched AASX packages are depicted in
Fig. 2, which contains the components AASX Importer, AAS
Manager, Docker Repository, Docker Options Handler, and
AAS Controller.

The responsibilities of the core logical components in the
architecture are defined as follows:

• AAS Controller: The controller functions as the principal
interface through which users or services can access or
manipulate submodels within an AAS. It also serves
as the invocation interface for containerized services,
which have the capacity to dynamically update or modify
submodel elements during their execution.

• AASX Importer: The primary responsibility of the im-
porter is the processing of incoming AASX packages.
This component facilitates the co-location of models and
their corresponding service within the same AAS as
well as across different AASs. Our approach employs
a convention that involves the storage of contexts within
a predefined directory structure.The importer then dese-
rializes the AAS submodels and routes both the model
data and executable artifacts to their respective processing
components.

• AAS Manager: This component functions as the primary
interface for the management of the lifecycle of AAS
submodels, offering Create, Retrieve, Update, and Delete
operations. The system’s functionality encompasses the

https://doi.org/10.18419/DARUS-5304 
https://doi.org/10.18419/DARUS-5304 


User

User

AASController AASImporter AASManager DockerOptions-
Handler

Docker-
Repository

DockerClient

loop

alt

loop

alt

loop

alt

loop

AASController AASImporter AASManager DockerOptions-
Handler

Docker-
Repository

DockerClient

POST / 
Import 
AASX file

ImportAASX

[for each Submodel]

Extract files,
Deserialize XML

createSubmodel
[Submodel exists]

updateSubmodel

[for each AAS]

[AAS exists]

createAAS

updateAAS

getDockerContexts registerDockerContextForAasId(
aasIdShort, dockerContextName)

[for each ConceptDescription]
createConceptDescription

[ConceptDescription exists]
updateConceptDescription

[for Docker-options Submodels]

applyContainerOptions(sm, aasId) build and run containers

return

Response 
with 
success 
message

Fig. 3. Sequence diagram of the import and service activation workflow.

abstraction of the persistence layer, thereby ensuring the
uniform accessibility of core AAS resources.

• Docker Repository: This repository is intended for the
management of containerizable artifacts, such as the
services behavior as Dockerfiles and the associated build
contexts. The repository facilitates versioned retrieval and
reuse of service logic defined within AASX packages.

• Docker Options Handler: This handler functions as the
runtime execution engine. It interprets service execution
metadata embedded in AAS submodels and manages the
full lifecycle of corresponding containers, from build to
deployment and termination.

In the context of lifecycle management of services, with
particular emphasis on containerized services such as Docker
containers, it is imperative to delineate the temporal sequence
of pivotal phases, encompassing build, deployment, and termi-
nation. To address this issue, our concept introduces an event-
driven workflow specification, thereby enabling precise control
over the execution lifecycle of services. A logical execution
sequence is provided to determine the point in time at which
the container is invoked, created, or terminated.

c) Submodel based Execution Flow: The operational
workflow is initiated by the import of an AASX package
into the AASX Importer, which subsequently instigates the
registration and deserialization of its contents. This approach
aligns with prevailing standards in the field. The present
addition to the aforementioned framework pertains to the
checking of service contexts, and, when applicable, the activa-
tion, build, and run of a corresponding containerized service.
This workflow as depicted in Fig. 3 illustrates the manner in
which architectural components interact to transform a static,
declarative package into a runtime-executable service.

The workflow proceeds logically as follows:

1) An AASX package is imported and processed by the

Asset Administration Shell Importer.
2) The importer directs the Asset Administration Shell

Manager to register all submodels. For all submodels
that contain a service context, the importer now instructs
the Docker Repository to store the service contexts.

3) Finally, the importer provides any submodels containing
service metadata, such as submodel references and the
Asset Administration Shell ID to the Docker Options
Handler, which evaluates the provided service execution
triggers, defined in the service execution submodel, and,
if conditions are met, interacts with a container engine to
build and run the service.

