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Abstract—Digital twins enable optimization and flexibility
in cyber-physical production systems (CPPSs). However, most
implementations still replicate static production structures rather
than supporting dynamic adaptability. This paper introduces
Formless Production as a paradigm in which production systems
emerge dynamically from modular, interoperable skills repre-
sented through SKkill-Based Digital Twins (SBDTs). In this ap-
proach, skills encapsulate the operational knowledge of resources,
enabling their flexible orchestration based on system state and
context. The paper outlines the conceptual foundations of form-
less production, illustrates how SBDTs realize this vision, and
proposes a roadmap toward software-defined, self-configuring
manufacturing systems.

Index Terms—Digital Twin, Skill-Based Manufacturing, Adap-
tive Production, Cyber-Physical Systems

I. INTRODUCTION

Industrial production systems (IPSs) exist and evolve in
an environment of inherent tension. They are required to
be efficient and flexible, precise and adaptive, stable and
innovative, economically viable and ecologically responsi-
ble, all simultaneously [1], [2], [3]. This persistent conflict
of objectives, known as the Polylemma of Production [4],
defines the central challenge of all manufacturing theory:
no IPS can be optimized for all targets at once. Every
paradigm in production history has represented a distinct
compromise along this multidimensional space of objectives.
From Taylorism and Lean Production to Reconfigurable and
Cyber-Physical Production Systems (CPPSs), each paradigm
sought to overcome the trade-offs of its predecessor with
regard to the respective historical challenges [5], [6], [7].
Yet, despite continuous technological evolution, fundamental
limitations remain and become increasingly critical in today’s
volatile, uncertain, and interdependent industrial ecosystems.
To understand these limitations, one must analyze how IPSs
come into being, i.e., how their form and capabilities emerge
around industrial value creation from the interplay of their
constituent dimensions and elements. IPSs are not merely
structural configurations but rather the emergent result of the
mutual interpenetration of structural, processual, and human
dimensions [8], [9], [10] acting and interacting simultaneously:
(1) Structural: encompassing physical architectures, layouts,
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machine and resource constellations; (2) Processual: including
the realization of value creation, related workflows, methods,
and routines; (3) Human: comprising knowledge, cognition,
roles and culture, and coordination mechanisms.

Together, these interwoven dimensions form what we define
as the Gestalt of the IPS, the concrete manifestation and
characteristic form that allows the IPS to act as an organized
whole in its current state. However, this Gestalt defines not
only the system’s performance but also its boundaries. Once
the form emerges, it creates path dependencies and lock-in
effects. The very moment any decision is made in production
— procuring a machine, defining a production sequence for a
product, or introducing a new process — the system begins
to accumulate legacy and inertia. While the Gestalt of the
system is the fundamental basis for its performance, efficiency,
and stability, it also defines the limits of its transformation.
Today’s IPSs are, therefore, highly structured and stable while
operating in an environment that is increasingly unstructured
and unstable. Consequently, these systems are structurally
optimized yet dynamically paralyzed: They often excel at
incremental improvement but struggle to adapt and reconfigure
themselves fundamentally when confronted with discontinuous
change [11], [12]. Even modern CPPSs, which integrate digital
intelligence into production, largely replicate existing forms in
virtual space rather than transcending or transforming them.

We introduce our vision of formless production as a pro-
duction paradigm that seeks to dissolve the Gestalt of IPSs
and, thereby, its limitations. Formless production envisions
manufacturing as a software-defined, skill-based, and dynami-
cally emergent system. In this paradigm, structural, processual,
and human-related knowledge dimensions are no longer rigid
but are represented, orchestrated, and recomposed in digital
space before being implemented in the hardware domain. The
contributions of this paper, hence, are (1) a description of our
vision of the formless production as a paradigm; and (2) a
concept of skill-based digital twins (DTs) to enable this vision.

