
Digital Twins for Software Engineering Processes
Robin Kimmel1, Judith Michael2, Andreas Wortmann1, Jingxi Zhang1

1 ISW, University of Stuttgart, Stuttgart, Germany, firstname.lastname@isw.uni-stuttgart.de
2 SE, RWTH Aachen University, Aachen, Germany, michael@se-rwth.de

Abstract—Digital twins promise a better understanding and
use of complex systems. To this end, they represent these systems
at their runtime and may interact with them to control their
processes. Software engineering is a wicked challenge in which
stakeholders from many domains collaborate to produce software
artifacts together. In the presence of skilled software engineer
shortage, our vision is to leverage DTs as means for better rep-
resenting, understanding, and optimizing software engineering
processes to (i) enable software experts making the best use of
their time and (ii) support domain experts in producing high-
quality software. This paper outlines why this would be beneficial,
what such a digital twin could look like, and what is missing for
realizing and deploying software engineering digital twins.

Index Terms—Software Engineering, Digital Twins, Artificial
Intelligence

I. MOTIVATION

The shortage [1] of skilled workers in software engineering
is a growing concern with significant implications for all
industries depending on software. As the amount of software
around us and the demand for novel software solutions contin-
ues to rise, the growth of the workforce of qualified software
engineers is not keeping pace. With fewer skilled engineers
available, companies struggle to develop new and advanced
software solutions, and the pace of innovation slows [2], po-
tentially leading to stagnation in technological advancements.
This gap between required and provided software engineering
capacities prevents growth and stifles innovation.

Computer science has always been a story of increasing
abstraction and improving automation. Automation of software
engineering processes can help bridge the gap caused by the
shortage of skilled workers by taking over well-understood,
mundane, repetitive tasks, allowing software engineers to focus
on more complex and creative challenges. Moreover, the rise
of AI-support for all phases of the software development and
operations (DevOps) life-cycle suggests that an increasingly
comprehensive digital representation of relevant aspects of the
DevOps activities becomes feasible and can be exploited to
(support) automated decision-making about the process. Such
a representation could be considered a digital twin (DT) of a
software engineering process.

Based on the understanding of DTs based on the data flow
model of DTs [3] and the 5D model of DT components [4],
we envision that such DTs, which can sense data from the
represented system (i.e., a software engineering process),
reason about this data using internal models, and act on the
represented system (e.g., to suggest code improvements) will
become holistic software engineering co-pilots that encompass
the complete DevOps cycle instead of living in the IDE only.

Next, Sec. II illustrates what we understand as DTs, before
Sec. III outlines the idea of DTs of software engineering pro-
cesses. Afterward, Sec. IV illustrates an example application
before Sec. V discusses our idea. Then, Sec. VI lays out our
next steps toward this idea and Sec. VII concludes.

II. BACKGROUND

Digital Twins: The most prominent definitions of DTs
(a) separate them from digital models and digital shadows
by requiring automated data flows from the original system
(to sense changes in it) and to the original system (to induce
changes to it) [3] and (b) require that they comprise five
dimensions [4]: (1) an interface to the original system, (2) data
from and about that system, (3) models representing (parts of)
that system, (4) services producing added value based on data
and models, and (5) connections between all of these.

Software

Engineering

Processes

Process Data

Services

Processing

Data

Suggestions,

Changes

Process-

related

ModelsProcessing

Fig. 1: 5D DTs applied to software processes [4]

Consequently, a DT is a software system that connects to the
original system, observes data from it, uses its models about
that system and the services to reason about these observations,
and suggests changes to the system– which can be software
themselves [5], [6], [7] And while there is a tremendous body
of work on DTs, such as mapping studies on their nature [8],
analyses of their characteristics [9], surveys on their reference
architectures [10], systematic literature reviews on the devel-
opment of DT software in application areas [11] and plethora
of publications on their application to specific challenges, a
DTs of software engineering processes is missing.