The triggers depend on the context that is given in its service
execution submodel. In the following we investigate which
kinds of triggers are required in the lifecycle of a service in
the AAS.

d) Conditional Logic for Service Activation: A funda-
mental aspect of the proposed architecture is its capability to
respond to a predetermined set of triggers that are integrated
directly within the AAS submodel. These triggers function as
semantic activation points for containerized services, thereby
facilitating context-aware behavior. The conditional logic that
governs the evaluation and handling of these triggers is mod-
eled in the activity diagram presented in Fig. 4.

The system evaluates executionTrigger properties
based on the context of the operation, providing usage
guidelines for different scenarios. The following selec-
tion of execution triggers are supported in the current
ServiceExecutionSubmodel:

• onInitialize: Used for one-time setup tasks that
should run when an asset is first introduced to the system
(during initial import).

• onUpdate: Designed for services that must react to
changes in the AAS data. This trigger ensures that a
service is re-executed to maintain data consistency or re-
evaluate a state whenever the source AAS is modified.

• onAccess: Suited for resource-intensive or just-in-time
services that should only be activated when a client ac-
tively interacts with the asset, thereby conserving system
resources until they are explicitly needed.

• onDemand: Reserved for services that require explicit
external invocation through the API and shouldn’t be
triggered automatically by other lifecycle events.

This model-driven, declarative approach allows the behavior of
an asset to be specified entirely within its digital twin, enabling
a more autonomous and integrated cyber-physical system.
Furthermore, by processing terminationTrigger meta-
data, the system provides complete lifecycle management,
enforcing policies such as automated termination after a time-
out (onTimeout) or in response to a failed health check
(onHealthCheckFail).

In summary, our proposed service execution submodel, ar-
chitecture, and triggers complement the advancements towards
proactive AAS.



AAS Operation Request Load DockerOptions Submodel
Submodel

Exists?

OnInitialize?

OnUpdate?

OnAccess?

OnDemand?

Read executionTrigger

No Docker configuration

Skip

Manual 
Request?

Access 
operation?

Update 
operation?

Import 
operation?

Container 
running?

healthy?

Container 
running?

healthy?

Queue 
empty?

Successful?

OnTimeout?

OnHealth-
CheckFail?

OnDemand?

Skip

Queue container

Cleanup
Queue 
container

Skip

Skip

Skip

Cleanup existing Queue container

Skip

Queue container

No action

Build 
image

Start 
container

Log 
error

Register 
container

Cleanup
Queue 
container

Queue container

Read terminationtrigger

No action

Wait for 
manual stop

Start health 
monitor

Schedule 
termination

Complete 
opertation

Execution Trigger 
Processing

Container Execution

Termination Setup

y

n n

y

y

y

y

n

n

n

y

n

y

y

y

y

n

n

n

y

n

y

y

y

y

y

y

y

n

n

n

n

n

n

n

Fig. 4. Activity diagram of the conditional logic for processing execution and termination triggers.

IV. CASE STUDY

In our case study we investigate the programming of CNC
milling machines, which frequently necessitates a considerable
amount of manual effort to adapt and calibrate the control
logic for each individual machine instance. It is imperative
to note that machines of the same type and configuration
(e.g., multiple 3-axis or 4-axis milling machines) generally
necessitate distinct tuning and adjustment of control programs.
This absence of transferability is predominantly attributable
to geometric error and the subsequent necessity for machine-
specific error compensation. It is widely acknowledged that
geometric inaccuracy is a primary source of deviation in CNC
machining. A geometric error compensation is a standard
requirement in both research and industrial applications across
machines with three or more axes. As demonstrated by extant
research [20], geometric and cutting-force-induced errors vary
considerably among individual machine instances, even among
models that appear identical. Consequently, compensation
strategies, such as the use of laser interferometry for error
measurement and the application of neural network-based
correction models, are typically tailored to a single machine.
While these methods have been demonstrated to achieve high
levels of accuracy for the specific machine on which they
are developed, the resulting CNC programs and compensation
algorithms are not directly transferable to other machines,
even of the same type and configuration. This instance-
specific behavior engenders a fundamental limitation in current
practice: each machine necessitates individual calibration and
model adaptation, impeding scalability and reuse in production
environments. As such, in our case study, we focus on a 3-axis
CNC milling machine (cf. Fig. 5) [11] and use a simplified