The remainder is structured as follows: Sec. II introduces
background concepts, Sec. III discusses related research, Sec.
IV presents the paradigm, Sec. IV-D details skill-based DTs,
Sec. V outlines a research roadmap, and Sec. VI concludes.
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Fig. 1: Functions of DTs according to ISO 23247 [13]

II. BACKGROUND
A. Skill-Based Manufacturing

One foundation of formless production is decoupling pro-
duction processes from the specific CPPSs realizing them,
which aims to make production more flexible and, hence,
easier to adapt to changing requirements [14], [15], [16] as
well as facilitate the creation of new production functional-
ities. A popular approach to this decoupling is representing
these production functionalities as skills that are realized
by production resources [17], [18]. In such a "skill-based
manufacturing” [19] or "skill-based production” [20], skills
usually carry knowledge what can be achieved in a factory but
not how this is realized [21]. A survey on skills in manufac-
turing [22] identified common requirements for skills (such as
formality, modularity, or executability) and identifies various
modeling techniques employed for describing skills, such as
OPC UA [23], AutomationML [24], or UML [25]. Often,
skills should also be "matchable" [22], i.e., their formalism
enables matching production requirements to available skills.
Where this is possible, skills can serve as the foundation for
automated production planning [26]. Often, however, these
skills are represented statically and cannot represent changes to
the underlying CPPSs during their lifetime (e.g., through wear-
and-tear, environmental changes, or evolution of the CPPS),
thus leading to subpar or invalid plans. To mitigate this, we
propose making DTs the carriers of such skills.

B. Digital Twins

Research and industry employ DTs to make better use
of cyber-physical, biological, and social systems [29], [30].
Therefore, DTs promise reducing development time and costs,
improving operations, and deepening our understanding of the
represented CPPSs [29]. And while research and industry have
devised many reference models of DTs [31], there still is little
consensus on what a DT is and what it’s implementation needs.
Popular definitions either define DTs based on the data flows
between the DT and the twinned CPPS [32], coarsely describe
abstract modules that they may comprise [28] (data, models,

realize added-value services, e.g., analytics,
predictive maintenance

Digital Twin x —
Services
JE—

Data Digital Twin Service
Managers || Engine Manager
Model .
Managers || Digital Twin Synchronizer

T Gateway
1 T

connects DT to CPPS,
e.g., via MQTT

e.g., to process
AAS models
Fig. 2: High-level view on our DT reference architecture [27]
based on the 5D model of DTs [28]

services, interface to the CPPS, and connections between these
dimensions), or focus on software architectures of DTs for
very specific DT applications. One thing that all DTs according
to [32] have in common is that they obtain data from the
CPPS, process this, and may use insights gained from this
processing to manipulate that system [32]. However, there
are many more expectations on what a DT should be able
to do as outlined by the functional entities' mentioned in
ISO 23247 [13] (c¢f. Fig. 1): Here, DTs collect data from
observable manufacturing elements, process it and provide
it to added-value functions, e.g., for digital representation,
analytics, reporting, or simulation. The results are then sent
back to control the CPPS.

Ultimately, these findings entail that a DT is a complex
software system that receives data from and about the twinned
CPPS, uses this data and various kinds of models via services
to represent and manipulate that CPPS to provide added-value
functions. Consequently, based on these and similar require-
ments entailed by the DT definitions discussed above, we have
conceived a reference architecture for digital twins [27], of
which an excerpt is presented in Fig. 2. In this architecture,
we refined the 5D model of DTs [28] and devised software
components required to realize this model. Our integration of
skills with DTs in Sec. IV-D is based on this architecture.

III. RELATED WORK

A central aspect of the formless production vision is the
virtualization of production knowledge, dissolving rigid forms
to enable adaptive, software-defined value creation. Several
preceding paradigms share this aspiration by virtualizing con-
trol and representation to raise flexibility, interoperability, and
intelligence within IPSs. Prominent among these are Software-
Defined Manufacturing (DSM), the Reference Architecture
Model Industrie 4.0 (RAMI 4.0) with the Asset Administration
Shell (AAS), and the Virtual or Digital Factory (DF).

SDM extends principles from software-defined networking
and cloud computing into the industrial domain. It separates
the control and data planes of IPSs, allowing manufacturing

IThe standard does not require all of them to be present in each DT.



capabilities to be exposed and orchestrated as programmable
software services [33], [34]. SDM enables dynamic resource
allocation, edge/cloud collaboration, and Manufacturing-as-a-
Service business models [35]. Recent research emphasizes
semantic interoperability, distributed orchestration, and Al-
driven process adaptation [1], [36]. However, most SDM
realizations operate at the control and IT layers, virtualizing
communication and configuration rather than production se-
mantics. Processes must already exist in an executable form;
thus, SDM optimizes infrastructure more than value creation
and lacks an explicit mechanism for self-emergent or context-
driven process generation.