Automated Software Engineering Pipelines: There are
many for automating software engineering, such as SonarQube

[12], GitLab’s continuous integration and continuous delivery
(CI/CD) [13], or Atlassian Bamboo [14], which primarily are
used to analyze the code base and only after committing
changes to the code base to the server. Some are integrated
into comprehensive tool suites, where planning can be con-
ducted through issue boards and the testing and deployment
of software can be automated through the CI/CD pipeline.
Although these tools facilitate the tracking of development
processes, optimization techniques, such as work splitting
and the simulation of software development processes, the
observation of the running software products and their links
to the development artifacts (not limited to the code base) are
still largely underexplored. While there is ongoing research
that investigates leveraging DTs on the operations side of
DevOps [15], a holistic DT of software engineering processes
that encompasses all relevant artifacts and engineering phases
does not exist yet.

III. DIMENSIONS OF SOFTWARE PROCESS TWINS

With software process DTs, we suggest transferring a part
of tool and automation control from stakeholders to a com-
prehensive DT that (a) encompasses, and relates, all relevant
activities of a specific software engineering process, and (b)
actively suggests or realizes changes to the process and its
artifacts instead of reacting on stakeholder inputs only.

According to the 5D model of DTs (cf. Fig. 1), such twins
need (1) an interface to obtain data from the development
process, (2) data from that process, (3) models about the
process (the knowledge), (4) services computing changes and
suggestions (the reasoning) on the process and its artifacts, and
(5) connections between all of them. Therefore, we assume
that the services are units of computation such as twins and
that they connect data obtained via the interface to the process
to internal models about it before producing actions regarding
the process. The following outlines these dimensions for a DT
for software engineering processes.

Interfaces to the process come in many forms and can
include anything digitally observable in current and future SE
processes. As of today, this includes data from (1) project
management tools (such as issue tickets, merge requests, etc.),
(2) interactions with CI/CD tools, co-Pilots, test results, (3) ob-
serving IDEs and the artifacts (code, dependency management,
debugging information) being manipulated therein. Aside from
these obvious data sources, further data might support a better
understanding while improving the SE process as well, such as
(4) information about the availability of developers, e.g., from
their work calendars (to automatically plan the distribution of
tasks and monitor workload conflicts), or (5) conversations,
such as meeting protocols or chat logs, about the current
project and related projects (to identify topics that have been
problematic in the past and might raise issues again),

Models of a software engineering process include process
models that describe graphs of activities and relate these to in-
volved stakeholders, data models about development informa-
tion (e.g., tickets, properties of developers), constraint models
(e.g., about available resources) that the services of the DTs

use, as well as AI models, to make decisions about the process.
In addition, models created within a software engineering
process should be considered, e.g., architecture design models,
goal models for specifying system requirements from the user
perspective, sequence models specifying the system behavior,
or test models describing test cases and test data.

Fig. 2: The eight phases of DevOps

Based on the data and models, services can represent the
state of the process, as well as analyze it and propose change
suggestions. Various technologies for such services already
exist and can become part of the software process DTs easily.
Table 1 lists examples of such services for the different
software engineering activities based on the DevOps process
model (cf. Fig. 2). These activities are partially aligned with
the DevOps cycle to encompass both the development and
the operations phases. However, as the underlying process
model, any other model, for example, the V-Model and the
Waterfall model, can be used. For each service, we summarize
inputs (data and models), its reasoning activities, and potential
outputs.

With such data from the engineering tools, models about
the process, stakeholders, and intended software product, and
services in place, a comprehensive DT can support software
engineering processes across the complete software lifecycle.
The next section illustrates such a DT focusing on the creation
of sustainable software.

IV. EXAMPLE APPLICATION

When creating a DT for software engineering, we must first
define the purpose for which we aim to develop it. Each of
the purposes determines, which data is needed from which
tooling in the software engineering process, which process-
related models should be reused or have to be developed,
which services should be developed to fulfill the purpose,
e.g., analysis, optimization, prediction of specific aspects of
the software and its related processes, and which visualizations
and interaction possibilities are needed for human users of this
DT. Regarding the sustainability of software systems, a similar
approach has analyzed which data, models, and services could
be of interest when aiming to perform a sustainability analysis
of a software system as a purpose [30]. To realize such a
system, a domain and purpose-tailored specification of data,
models, and services is needed, as we show in the following
two examples.

Imagine creating a DT of a software engineering pro-
cess with the purpose of analyzing the adherence to the

Tbl. 1: Service input, processing, and output for selected software engineering twin activities, based on different DevOps
phases [16]. The comprehensive list can be found here [17]

Phase Service Input (Data & Models) Service Reasoning Service Output (Suggestions, Changes)
Plan Open issues and successfully

closed issues.
Calculation of similarity between issues closed
by Developer X and currently open issues [18]
[19].