{ “OSACA: Geometry-Correction Service Submodel”:
{ “dockerSource”: “geometry-correction-service”,
“executionTrigger”: “onUpdate”,
“dockerData”: [
{“AASID”: “OSACA-CPS-AAS”, “SubmodelID”: “OSACA-CPS-AAS”, 

“SubmodelElements”: [XPos: X-Value, YPos: Y-Value, ZPos: Z-Value]},
{“AASID”: “OSACA-Simulation-AAS”, “SubmodelID”: “OSACA-Simulation-AAS”, 

“SubmodelElements”: [XPos: X-Value, YPos: Y-Value, ZPos: Z-Value]}
]

}

OSACA-CPS-AAS OSACA-Simulation-AAS

OSACA-CPS-Services-AAS

1
2
3
4
5
6
7
8
9
10

Fig. 5. Constellation of three AAS: bottom left AAS of the physical machine
containing the real values, bottom right AAS of the simulation model of the
OSACA milling machine. On top a service that takes the values from the
physical machine, uses a programmatic correlation in a Docker container and
writes the normed value to the model AAS.

correlation model between the actual position and the modeled
position.

We will omit the factors of the laser measurement and the
correlating deviation from the measurements. We assume a
submodel which contains the observed value. With the model
of the positional error we develop a service to perform the
compensation from the model to the real control.

This transformation algorithm is built in a dockerized ser-
vice, which is invoked by the execution trigger onUpdate.
Here an update may be a movement of the physical machine
or an axis movement done to one of the axes which needs to



be transferred to the physical machine.
To address the challenge of non-transferable and non

reusable services due to machine-specific deviations, we use
our service execution submodel to decouple machine-specific
properties from generic control models. This objective is
realized through the implementation of a service to establish a
connection between the behavior of the physical machine and
an abstract, idealized model representation. The architecture is
implemented using three AAS in submodels depicted in Fig. 5,
each reflecting a distinct concern:

1) The first submodel: This representation signifies the phys-
ical machine’s current state in real time, which includes
aspects such as the tool’s position. It is intended for
utilization by both machine experts and operators.

2) Transformation submodel: The compensation logic is
encapsulated as a service that corrects for geometric and
process-induced errors.

3) The model submodel is as follows: This model is an ab-
stracted, machine-type-level representation that contains
compensated values suitable for simulation, planning, or
algorithmic reuse.

This structured distinction of submodels supports software
solutions that operate on different levels of abstraction, while
remaining anchored to the instance level when needed. By
abstracting compensated machine behavior, the submodel can
be accessed by added-value services (e.g., predictive main-
tenance, adaptive path planning) that are no longer tightly
coupled to a single machine instance.

The service we implemented is the geometry correction
service, that follows the service execution submodel. The
transformation service functions as a mediation layer, provided
by a domain expert. The system performs a calculation to
determine a compensated tool position for milling operations
by accessing two AAS submodels. The OSACA-CPS-AAS
submodel provides the tool’s current measured position in
reality. The OSACA-Simulation-AAS submodel, which de-
fines the ideal or simulated position, is updated using the
transformation logic.

Finally, the three submodels are deployed on an AAS
server, which is implemented within a Java environment under
the BaSyx framework. The server architecture comprises the
following conceptual components: AAS Controller, AASX
Importer, AAS Manager, Docker Repository and Docker Op-
tions Handler. This infrastructure provides full support for
create, update and delete operations on AAS instances and
submodels. To demonstrate the feasibility of this approach,
we implemented an onUpdate trigger mechanism to enable
consistent and automated propagation of position updates from
the OSACA-CPS-AAS to the OSACA-Simulation-AAS.

This enables the formalization and modularization of com-
pensation as a reusable service that bridges the gap between
raw machine behavior and portable control logic.