RAMI 4.0 provides a three-dimensional reference frame-
work aligning industrial assets along hierarchy levels, life-
cycle phases, and architecture layers [8]. Its core element,
the AAS, defines a standardized digital representation that
encapsulates each asset’s identity, data, and communication
interfaces [37]. The AAS supports interoperability and the
formation of digital twins within initiatives of the Industrial
Digital Twin Association (IDTA) [38]. Despite its foundational
role, RAMI 4.0 remains a representational architecture: it
specifies how assets are described and connected, not how they
autonomously interact or compose behaviors. Consequently, it
provides structural integration but not behavioral emergence.
The value network is modeled as a static hierarchy of assets
rather than a dynamic constellation of executable capabilities.

The Virtual Factory paradigm, integrates modeling, simula-
tion, and data analytics to establish a digital counterpart of
the physical IPS [39]. In its modern form, the DF, based
on DTs, extends this concept through synchronization and
closed-loop control, enabling analysis, prediction, and opti-
mization [28], [32]. Overall, the DT is considered as a holis-
tic socio-technical system, combining product lifecycle data,
production planning, and virtual commissioning to increase
transparency and responsiveness. These developments have
made virtualization an indispensable instrument of modern
production engineering. Yet, despite their integrative depth,
DF implementations generally replicate the structural and
procedural form of existing IPSs. They enhance planning and
optimization, but rarely recompose or re-imagine the IPS’s
operational logic. The virtual representation thus mirrors the
physical IPS rather than generating new forms of organization
or emergent collaboration.

IV. THE VISION OF FORMLESS PRODUCTION

Formless production is a paradigm in which industrial value
creation is freed from rigid, predefined structures — from its
traditional Gestalt. In all preceding paradigms, the form of
the production system has determined and constrained how
value can be created. In contrast, formless production reverses
this relationship: value creation itself becomes the generative
principle, rather than a consequence of system formation. To
operationalize such a paradigm, production is conceived from
a pre-Gestalt state, in which no fixed form of the production
system yet exists. The only invariant reference point is the
fundamental purpose of industrial production: the task of

creating value at the product itself. From this origin, system
form is not predefined but emerges computationally as the
optimal response to the requirements of value creation.

A. Value-Driven System Emergence

How can value creation be planned without predefined sys-
tems, processes, or structures? The core idea of the formless
production paradigm lies in the formalization of platform-
independent skills that encode the fundamental capabilities of
production processes. In manufacturing, these skills ideally
capture the mechanical and thermal impacts on the workpiece
and its material. They transform implicit expert knowledge
into explicit, machine-processable representations, forming a
semantic foundation upon which production planning and
execution can be automated. To implement value creation,
formless production is first instantiated in a virtual space,
where digital product data and platform-independent (man-
ufacturing) processes are jointly aligned. Based on product
requirements, contextual constraints, and the current state of
the production environment—including the available machines
and product portfolio—Al-based planners then orchestrate
these skills into executable sequences, virtual machines, fac-
tories, and value networks. Through computational reasoning,
the resulting production system is derived, not designed: its
structure, processes, and coordination in the physical world
emerge as transient configurations that best fulfill the specified
value objectives under the prevailing conditions.

B. Reflexive Adaptation

Consequently, the production system is no longer a persis-
tent artifact but rather a dynamic state of coherence between
product requirements and available capabilities. The produc-
tion system becomes a transient computational entity existing
simultaneously in two domains: (i) the informational domain,
where production capabilities are represented as formalized
skills and orchestrated by digital intelligence to match the
current requirements of value creation, and (ii) the physical
domain, where these configurations are temporarily materi-
alized and executed. As boundary conditions evolve — from
product design and resource state to market demand — the
system continuously recomposes and adapts itself. This shift
establishes formless production as the first reflexive production
paradigm: one in which production continuously produces its
own form.