Proposed ticket assignments based on similar,
successfully resolved tickets from the past.

Plan Newly created requirements (Fron-
tend or Backend).

Adaptation of requirements to project standard
with developer specific views.

Output of requirements in various formats such
as natural language, UML, etc. with user specific
preferences. Include recommendations for code
snippets, UI layouts etc.

Code Declarative knowledge about the
project, for example, facts about
existing race conditions (two or
more threads accessing a specific
variable).

Store information and provide an interface for
a developer to retrieve declarative knowledge
while working inside an IDE [20].

Provide the developer with declarative knowl-
edge about the project, ticket etc. or directly
recommend snippets based on the knowledge.

Code Currently created code from an
IDE. Developer profile.

Comparison via embeddings with a database of
code snippets [21].

Indication in the IDE whether similar code has
been implemented elsewhere or how others have
implemented it.

Code A developer trying to create a new
feature in an existing code base.

Using a model trained via deep learning from
GitHub commits to emulate, attempts to improve
readability [22].

Provide an improved version of the relevant code
with better readability to allow the developer to
make better decisions more easily.

Code Currently created code from an
IDE.

Extract and analyze dependencies between dif-
ferent artifacts [23].

Suggestions on how to structure incremental
builds or for reducing coupling between com-
ponents.

Build Changes in dependency versions
in build artifacts (e.g., Maven’s
POM).

Analysis of issues (both on GitHub and internal
code base) that arose after the version upgrade.
Identification of code changes that match pat-
terns corresponding to known design patterns in
the local code base.

Suggestions for automatic local code adaptations
based on identified patterns in related issues.
Indications of potentially affected areas based on
issue patterns. Recommendations for updating
other dependencies based on changes observed
in issue-related code.

Build Code and target hardware specifi-
cations.

Estimation of energy consumption on target
hardware.

Estimated consumption of code sections, catego-
rized as green, yellow, or red. Recommendations
for improvements.

Test Code changes in the IDE. Automatic creation and execution of tests in
real-time to anticipate potential errors [24] [25].

Immediate feedback for the developer.

Test Existing code base of a micro-
service architecture as container-
ized applications.

Execution of a combination of different security
scanners, such as for example docker-bench-
security, nmap, terrascan [26].

Security report for the given set of applications
derived from different tools.

Deploy Code in development, models of
target platform and deployments.

Analysis of compatibility of code to variants of
target platforms and deployments [27].

Validity of potential code deployment or list of
incompatible software parts.

Operate Logged system operation events. Analyze runtime behavior [28]. Suggestions on how to alter the system config-
uration of dynamically adaptive systems.

Operate Current real time energy consump-
tion.

Peak analysis or comparison to predefined en-
ergy goals.

Show times of highest energy need to readjust
system configuration or create energy usage re-
ports.

Monitor Sustainability goals as non-
functional requirements and
system monitoring data.

Calculation of metrics and comparison with sus-
tainability targets.

Report on achieved or failed sustainability goals.

Monitor User click behavior within an al-
ready deployed UI.

Comparison with learned database of personas
[29].

Suggestions for UI improvements (potential fu-
ture work).

architectural specification of the system under development.
Required data and models could be, e.g., a wiki documenting
architectural descriptions, and architecture design models as
well as the code of the current implementation. Automated
services analyze the code for potential contradictions with the
architecture description, e.g., logically separate components
unexpectedly communicate, and provide a high-level overview
about which part of the specified architecture was already
realized. The visualization of the analysis results depends
on whom to show them: For software architects, it might
be more interesting to show a visual representation of the

software architecture, e.g., as an architecture model or a graph
structure, with highlights where contradictions occur and the
possibility to either jump into relevant parts of the implemen-
tation or which developers to contact to discuss this deviation
with. For software developers, it might be more interesting
to get information directly in the IDE to not distract them
from the implementation flow by navigating to another tool.
Here, relevant parts of the architectural specification could be
shown, e.g., in components that communicate unexpectedly
with another component, with the possibility of retrieving
more details.