V. DISCUSSION

In reference to the five-dimensional digital twin model
(see Fig. 1), this work extends the AAS by introducing a

proactive component and a conceptual framework for service
interaction. Consequently, the establishment of standardized
or shared proactive AAS components is enabled. This is the
foundation for the re-usability not only of syntax, standardized
in the AAS metamodel, and semantics, standardized in the
AAS submodels, but also of system behavior, potentially
standardized in software containers. Integrating AI-driven
analytics and machine learning models into our proposed
architecture enables the AAS to continuously analyze sensor
streams, detect emerging anomalies, and autonomously trigger
parameter adjustments or maintenance actions. This transforms
traditionally reactive workflows into proactive, self-optimizing
behaviors.

VI. FUTURE PLANS

Realizing the case study, proof of concept (PoC) has been
provided for the implementation of proactive AAS applying
a container-based approach (cf. TRL-3, [21]). The further
research roadmap is outlined from here.

1) Full-scale Prototype: Issues such as security, respon-
sibility and access rights have been ignored in this initial
PoC. However, for industrial or even large-scale academic
application, these concerns are essential. Hence, a further step
is to align the security concepts of the AAS with those of
the container runtime. The communication between internal
services and external software components via the AAS in-
terface is to be examined in particular. In this endeavor, a
systematic service reuse across heterogeneous AASs will be
crucial. Furthermore, the current architecture is to be extended
to include a container cluster (i.e., Kubernetes). To this end, the
service execution submodel is to be extended and the execution
triggers are to be verified.

2) Empirical Evaluation: In parallel, the applicability of
the concept is to be examined in a broad-based survey of
AAS users. AAS user groups and members of the IDTA, as
well as publicly listed IDTA partners, will be contacted, which
means approximately 150 to 180 potential survey participants.
The survey aims to identify potential use cases and collect
early feedback on the container-based approach to implement
proactive AAS.

3) Full-scale Case Study: Finally, the applicability of the
prototype is demonstrated (cf. VI-1) will be demonstrated
based on a real-world industrial use case, identified through a
survey (cf. VI-2). In cooperation with the partner, the selected
use case is initially set up and tested in the laboratory, then
transferred to an operational environment. (cf. TRL-4 to TRL-
7, [21]).

VII. CONCLUSION

This paper presents the vision of reusable software services
via a container-based approach in order to realize proactive
AAS DTs. By embedding service execution logic and trigger
conditions directly within the AAS structure, the proposed
approach enables dynamic, context-aware behavior and paves
the way for more autonomous and service-integrated digital
twins. This advancement strengthens the role of the AAS not



only as a static information container but also as an active
participant in the lifecycle and operation of industrial assets.
This will impact the further acceptance of AAS technology
and is the first step toward the provision of standardized value-
added services within the AAS ecosystem.

REFERENCES

[1] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and
W. Sihn, “Digital Twin in manufacturing: A categorical
literature review and classification,” Ifac-PapersOnline,
vol. 51, no. 11, pp. 1016–1022, 2018.

[2] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui,
“Digital twin-driven product design, manufacturing and
service with big data,” The International Journal of
Advanced Manufacturing Technology, vol. 94, pp. 3563–
3576, 2018.

[3] P. Muñoz Ariza, J. Troya-Castilla, A. J. Vallecillo-
Moreno et al., “A conceptual architecture for building
digital twins,” in STAF Workshops, 2023.

[4] S. Ajdinović, N. Maisch, M. Dzubba, A. Lechler, and
O. Riedel, “Defining scalable data models for opera-
tional data integration in manufacturing processes within
the digital product passport framework through opc ua
and asset administration shell,” in Flexible Automation
and Intelligent Manufacturing: Manufacturing Innova-
tion and Preparedness for the Changing World Order,
Y.-C. Wang, S. H. Chan, and Z.-H. Wang, Eds. Cham:
Springer Nature Switzerland, 2024, pp. 117–124.

[5] D. Dietrich, M. Neubauer, A. Lechler, and A. Verl,
“Automated manufacturing toolchain using skill-based
digital twins,” Procedia CIRP, vol. 128, pp. 923–928,
2024.

[6] F. Frick, C. Ellwein, A. Lechler, M. Neubauer, and
A. Verl, “Software-defined manufacturing: Reference ar-
chitecture,” in 2024 International Symposium on Power
Electronics, Electrical Drives, Automation and Motion
(SPEEDAM). IEEE, 2024, pp. 1289–1295.