C. Implications

This paradigm shift entails far-reaching implications for the
future of industrial production and for how skills, constraints,
and systems must be conceived: (1) IPSs cease to exist
as permanent entities; they emerge temporarily and evolve
dynamically across structural, processual, and organizational
boundaries, dissolving once their purpose is fulfilled. (2) Tem-
poral and capacity constraints are relaxed, as the planning and
reconfiguration of entire product portfolios occur continuously
and autonomously, adapting to new conditions in near real



time. (3) The classical Polylemma of Production is system-
atically mitigated, as efficiency, flexibility, quality, and sus-
tainability can be optimized concurrently within algorithmic
planning. (4) Production becomes a software-defined service,
decoupled from fixed physical infrastructures and executable
across globally distributed, dynamically reconfigurable value-
creation platforms—or conversely, hyper-localized near the
point of use. Formless production therefore marks a funda-
mental inversion in the logic of industrial production. The
socio-technical Gestalt of an IPS — traditionally constrained
by legacy assets, company-specific processes, and tacit expert
knowledge — no longer limits what can be manufactured.
Instead, the integral synthesis of all product requirements and
boundary conditions dynamically shapes the IPS itself. The
system’s identity is maintained not through structural per-
manence, but through informational continuity and adaptive
coherencein the ongoing pursuit of value creation.

D. Skills as Foundation of Formless Production

The basic ontological unit of formless production is the skill,
a modular, machine-processable representation of a production
capability. Each skill formalizes what can be achieved, how
it can be realized, and under which contextual constraints.
By abstracting production knowledge from specific machines
or platforms, skills provide the semantic foundation for auto-
mated reasoning, matching, and orchestration. Through model-
driven engineering and formal planning languages such as the
Planning Domain Definition Language (PDDL) [40], skills
can be composed dynamically into executable production se-
quences. Al-based planners instantiate these skills on available
resources, forming virtual machines, factories, or networks that
emerge only for the duration of their purpose. Thus, the system
continuously redefines itself through computation, rather than
remaining bound to a predesigned structural form.

SKILL-BASED DIGITAL TWINS

The realization of formless production relies on DTs as
the operative medium that connects informational represen-
tation with physical execution. Within this paradigm, DTs
are autonomous, communicative agents representing products,
processes, and resources via platform-independent skills. Each
DT, therefore, comprises models of the twinned CPPS, its pro-
cesses, and its environment, e.g., including the CPPS’s AAS,
its kinematics models, simulation models, SysML models, as
well as their inter-model relations and semantics, such that
it (a) can properly interpret data obtained from or about the
twinned CPPS and (b) provide data and models, linked and
enriched with insights obtained from reasoning about them to
human and artificial agents.

The realization of formless production requires a mecha-
nism that connects the digital representation of capabilities,
the skills with their physical execution, which requires precise
information about the systems capable of their execution,
including effects of wear-and-tear, environmental influences,
or changes to the configuration of the CPPSs. We believe this
to be realized by DTs of the CPPSs, which, by definition
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Fig. 3: Reference architecture for Skill-Based DTs

and construction, already comprise much of this informa-
tion [41]. To leverage this, the DTs must become carriers
of the production skills as well. Ultimately, these skill-based
DTS become the medium through which the dissolution of
Gestalt becomes operational, transforming the static coupling
of structure, process, and human activity into a dynamic, data-
driven interplay.

For industrial skill-based DTs in manufacturing, we expect
representing and using skills via established technologies.
Thus, Fig. 3 illustrates a reference architecture for skill-based
DTs as a refinement of the general DT reference architecture
(cf. Fig. 2) and relates the components to corresponding
technologies: (1) Connection to CPPS takes place via OPA
UA; (2) Representation and specification of skill requires
model managers for the AAS as well as PDDL [26] and
whichever models the DT needs to reason about the twinned
CPPS; (3) Data is persisted by time-series databases (mostly
for monitoring to sensor data and related events) and by
unstructured databases (to track changes to models used by the
DT); and (4) Services need to include means for representing
skills, monitoring their status, updating their specifications,
and planning of their use. In this architecture, each skill,
as a digital description of a process capability, is associated
with its corresponding DT instance that comprises multiple
integrated models for each skills’ parameters, constraints,
and performance behavior. The DT continuously synchronizes
with its physical or virtual asset, maintaining an up-to-date
reflection of its state. By integrating such skill-based DTs into
a shared information space, Al-based planners dynamically
compose and orchestrate skills into executable production
plans. This enables a direct translation from product require-
ments—expressed in the DT of the product itself—to the
orchestration of production skills and resources required to
realize them. The DT thus becomes the operative nucleus of
formless production. It enables the CPPS to exist simultane-
ously and continuously updated in the information domain,
as a virtual configuration of capabilities, and in the physical
domain, as their temporary materialization. Thus, the DT
replaces static integration architectures with continuous syn-
chronization and adaptive coordination. Overall, the formless
production will leverage DTs in three principal roles:



1) Representation: Every relevant production entity, from
process capabilities and resources to products, is repre-
sented by a DT or sufficient precise model controlled by
a DT. Therefore, each DT contains semantic, geometric,
and behavioral information that makes its properties in-
terpretable and actionable by human and artificial agents.