In another example, we aim to develop a DT of a software
engineering process with the purpose of better ticket planning
support for developers. Required data are the assigned issues
with the estimated effort until the next sprint, the incoming
and confirmed new appointments in the developer’s calendar
and the tickets that the developer closes. Automated services
calculate whether there is enough time left until the end of the
sprint to process the remaining open tickets. If the free time is
insufficient, the developer and/or team leader could be warned
via email or again in their DT cockpit where such information
is collected.

Creating dashboards for DTs can be highly automated, e.g.,
with generators for web applications [31]. One can generate
large parts of these user interfaces based on data models
describing the data to be displayed and models describing the
graphical user interfaces. In addition, there exist libraries with
configurable GUI components [32] to create such dashboards.
An example DT dashboard for visualizing parameters in a
system engineering process for wind turbines can be found
in [33]. The authors describe the extraction of data from
external engineering tools as well as data visualization. Similar
approaches can be applied to software engineering processes.

V. DISCUSSION

Not all actions, decisions, and changes to a SE process
might be digitally observable easily or at all. This includes
anything discussed in person without providing protocols for
this discussion, as well as business decisions affecting the
project(s) in question, such as reducing the developer time
assigned to them. Also, some data sources that might be useful
to optimize the overall process might not be usable due to
regulatory or compliance issues (e.g., scanning chat logs for
issue patterns might be in conflict with the GDPR). For this,
aggregating and abstraction required information locally on the
developers’ computers and making transparent what is shared
with the DT might improve support for that system.

As the data will be spread over different applications,
mechanisms to extract relevant information from each of them
in an automated way have to be developed. Here, vendor lock-
in and lacking APIs to reach the information in an automated
way might be an additional challenge.

Often, assistance systems that interact with users directly,
must be fine-tuned to make and suggest changes as often
as necessary, without bothering the users as this can lead
to information fatigue, and ultimately, the users may ignore
provided information or deactivate the assistance system. Like-
wise, information overhead must be prevented. Both of these
require empirical studies on the application of suggestions and
artifact changes through the DT during SE projects.

VI. FUTURE PLANS

Prototype. We are currently developing DTs for cyber-
physical systems in various contexts and started developing
sensors and actuators for interacting with software engineering
processes. These include interfacing with GitHub in its role
as a project management tool and CI/CD pipeline as well

as monitoring of project schedules and developer capacities.
To start experimenting with these, we plan to create an
extension for Visual Studio Code that captures these to (a)
suggest improvements to the and (b) make changes to code
artifacts directly. We will use this as the basis for empirically
investigating the benefits of different services in the SE process
DTs.

Pilot studies. Our institutes comprise app. 100 people who
are developing software on a daily basis in different domains
and in a variety of project contexts and sizes. Consequently,
we will deploy the first prototype into the working groups of
our institutes to evaluate and improve them in these contexts.

Empirical evaluation. Once the improved prototype is ready
for experimentation, we will investigate its usability regarding
correctness, completeness, and helpfulness of suggestions to-
gether with user experience experts. These experiments will be
conducted with novice developers (lab courses with students
of different semesters) and experienced developers (from our
research transfer networks and in large consortium projects).

Functional extension. In parallel, we plan to prioritize the
development of additional services of the DT with focus
groups on different phases of the DevOps lifecycle and from
different domains, including at least manufacturing, robotics,
and construction.

Systems engineering. Supporting engineering processes with
DTs does not need to be constrained to software processes.
Some, especially organizational decisions, can be supported
by DTs in the same way. However, for every reasoning about
the subject matter, corresponding services must exist, which,
in systems engineering, might pose challenges regarding the
availability of data, models, and best practices. In the future,
we, therefore, plan to experiment with DT support in systems
engineering projects as well. Therefore, we will leverage
systems engineering projects in which we are involved with
companies in automotive engineering, construction, and ma-
chine engineering.

VII. CONCLUSION

We presented a vision for DTs of software engineering
processes that capture not only the typical data and models
used today but can leverage additional data (e.g., schedules)
and models (such as traces or architecture models) for a novel,
holistic, representation of and action on a specific software
engineering process. Such holistic software engineering DTs
will significantly improve the way we create, maintain, and
operate software by providing novel insights and immediate
improvements by combining models of the process with data
from yet untapped sources and powerful AI services. This
will not only impact established practices of formally trained
software professionals but especially of domain experts who
create software or contribute to it by applying automated best
practices and established software engineering principles to
their solutions. Hence, liberating significant software engineer-
ing potential that can be applied to innovating and creating
added-value despite the lack of skilled software engineers.