[7] C. Ellwein, R. Neumann, and A. Verl, “Software-defined
manufacturing: Data representation,” Procedia CIRP, vol.
118, pp. 360–365, 2023.

[8] C. Wagner, J. Grothoff, U. Epple, R. Drath, S. Malakuti,
S. Grüner, M. Hoffmeister, and P. Zimermann, “The role
of the industry 4.0 asset administration shell and the
digital twin during the life cycle of a plant,” in 2017 22nd
IEEE international conference on emerging technologies
and factory automation (ETFA). IEEE, 2017, pp. 1–8.

[9] M. Redeker, J. N. Weskamp, B. Rössl, and F. Pethig,
“Towards a digital twin platform for industrie 4.0,” in
2021 4th IEEE international conference on industrial
cyber-physical systems (ICPS). IEEE, 2021, pp. 39–
46.

[10] M. Neubauer, L. Steinle, C. Reiff, S. Ajdinović,
L. Klingel, A. Lechler, and A. Verl, “Architecture for
manufacturing-x: Bringing asset administration shell,
eclipse dataspace connector and opc ua together,” Man-
ufacturing Letters, vol. 37, pp. 1–6, 2023.

[11] J. Zhang, C. Ellwein, M. Heithoff, J. Michael, and
A. Wortmann, “Digital twin and the asset administration
shell,” SOFTWARE AND SYSTEMS MODELING, 2025.

[12] DIN Deutsches Institut für Normung, “Reference archi-
tecture model industrie 4.0 (rami 4.0),” 2016.

[13] Plattform Industrie 4.0, “Details of the Asset
Administration Shell,” 2019, last accessed: 2024-02-28.
[Online]. Available: https://www.plattform-i40.de/IP/
Redaktion/EN/Downloads/Publikation/Details of the
Asset Administration Shell Part1 V2.html

[14] S. Cavalieri and M. G. Salafia, “Asset administration
shell for plc representation based on iec 61131–3,” IEEE
Access, vol. 8, pp. 142 606–142 621, 2020.

[15] S. Grunau, M. Redeker, D. Göllner, and L. Wisniewski,
“The implementation of proactive asset administration
shells: Evaluation of possibilities and realization in an
order driven production,” Springer Proceesings of Com-
munication in Automation – KommA 2020, pp. 131–144,
2022.

[16] F. Longo, L. Nicoletti, and A. Padovano, “Ubiquitous
knowledge empowers the smart factory: The impacts
of a service-oriented digital twin on enterprises’ perfor-
mance,” Annual reviews in control, vol. 47, pp. 221–236,
2019.

[17] Ž. Bolbotinović, S. D. Milić, Ž. Janda, and D. Vuk-
mirović, “Ai-powered digital twin in the industrial iot,”
International Journal of Electrical Power & Energy
Systems, vol. 167, p. 110656, 2025.

[18] Industrial Digital Twin Association, “Details of the asset
administration shell - part 2,” 2021, last accessed: 2024-
08-09. [Online]. Available: https://www.plattform-i40.
de/IP/Redaktion/EN/Downloads/Publikation/Details of
the Asset Administration Shell Part2 V1.html

[19] J. Stutterheim, P. Achten, and R. Plasmeijer, “Maintain-
ing separation of concerns through task oriented software
development,” in Trends in Functional Programming,
M. Wang and S. Owens, Eds. Cham: Springer Inter-
national Publishing, 2018, pp. 19–38.

[20] C. Raksiri and M. Parnichkun, “Geometric and force
errors compensation in a 3-axis cnc milling machine,”
International Journal of Machine Tools and Manufacture,
vol. 44, no. 12-13, pp. 1283–1291, 2004.

[21] J. C. Mankins et al., “Technology readiness levels,” White
Paper, April, vol. 6, no. 1995, p. 1995, 1995.

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html

	Introduction
	Related Work
	Architecture Layout
	Case Study
	Discussion
	Future Plans
	Full-scale Prototype
	Empirical Evaluation
	Full-scale Case Study


	Conclusion