2) Orchestration: DTs interact autonomously within a fed-
erated architecture. Through shared ontologies and stan-
dardized communication protocols, they negotiate de-
pendencies, synchronize states, and compose production
workflows in accordance with Al-generated plans.

3) Learning and Adaptation: Through continuous coupling
to physical processes, DTs collect data on performance,
quality, and context. This data refines models, optimizes
and updates skills and their parametrization, and enables
the system to adapt dynamically without predefined or
manually re-engineering cycles.

Through skill-based DTs, the Gestalt of the IPS becomes a
dynamic state rather than a fixed structure—able to dissolve
and re-form as requirements change. Thus, DTs are not
merely technical enablers but the informational Gestalt of
formless production: they embody system identity not through
stable form but through continuous information and coherent
interaction. By preserving this informational continuity across
changing configurations, DTs keep production coherent, trace-
able, and purposeful even without a fixed Gestalt.

V. RESEARCH ROADMAP

To enable our vision of the formless factory through skill-
based DTs, certain research activities and results are necessary.
This section outlines the nucleus of a research roadmap
towards our vision, which includes establishing a common
software architecture for DTs that can be deployed to all
kinds of CPPSs easily and with minimal additional software
engineering effort. On one hand, there are many different kinds
of software architectures for DTs in research and practice [36],
which are generally tailored to very specific applications of
DTs and are largely incompatible with one another. On the
other hand, there are standards proposing conceptual mod-
els of such architectures [13], [42] without concretizing the
software architectures required to implement them, hence not
significantly easing the realization and deployment of DTs
in industry. Similarly, there are various conceptual models of
skills, capabilities, and their relations for skill-based manufac-
turing [43], [44]. Yet a common understanding of such skills,
which would be a prerequisite for combining and reusing
skills, is missing. Therefore, it is vital to devise a detailed
data model for the specification of skills with its semantics
and standardize it. For the latter, the International Digital
Twin Association (IDTA)? is advancing the development of
AAS [37] as a data modeling framework for describing static
and dynamic information about (manufacturing) assets. The
AAS supports submmodel templates®, which are a lightweight

Zhttps://industrialdigitaltwin.org/
3https://industrialdigitaltwin.org/en/content-hub/submodels

mechanism to standardize parts of an AAS data model. Thus,
an AAS submodel template for skills would greatly facilitate
developing, deploying, and distributing skills. For reliable
industrial adoption, such a novel model can be extended with
adaptable, skill-level protection mechanisms [45]. Finally, the
skill-based DTs of the formless factory will be operated by do-
main experts with little (if any) formal software development
expertise. Hence, these DTs must become understandable and
configurable without such expertise. Thus, we believe that low-
code DTs [46], using suitable interfaces for their deployment,
configuration, and explainability, are vital for our vision. While
some approaches for this exist [47], [48], they are tied to very
specific DT applications and hardly applicable generally.

VI. CONCLUSION

We presented the vision of Formless Production, in which
the fixed Gestalt of industrial production systems is dissolved
and manufacturing becomes software-defined, skill-based, and
dynamically emergent. Central to this paradigm are Skill-
Based Digital Twins (SBDTs) that represent, orchestrate,
and compose human, processual, and structural knowledge
in digital space before realization in the physical domain.
Leveraging digital twins as carriers of production skills enables
manufacturing systems to overcome long-standing trade-offs
between efficiency and flexibility through dynamic virtual
reconfiguration and context-aware orchestration of capabilities
across all system levels. This paradigm further fosters novel
process synergies that transcend conventional technological
and organizational boundaries through the seamless recombi-
nation of skills across machines, processes, and domains. We
conclude that the production systems of the future must be
formless: self-configuring, interoperable ecosystems in which
manufacturing capabilities evolve continuously through skill-
based digital twins.
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