Ultimately, such DTs will become a competitive factor in
software engineering.

Acknowledgments: The authors were partly funded by
the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - Model-Based DevOps - 505496753.
Website: https://mbdo.github.io. The authors of the University
of Stuttgart were partly funded by the Ministry of Science,
Research and Arts of the Federal State of Baden-Württemberg
within the InnovationsCampus Future Mobility (ICM).

REFERENCES

[1] Financial Times, “Technology and the skills shortage,”
https://www.ft.com/content/b1b710a1-6d12-43e5-8508-ae4584a7289a,
accessed: 2024-09-30.

[2] Forbes, “Analyzing the software engineer shortage,”
https://www.forbes.com/councils/forbestechcouncil/2021/04/13/
analyzing-the-software-engineer-shortage, accessed: 2024-10-02.

[3] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
twin in manufacturing: A categorical literature review and classification,”
Ifac-PapersOnline, 2018.

[4] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405–2415, 2018.

[5] Z. Lai, D. Yuan, H. Chen, Y. Zhang, and W. Bao, “Wirelessdt: A digital
twin platform for real-time evaluation of wireless software applications,”
in IEEE/ACM 45th Int. Conf. on Software Engineering: Companion
Proc. (ICSE-Companion). IEEE, 2023, pp. 146–150.

[6] J. Heluany, A. Amro, V. Gkioulos, and S. Katsikas, “Interplay of digital
twins and cyber deception: Unraveling paths for technological advance-
ments,” in ACM/IEEE 4th Int. WS on Engineering and Cybersecurity of
Critical Systems (EnCyCriS) and IEEE/ACM 2nd Int. WS on Software
Vulnerability, 2024, pp. 20–28.

[7] J. Ahlgren, K. Bojarczuk, S. Drossopoulou, I. Dvortsova, J. George,
N. Gucevska, M. Harman, M. Lomeli, S. M. Lucas, E. Meijer et al.,
“Facebook’s cyber–cyber and cyber–physical digital twins,” in Proceed-
ings of the 25th International Conference on Evaluation and Assessment
in Software Engineering, 2021, pp. 1–9.

[8] M. Dalibor, N. Jansen, B. Rumpe, D. Schmalzing, L. Wachtmeister,
M. Wimmer, and A. Wortmann, “A cross-domain systematic mapping
study on software engineering for digital twins,” Journal of Systems and
Software, 2022.

[9] D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, “Characterising
the digital twin: A systematic literature review,” CIRP journal of
manufacturing science and technology, 2020.

[10] E. Ferko, A. Bucaioni, P. Pelliccione, and M. Behnam, “Standardisation
in digital twin architectures in manufacturing,” in IEEE 20th Int. Conf.
on Software Architecture (ICSA). IEEE, 2023, pp. 70–81.

[11] M. A. Guinea-Cabrera and J. A. Holgado-Terriza, “Digital twins in soft-
ware engineering—a systematic literature review and vision,” Applied
Sciences, vol. 14, no. 3, p. 977, 2024.

[12] S. SA., “Code Quality, Security & Static Analysis Tool with
SonarQube | Sonar,” https://www.sonarsource.com/products/sonarqube/,
[Online; accessed 08-October-2024].

[13] GitLab, “Get started with GitLab CI/CD,” https://docs.gitlab.com/ee/ci/,
[Online; accessed 08-October-2024].

[14] Atlassian, “Bamboo: Continuous Integration und Deployment,” https://
www.atlassian.com/de/software/bamboo, [Online; accessed 08-October-
2024].

[15] B. Combemale, J.-M. Jézéquel, Q. Perez, D. Vojtisek, N. Jansen,
J. Michael, F. Rademacher, B. Rumpe, A. Wortmann, and J. Zhang,
“Model-based devops: Foundations and challenges,” in 2023 ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C). IEEE, 2023, pp. 429–433.

[16] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 2016.

[17] Anonymous, “List of activities for digital twin software engi-
neering,” https://zenodo.org/records/13927534, [Online; accessed 08-
October-2024].

[18] M. Z. Tunio, H. Luo, C. Wang, F. Zhao, W. Shao, and Z. H. Pathan,
“Crowdsourcing software development: Task assignment using pddl arti-
ficial intelligence planning.” Journal of Information Processing Systems,
vol. 14, no. 1, 2018.

[19] H. K. Dam, T. Tran, J. Grundy, A. Ghose, and Y. Kamei, “Towards
effective AI-powered agile project management,” in IEEE/ACM 41st Int.
Conf on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER). IEEE, 2019, pp. 41–44.

[20] M. Leung and G. Murphy, “On automated assistants for software
development: The role of llms,” in 38th IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE). IEEE, 2023, pp. 1737–1741.

[21] J. Bader, S. S. Kim, F. S. Luan, S. Chandra, and E. Meijer, “Ai in
software engineering at facebook,” IEEE Software, vol. 38, no. 4, pp.
52–61, 2021.

[22] A. Vitale, V. Piantadosi, S. Scalabrino, and R. Oliveto, “Using deep
learning to automatically improve code readability,” in 2023 38th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2023, pp. 573–584.

[23] T. Greifenberg, S. Hillemacher, and B. Rumpe, Towards a Sustainable
Artifact Model: Artifacts in Generator-Based Model-Driven Projects.
Shaker, 2017.

[24] S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly generating
diverse valid test inputs with reinforcement learning,” in ACM/IEEE
42nd Int. Conf. on Software Engineering, 2020, pp. 1410–1421.

[25] S. Fatima, T. A. Ghaleb, and L. Briand, “Flakify: A black-box, language
model-based predictor for flaky tests,” IEEE Transactions on Software
Engineering, vol. 49, no. 4, pp. 1912–1927, 2022.

[26] B. Ünver and R. Britto, “Automatic detection of security deficiencies and
refactoring advises for microservices,” in 2023 IEEE/ACM International
Conference on Software and System Processes (ICSSP). IEEE, 2023,
pp. 25–34.

[27] J. C. Kirchhof, A. Kleiss, B. Rumpe, D. Schmalzing, P. Schneider,
and A. Wortmann, “Model-driven self-adaptive deployment of internet
of things applications with automated modification proposals,” ACM
Transactions on Internet of Things, vol. 3, no. 4, pp. 1–30, 2022.

[28] R. Bhagwan, S. Mehta, A. Radhakrishna, and S. Garg, “Learning
patterns in configuration,” in 2021 36th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE, 2021, pp.
817–828.

[29] X. Zhang, H.-F. Brown, and A. Shankar, “Data-driven personas: Con-
structing archetypal users with clickstreams and user telemetry,” in Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, 2016, pp. 5350–5359.

[30] M. Heithoff, A. Hellwig, J. Michael, and B. Rumpe, “Digital Twins for
Sustainable Software Systems,” in GREENS 2023. IEEE, July 2023,
pp. 19–23.

[31] C. Buschhaus, A. Gerasimov, J. Kirchhof, J. Michael, L. Netz,
B. Rumpe, and S. Stüber, “Lessons learned from applying model-driven
engineering in 5 domains: The success story of the MontiGem generator
framework,” Journal Science of Computer Programming, vol. 232, p.
103033, Jan 2024.

[32] A. Gerasimov, N. Jansen, J. Michael, and B. Rumpe, “Applying self-
extension mechanism to DSLs for establishing model libraries,” in 23rd
ACM SIGPLAN Int. Conference on Generative Programming: Concepts
and Experiences (GPCE 24). ACM, October 2024.

[33] J. Michael, I. Nachmann, L. Netz, B. Rumpe, and S. Stüber, “Generating
Digital Twin Cockpits for Parameter Management in the Engineering of
Wind Turbines,” in Modellierung 2022, ser. LNI. GI, June 2022, pp.
33–48.

https://mbdo.github.io
https://www.ft.com/content/b1b710a1-6d12-43e5-8508-ae4584a7289a
https://www.forbes.com/councils/forbestechcouncil/2021/04/13/analyzing-the-software-engineer-shortage
https://www.forbes.com/councils/forbestechcouncil/2021/04/13/analyzing-the-software-engineer-shortage
https://www.sonarsource.com/products/sonarqube/
https://docs.gitlab.com/ee/ci/
https://www.atlassian.com/de/software/bamboo
https://www.atlassian.com/de/software/bamboo

	Motivation
	Background
	Dimensions of Software Process Twins
	Example Application
	Discussion
	Future Plans
	Conclusion
	References

